Improvement in Quality of Service Against Doppelganger Attacks for Connected Network

Author
Keywords
Abstract
Because they are in a high-risk location, remote sensors are vulnerable to malicious ambushes. A doppelganger attack, in which a malicious hub impersonates a legitimate network junction and then attempts to take control of the entire network, is one of the deadliest types of ambushes. Because remote sensor networks are portable, hub doppelganger ambushes are particularly ineffective in astute wellness contexts. Keeping the framework safe from hostile hubs is critical because the information in intelligent health frameworks is so sensitive. This paper developed a new Steering Convention for Vitality Effective Systems (SC-VFS) technique for detecting doppelganger attacks in IoT-based intelligent health applications such as a green corridor for transplant pushback. This method's main advantage is that it improves vitality proficiency, a critical constraint in WSN frameworks. To emphasize the suggested scheme's execution, latency, remaining vitality, throughput, vitality effectiveness, and blunder rate are all used. To see how proper the underutilized technique is compared to the existing Half Breed Multi-Level Clustering (HMLC) computation. The suggested approach yields latency of 0.63ms and 0.6ms, respectively, when using dead hubs and keeping a strategic distance from doppelganger assault. Furthermore, during the 2500 cycles, the suggested system achieves the highest remaining vitality of 49.5J.
Year of Publication
2022
Journal
International Journal of Interactive Multimedia and Artificial Intelligence
Volume
7
Issue
Special Issue on Multimedia Streaming and Processing in Internet of Things with Edge Intelligence
Number
5
Number of Pages
51-58
Date Published
09/2022
ISSN Number
1989-1660
URL
DOI
Attachment