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I. Introduction

SINGLE channel speech enhancement (SCSE) [1]-[16] is one 
of the significant researched problems in many speech related 

applications; such as, Automatic Speech Recognition (ASR) [17], 
Speaker Identification (SI) [18], Human-Machine interaction [19], etc. 
The problem occurs whenever an interfering noise signal degrades 
the target speech signal. The interfering noise signals could be 
convolutive [20] or additive. The convolutive noise signal is produced 
because of the reverberation. However, additive noise signals are 
usually supposed since this supposition expresses the uncomplicated 
solutions and practically more adequate results have been attained 
with the algorithms structured on such theory [21] [22]. The additive 
noise distortions significantly aggravate the quality and intelligibility 
of the speech signals. For this reason, the objective of the speech 
enhancement algorithms is to quantify the estimate of the underlying 
clean speech from the noisy speech to increase the intelligibility and 
quality of the noisy speech signal [21] [22]. A fundamental structure of 
the SCSE is shown in Fig. 1. A variety of speech related applications 
exists in our everyday situations where speech enhancement is required 
as for example: (i) the humans are present in the noisy environments 

and communicating on the mobile phones, (ii) listening to a call in 
the noisy street or in the factory, (iii) sitting in subway or travel in 
a car. In these situations, a speech enhancement could be used to 
ease the communication by reducing the noise signals. A number of 
speech enhancement methods have been designed at the front-end to 
create robust ASR systems by decreasing the discrepancies between 
the training and testing stages. In ASR, a speech enhancement method 
is applied to minimize the noise prior to the feature extraction phase. 
An additional imperative application of the speech enhancement 
system is for those individuals using hearing aid devices. The speech 
signals show extremely redundancy and normal hearing listeners can 
comprehend the target speech signals even in adverse signal-to-noise 
ratios (SNRs) [23]-[26]. For instance, a normal hearing individual can 
comprehend approximately 50% of the words spoken in a multitalker 
corrupted speech at signal to noise ratio equal to 0 dB [27]. However, 
for individuals with hearing problem (hearing loss), various speech 
parts could totally be inaudible or significantly distorted. Therefore, 
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the perceived speech signals have small redundancy. Consequently, the 
individuals with hearing loss feel problem in the noisy environments 
[28]-[30]. Large attention towards designing the robust speech 
enhancement algorithms is given to decrease the listening effort and 
improve the speech intelligibility [31] [32]. The combinations of such 
algorithms with contemporary digital signal processing systems are 
implemented in a number of speech related devices. 

Single-channel speech enhancement algorithms are divided into 
two major categories: Supervised SCSE (S-SCSE) algorithms and 
Unsupervised SCSE (U-SCSE) algorithms. In U-SCSE algorithms, 
a statistical model is used for speech/noise and the estimate of the 
underlying clean speech is quantified from the noisy speech devoid 
of prior facts about speaker identity and noise. Thus, no supervision 
and classification of the signals is required. Alternatively, the S-SCSE 
algorithms use models for speech and noise. The model parameters are 
learned through training of the speech and noise samples and models 
are defined by mixing the separate models for the speech and noise and 
the speech enhancement task is performed. In this category, therefore, 
prior supervision and classification of the speech or noise type is a 
requisite. The emphasis of this paper is to present a survey on the 
U-SCSE algorithms.

The remaining paper is organized as follows: Section II shows 
an extensive review of U-SCSE algorithms in terms of the speech 
intelligibility and quality. Section III presents experiments performed 
to evaluate the speech intelligibility and quality potentials of U-SCSE 
algorithms. Section IV presents the concluding remarks of the survey. 
Finally, section V presents important research problems which require 
further study. 

II. Classification of U-SCSE Algorithms 

This category includes a wide range of U-SCSE algorithms; 
however, general classification is not limited to the presented 
algorithms. In U-SCSE algorithms, a statistical model is used. The 
estimated underlying clean speech is quantified from the input noisy 
speech utterances devoid of previous facts about speaker identity and 
noise. A general classification and fundamental framework of the 
U-SCSE algorithms is shown in Fig. 2-3. In subsequent sub-sections, 
we provide a taxonomy based review of the U-SCSE algorithms.

A. Spectral Subtraction-based Speech Enhancement Algorithms
Spectral subtraction (SS) based speech enhancement is simple, 

effective and traditionally one of the pioneer methods proposed for 
reducing noise distortion. Noise signals are assumed to be additive. 
Spectral subtraction based speech enhancement algorithms were 
initially proposed by Boll [33]. In SS, the estimate of the underlying 
clean speech spectrum could be obtained by subtracting the estimate 
of noise spectrum from the noisy spectrum. The noise spectrum 

is estimated and updated during pause periods i.e., absence of the 
speech signals. The hypotheses for designing such algorithms are: (i) 
the stationary or slowly varying process and, (ii) the noise spectra do 
not vary drastically during updating periods. The enhanced speech is 
acquired by using inverse transform of the estimated spectrum using 
noisy phase. According to the basic principle of SS, let us assume that a 
noisy signal z(n) is composed of the clean speech s(n) and the additive 
noise signal, e(n)

z(n) = s(n)+e(n) (1)

Computing the STFT of (1), we obtain:

  (2)

Subtract noise magnitude spectrum |D(ω,k)| from the noisy speech 
magnitude spectrum |Y(ω,k)| and finally take the inverse Fourier 
transform of the difference spectra using the noisy phase to produce 
the enhanced speech signal, given by equation as:

 (3)

Since, noise signals are non-stationary and time-variant in the real-
world environments; the SS-based enhancement approaches produce 
negative values for the estimated magnitude spectrum of the clean speech 
and result in musical noise artifact in enhanced speech. The research 
is done in near past to reduce the musical noise artifact. Some highly 
ranked researches on the SS for the speech enhancement are reviewed. 

Lu and Loizou [34] proposed a spectral subtraction algorithm 
based on the geometric approach for the speech enhancement which 
addressed the inadequacy of the traditional SS algorithm. An efficient 
scheme to estimate the cross-terms is proposed which is involved in 
the phase differences between the speech and noise signals. After 
analyzing the suppression function of the proposed algorithm, it is 
examined that the algorithm holds the properties of the conventional 
minimum mean square error (MMSE) algorithm. The evaluation 
confirmed that geometric approach for the speech enhancement 
performed considerably better than the conventional spectral 
subtractive algorithm. A similar approach is also presented in [35].

Paliwal et al. [36] examined SS in the modulation domain, an 
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unconventional acoustic domain for the speech enhancement task, and 
showed capability of SS in the new domain. Analysis-modification-
synthesis (AMS) framework is included and reduced musical noise 
artifact by applying the modulation-domain based SS algorithm. 
Moreover, consequences of the frame duration on speech quality have 
been examined. The outcomes of research indicated that frames with 
duration with 180-280 msec provided optimized results in terms of the 
spectral distortions and temporal slurring. For further improvements 
in the speech quality, a fusion with the MMSE principle has been 
presented in the short-time spectral domain by joining the magnitude 
spectrum of the proposed speech enhancement algorithm. Consistent 
improvements in speech quality have been achieved for different SNRs. 

Zhang and Zhao [37] proposed an approach, and performed 
subtraction on the real and imaginary spectrum independently in 
modulation-domain. An enhanced magnitude and phase is achieved 
through the SS approach. Inoue et al. [38] provided a theoretical 
investigation of the musical noise artifact created by the SS on higher 
order statistics. It is assumed that power SS approach is a common used 
form. Generalization of SS for the unpredictable exponent parameters 
has been provided and the quantity of the musical noise artifact has 
been compared between several exponent-domains. A less musical 
noise artifact has been observed for a lower exponent spectral-domain 
and offered good quality and intelligible speech.  

Miyazaki et al. [39] provided a theoretical examination of the 
musical noise artifact with an iterative SS method. Iteratively weak-
nonlinear signal processing technique has been used to obtain a 
high quality speech with low musical noise artifact. The generation 
of musical noise artifact has been formulated by marking changes 
in kurtosis of the noise spectrum. Optimal internal parameters have 
been derived theoretically in order to produce no musical noise and 
explained that with a fixed point in kurtosis yield no musical artifacts. 

Antonio et al. [40] proposed an improved algorithm based on 
the SS for real-time noise cancellation and applied the algorithm to 
the gunshot acoustical signals. A pre-processing approach based on 
spectral suppression algorithm is applied instead of post-filtering, 
which requires a priori information concerning the direction of 
arrival of desired signals. Ban and Kim [41] proposed an algorithm 
for reducing the reverberant noise to the application of remote-
talking speech recognition. The SS has been used and the spectra of 
late reverberant signals are estimated by considering the delayed and 
attenuated versions of reverberant signals. The unpredictable weight 
sequences have been estimated via a Viterbi-decoding method based 
on the reverberation model. The weight sequences are then replaced 
with fixed weights in SS without estimating the reverberation time. 

Hu and Wang [42] proposed a novel algorithm to separate the 
unvoiced speech signals from the non-speech interfering signals. 
The voiced speech and periodic parts of interfering signals have been 
firstly removed. The interference became stationary and the noise 
energy has been estimated in unvoiced intervals utilizing the separated 
speech in adjacent voiced intervals. The SS is applied to create time-
frequency segments in unvoiced intervals and the unvoiced segments 
are then grouped. The grouping of segments is based on the frequency 
characteristics of unvoiced segments by considering thresholding and 
Bayesian classification. 

Kokkinakis et al. [43] described and evaluated the capabilities of 
SS to suppress the late reflections and compared to ideal reverberant 
masking (IRM) approach. Speech intelligibility outcomes indicated 
that SS approach can suppress additive reverberant energy to a degree 
similar to that attained by the IRM. Hu and Yu [44] proposed an adaptive 
noise spectral estimator to deal with subtraction-based techniques for 
speech enhancement. The proposed method derived the noise spectrum 
from a primary estimate of noise spectrum together with the current 
noisy speech spectrum in an adaptive style. The fundamental framework 

of SS remained uninterrupted even in case of the gain for all spectral 
components is altered. The listening tests confirmed the superiority of 
the noise adaptation technique in suppressing the musical noise artifact 
and quality improvements.

B. Statistical Model-based Speech Enhancement Algorithms
In the statistical model based speech enhancement algorithms, 

speech and noise signals are assumed stationary and the resultant 
filter coefficients remain unchanged. The suppression of noise signals 
could effortlessly be realized utilizing Finite Impulse Response (FIR) 
or Infinite Impulse Response (IIR) filters. However, noise sources 
and particularly the speech signals are highly non-stationary. The 
speech generation trails a time-varying process. By using the noisy 
spectrum Z(ω,k), the short-time noise power spectral density (PSD) 
and the frequency-domain signal-to-noise ratio (SNR) are quantified 
to determine the weighting gains. The actual spectral weighting is 
achieved by multiplying the noisy spectrum Z(ω,k) by weighting gains 
G(ω,k) resulting in quantifying DFT coefficients of underlying clean 
speech according to the following equation:

 (4)

The computation of the weighting gains rely on the particular speech 
enhancement algorithms and is usually a function of short-term noise 
PSD estimate  and the SNR estimates γ(ω,k) and ξ(ω,k) as:

 (5)

Where γ(ω,k) and ξ(ω,k) indicate a posteriori and a priori SNR 
estimate,  and  show variance of 
the clean speech and noise signals.  is calculated during the non-
speech/ pauses-periods by using standard recursive equation, given as:

 (6)

Where, β is the smoothing factor and  is the noise estimate 
in the previous frame. The a priori SNR can be estimated by using 
Decision Direct (DD) [1] approach, given as:

 (7)

Where, α is weighting parameter,  and  represent 
the power spectrum estimation of the clean speech and noise at k-1 
frame, respectively. In the following subsections distinguished and 
latest statistical speech enhancement algorithms based on the Wiener 
filtering (WF), minimum means square error (MMSE), Gaussian and 
super-Gaussian models are surveyed.

1.	Wiener Filtering 
Wiener filtering based speech enhancement minimizes the mean 

square error (MSE) between the estimated speech magnitude spectrum 
and the original signal magnitude spectrum. The formulation of the 
optimal wiener filter gain is as follows: [45]

 (8)

Over the years, Wiener filtering and its variants are used for the 
speech enhancement task. We discuss and review some of the highly 
ranked research studies on WF algorithms.  

Huijun et al [46] proposed a SCSE algorithm which exploited 
connections between various time-frames to minimize residual noise. 
Contrasting to the traditional speech enhancement methods that apply 
a post-processor after standard algorithms like spectral subtraction, the 
proposed method applied a hybrid Wiener spectrogram filter (HWSF) 
to reduce noise, trailed by a multi-blade post-processor that exploited 
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two-dimension features of the spectrograms to retain the speech quality 
and to further reduced the residual noise. Spectrograms comparison 
showed that the proposed method significantly reduced the musical 
noise distortions. The usefulness of the proposed method is additionally 
confirmed by the use of objective assessments and unceremonious 
subjective listening tests. 

Jahangir and Douglas [47] proposed a frequency-domain optimal 
linear estimator with perceptual post-filtering. The proposed method 
incorporated the masking properties of human hearing system to make 
the residual noise inaudible. A modified way is presented to quantify 
the tonality coefficients and relative threshold offsets for the best 
possible estimation of noise masking threshold. The proposed speech 
enhancement method has been evaluated for noise reduction and 
speech quality under many noisy conditions and yielded better results 
than [1]. 

Almajai and Milner [48] examined the visual speech information 
to enhance the noisy speech. The visual and audio speech features 
are analyzed which identified a pair with the highest audio-visual 
connection. The research revealed that high audio-visual connections 
exist inside individual phoneme rather entire speech. This connection 
is used in the application of a visually-driven Wiener filtering, which 
achieved clean speech and noise power spectrum statistics from the 
visual features. Clean speech statistics are quantified from the visual 
features using a maximum a posteriori structure and is incorporated 
inside the states of hidden Markov network to afford phoneme 
localization. Noise statistics are achieved by using a novel audio-visual 
voice activity detector, which used visual speech features to formulate 
the robust speech/nonspeech classifications. The efficiency of the 
proposed method is evaluated subjectively and objectively which 
confirmed the superiority. 

Marwa et al. [49] presented adaptive Wiener filtering approach 
for speech enhancement. The proposed approach depended on the 
adaptation of the filter transfer function from sample-to-sample based 
speech signal statistics (the local mean and variance). The method is 
implemented in the time-domain to contain time-varying nature of 
the speech. The approach is evaluated against conventional frequency 
domain spectral subtraction, wavelet denoising methods and Wiener 
filtering using different speech quality metrics. The results showed 
superiority of the proposed Wiener filtering method. 

Xia and Bao [50] proposed a Weighted Denoising Auto-encoder 
(WDA) and noise classification based speech enhancement approach. 
Weighted reconstruction loss function is established into standard 
Denoising Auto-encoder (DAE) and link between the power spectrums 
of underlying clean and noisy speech is expressed by WDA structure. 
The sub-band power spectrums of underlying clean speech are 
quantified using the WDA structure from the noisy speech. The a 
priori SNR is quantified using a Posteriori SNR Controlled Recursive 
Averaging (PCRA) approach. The enhanced speech is achieved 
by the Wiener filter in the frequency-domain. Moreover, GMM-
based noise classification method is engaged to make the proposed 
method appropriate for various conditions. The experimental results 
demonstrated that the proposed method achieved improved objective 
speech quality. Effective noise reduction and SNR improvements are 
attained with less speech distortion. 

Kristian and Marc [51] investigated speech-distortion weighted 
inter-frame Wiener filters for the SCSE in a filterbank configuration. 
The filterbank configuration utilized a regularization parameter as a 
tradeoff between speech distortion and noise reduction. The method 
depends on the quantification of inter-frame correlation coefficients, 
and it is shown that these coefficients could be robustly estimated using 
a secondary higher resolution filterbank. It is then demonstrated that 
real-valued scalar gains can be applied directly in higher resolution 
filterbank rather than inter-frame filtering in the primary filterbank, 

which leads to a robust noise reduction performance for any value of 
regularization parameter.

2. MMSE Estimators 
The minimum means square error (MMSE) estimator [1] inheres 

to vital class of the estimators and quantifies the spectral magnitudes. 
The MMSE estimator reduces the quadratic error of the spectral speech 
amplitudes according to the following equation:

 (9)

Considering the Gaussian model of the speech and noise, the final 
weighting rule is given according to [1] as:

 (10)

 (11)

Г(.) and F1(.) shows Gamma function and Hypergeometric function, 
respectively. We discuss and review some of the highly ranked research 
studies on MMSE algorithms.  

Basheera	et	al., [52] proposed novel optimum linear and nonlinear 
estimators. They are derived based on the MMSE sense to reduce the 
distortion in original speech. Linear and nonlinear bilateral Laplacian 
gain estimators are proposed. The observed signal is first decorrelated 
through a real transform to achieve its moment coefficients and then 
applied to the estimated speech signal in the decorrelated domain. The 
mathematical aspect of MSE of estimators is evaluated suggesting 
significant improvement. Kandagatla and Subbaiah [53] derived joint 
MMSE estimation of speech coefficients provided phase uncertainty 
by assuming the speech coefficients. Uncertain phase is used for 
amplitude estimation. Furthermore new Phase-blind estimators are 
designed utilizing the Nagakami power spectral density function and 
the generalized Gamma for speech and noise priors.  

Hamid et al. [54] addressed the problem of speech enhancement 
using β-order MMSE-STSA. The advantages of the Laplacian speech 
modeling and β-order cost function are taken in MMSE estimation. 
An investigative solution is presented for the β-order MMSE-STSA 
estimator deeming Laplacian priors for DFT coefficients of the clean 
speech. A Gaussian distribution for the real and imaginary parts of the 
DFT coefficients of the noise is presupposed. Using estimates for the 
joint PDF and the Bessel function, a better closed-form adaptation of 
the estimator is also presented. 

Gerkmann and Krawczyk [55] derived a MMSE optimal estimator 
for underlying clean speech spectral amplitude. It is shown that the 
phase contains extra information which can be used to differentiate 
outliers in the noise from the target signals. Matthew and Bernard 
in [56] proposed a Bayesian STSA stochastic deterministic speech 
model, which included a priori information by utilizing a non-zero 
mean. For the speech STFT magnitude, investigative expressions 
are derived in the MMSE principle whereas phase in maximum-
likelihood principle. An approach for quantifying a priori stochastic 
deterministic speech model parameters is explained based on 
the harmonically related sinusoidal parts in the STFT frames 
and deviations in magnitude and phase of components between 
succeeding STFT frames.

C. Signal Subspace-based Speech Enhancement Algorithms
Signal subspace [57] [58] based SE approaches use KLT, SVD 

and EVD to disintegrate noisy speech signals into the noise plus 
signal subspace known as the signal-subspace, whereas eliminates the 
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noise signal that falls within orthogonal noise-subspace. The signal-
subspaces are processed separately to remove noise components 
utilizing a diagonal gain matrix based on uncorrelated components in 
subspace. The components of the gain matrix are quantified by time-
domain or spectral-domain estimators. The covariance matrix RZ of the 
noisy speech can be written as:

 (12)

Rs and RE are the covariance matrices of the clean speech and noise 
signals. RZ is supposed to have a higher rank than Rs. The EVD of the 
covariance matrices is given as:

 (13)

 (14)

 (15)

Λ indicates a diagonal matrix that contains the Eigen-values, 
V indicates an orthonormal matrix containing eigenvectors; σ 
shows variance of noise whereas I indicate identity matrix. Speech 
enhancement process is represented by a filtering operation input 
speech vector as:

 (16)

  (17)

The term Ѱ is the filtering matrix, given by equation (18) as:

  (18)

Where GP holds weighted Eigen values of RZ, and VP and  shows 
KLT and its inverse matrices, respectively. We discuss and review 
highly ranked research studies on SigSub algorithms.  

Borowicz and Petrovsky [59] examined speech enhancement 
methods based on the perceptually motivated signal subspace. Lagrange 
multipliers are used to modify the spectral-domain-constrained 
(SDC) estimator. The residual noise power spectrums are shaped 
with an algorithm for accurate computing the Lagrange multipliers. 
The proposed approach uses masking phenomena for residual noise 
shaping and is optimal for the case of colored noise. Results show 
that the proposed method outperformed the competing methods and 
provided high noise reduction and improved speech quality. 

Mohammad et al. [60] proposed a non-unitary spectral 
transformation of the residual noise based on diagonalization of 
covariance matrices associated to the clean speech and noise signals. 
Through this transformation, the optimization problem is solvable 
devoid of any constraints on the structure of contributed matrices. 

Vera [61] pointed out that estimation of the dimension of signal 
subspace is critical and depends on the noise variance as well as SNR. 
Both fluctuate along temporal segments of speech and frequency bands. 
It is anticipated to work over frames in all critical bands utilizing the 
threshold noise variance. Belhedi et al [62] used soft mask as a core in 
the proposed approach. The method produces two separate signals of 
dissimilar qualities and made them available in two separate channels. 
The classification of the channels is made via Fuzzy logic that needs 
two separate parameters. One parameter determines quality and 
intelligibility whereas the second parameter determines the gender of 
the speaker via F0 tracking method. The proposed approach achieved 
an average 59.5% improvement in SIR, 67.9% progress in PESQ, and 
10.5% improvement in TPS. 

Sudeep and Kishore [63] proposed a perceptual subspace approach 
via masking properties of the human auditory system with variance 
normalization to decide the gain parameters. An estimator is used to 
determine the filter coefficients. The noise is handled by substituting 

the noise variance by Rayleigh quotient. Normalization of variance is 
made by removing the spikes to evade rapid increase or decrease in 
power of the output samples making the output more intelligible.

D. Computational Auditory Scene Analysis-based Speech 
Enhancement Algorithms

The field of computational study intends to achieve human 
performance in the Auditory Scene Analysis (ASA) by using single 
microphone recordings of the acoustic prospect. This definition 
describes the biological relevance of the field by limiting the 
microphone number to two and its functional goal of Computational 
Auditory Scene Analysis (CASA). The CASA uses perceptually 
motivated mechanisms. Over the years, CASA based methods are used 
for the speech enhancement; here we are reviewing some of the work 
in recent years.

A new ideal ratio mask (IRM) depiction is proposed by Bao and 
Abdulla in [64] by utilizing inter-channel correlation. The power 
ratio of the speech and noise during the structuring of ratio mask is 
adaptively reallocated; therefore more speech components are held and 
noise components are masked simultaneously. Channel-weight contour 
is assumed to modify the mask in all Gammatone filterbank channels. 

Wang et al. [65] proposed IRM estimation that relies on the spectral 
dependency into the speech cochleagram to enhance noisy speech. 
A data field representation is established to design time-frequency 
connection of the cochleagram with adjacent spectral information to 
estimate IRM. Firstly, a pre-processed section is used to achieve initial 
time-frequency values of noise and speech. Then the data field model is 
used to obtain the forms of speech and noise potentials. Subsequently, 
the optimal potentials that reveal their respective optimal distribution 
are achieved by the optimal influence factors. Lastly, masking values 
are obtained via the potentials of the speech and noise for reinstating 
the clean speech signals.

Wang et al. [66] considered a novel approach of speech and noise 
models, and presented two model-based soft decision methods. A ratio 
mask is computed by the exact Bayesian estimators of speech and 
noise. Additionally, a probabilistic mask is estimated with a variable 
local criterion. Liang et al. [67] considered local correlation knowledge 
from two aspects for improved performance. The time-frequency 
segmentation-based potential function is derived to represent the local 
correlation between mask labels of neighboring units directly. It is 
demonstrated that time-frequency unit that belongs to one segment 
is mostly dominated by one source. Alternatively, a local noise level 
tracking phase is integrated. The local level is attained by averaging 
many neighboring time-frequency units and is considered as a method 
for accurate noise energy. It is utilized as an intermediary auxiliary 
variable to signify the correlation. A high dimensional posterior 
distribution is simulated by a Markov Chain Monte Carlo (MCMC) 
approach. During iterations, the correlation is fully utilized to quantify 
the acceptance ratio. The estimated ideal binary mask (IBM) is 
achieved using the expectation operator. The proposed approach is 
compared and evaluated with a Bayesian approach and the approach 
yielded considerably large performance gain in terms of SNR gain and 
HIT-FA rates.

Narayanan and Wang [68] presented a system for robust SNR 
estimation based on CASA. The proposed method used an estimate of 
the IBM to separate a time–frequency illustration of the noisy speech 
signal into speech and noise dominated sections. Energy inside each 
region was totaled to gain the filtered global SNR. SNR transformation 
was established to translate the estimated SNR to the true global SNR 
of the noisy speech signal. 

Hu and Wang [69] proposed a tandem algorithm to estimate the 
pitch of a target speech utterance and separated the voiced regions 
of the target speech. First, a coarse estimate of the target pitch was 
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obtained and then the estimate is used to segregate target speech using 
harmonicity and temporal continuity. Lee and Kwon [70] proposed 
a CASA-based speech separation system and matched the missing 
speech parts by using the shape analysis method. 

May and Dau [71] presented a method based on the estimate of 
the ideal binary mask from noisy speech in supervised learning of 
AMS features and auditory inspired modulation filterbanks with 
logarithmically scaled filters were used. Spectro-temporal integration 
stage was incorporated to obtain speech activity information in 
neighboring time-frequency units. 

E. Empirical Mode Decommission-based Speech Enhancement 
Algorithms

Empirical Mode Decomposition (EMD) [72] directly extracts the 
energy related to different intrinsic time scales. EMD is an adaptive 
approach and follows some necessary steps to decompose nonlinear 
and nonstationary data. (i) First, the EMD obtains the local maxima 
and minima. (ii) Secondly, the EMD finds the local maximum and 
local minimum envelopes. (iii) Third, the EMD finds the mean of 
the obtained local extrema envelopes and finally subtracts this mean 
envelope from the input data to attain the residual intrinsic mode 
function (IMF). 

Upadhyay and Pachori [73] proposed a novel speech enhancement 
method for suppressing stationary and non-stationary noise sources. 
The variational mode decomposition (VMD) and EMD approaches are 
combined to develop the new idea for speech enhancement. Firstly, the 
EMD decomposes the input noisy speech into the IMFs. The VMD is 
then applied on the summation of preferred IMFs. The Hurst exponent 
was used to select the IMFs. The proposed speech enhancement method 
reduced low and high-frequency noise sources and showed enhanced 
speech quality.

Khaldi et al. [74] presented a speech enhancement method that 
exploited the combined effects of EMD and the local statistics of the 
speech signal by utilizing the adaptive centre weighted averaging filter. 

The speech signals were segmented into frames and all frames were 
segmented down by EMD into IMFs. The filtered IMFs depend on 
the voiced or unvoiced frame. An energy norm was utilized to classify 
the voiced frames and a stationarity index was used between unvoiced 
and transient chain. Zao et al., [75] proposed a speech enhancement 
scheme based on the adoption of Hurst exponent during the selection 
of IMFs to reconstruct the target speech. 

Hamid et al., [76] proposed a novel data adaptive thresholding 
approach. The noisy speech signals and fractional Gaussian noises were 
mixed to generate the complex noisy signal. Bivariate EMD was used 
to decompose the complex noisy signal into complex-valued IMFs and 
all IMFs were segmented into short-time frames for processing. The 
variances of the IMFs of fractional Gaussian noise computed inside 
the frames were used as the reference to categorize subsequent frames 
of noisy speech into signal-dominant and noise-dominant frames, 
respectively. A soft thresholding method is used at noise-dominant 
frames to decrease the effects of noise. Every frame and IMF of the 
speech signals were combined to yield the enhanced speech signal.

Chatlani and Soraghan [77] used the EMD as a post-processing 
stage for filtering low frequency noise. An adaptive approach was 
designed to choose IMF index for sorting out the noise component 
from speech components. This separation was carried out by using 
a second-order IMF statistics. The low-frequency noise components 
were removed by the biased reconstruction from the IMFs. Khaldi et 
al., [78] used EMD for fully data-driven based approaches for noise 
reduction. Noisy speech signal was decomposed adaptively into IMFs 
using sifting process. The signal reconstruction with IMFs was done 
using the MMSE filter and thresholded using a shrinkage function.

The U-SCSE algorithms provide acceptable speech quality and noise 
reduction in many real-world noise sources. The U-SCSE algorithms 
along with several advantages also came with some limitations. The 
TableI and Table II provides advantages and limitations of various 
U-SCSE algorithms. These limitations will point out several research 
areas which need further research.

TABLE I. Problem Statements, Methodologies, Contributions and Limitations of U-SCSE Algorithms

Method Problem Statement Methodology Contribution Limitation

GA-SS 
[34]

Speech enhancement 
to improve speech 
quality and to reduce 
the musical noise 
distortion. 

Compute the magnitude spectrum of the noisy 
signal using the FFT. The noise spectrum is 
updated using noise estimators. The gain is 
estimated using modified gain and multiplied 
with noisy spectrum to enhance speech.

Performed significantly better 
than the traditional spectral 
subtraction algorithm in terms 
of speech quality and musical 
noise artifact.

Speech intelligibility is not 
evaluated. Additionally informal 
tests were conducted for 
evaluations. Noise reduction 
impact on speech intelligibility 
research is required.  

MOD-
SS 
[36]

Speech enhancement 
to improve speech 
quality and 
intelligibility in 
Modulation domain.  

The SE method used AMS-based modulation 
domain. Each frequency component of the 
acoustic magnitude spectra is processed 
frame-wise across time using a modulation 
AMS framework, and the enhanced 
modulation spectrum is computed. 

New Speech enhancement 
domain in terms of SS is 
explored. Better speech quality 
and speech intelligibility is 
obtained. Better noise reduction 
is offered.

Although the proposed 
method offered better results, 
the combination with other 
domains produces complexity 
in the proposed method. The 
complexity of the method is not 
discussed. 

MOD-
SS 
[37]

Speech enhancement 
to improve speech 
quality in Modulation 
domain.  

The magnitude subtraction is adopted and 
extended into the modulation frequency 
domain for the separate enhancements of 
the real and imaginary spectra. The noise is 
estimated in real and imaginary spectra and 
the estimated speech is recreated. 

Perform subtraction on the 
real and imaginary spectra 
separately in the modulation 
frequency domain. Better noise 
reduction and speech quality is 
achieved.

The speech intelligibility 
potential of the proposed method 
is not discussed.  The method 
estimated the phase, thus the 
complexity of the method is not 
discussed.  

VAD-SS 
[39]

The Speech 
enhancement for better 
results and musical 
noise reduction in 
the Kurtosis of noise 
spectra. 

Iteratively weak-nonlinear method is used 
to obtain quality speech with less musical 
artifact. The generation of musical artifact is 
formulated by marking changes in kurtosis 
of the noise spectrum. Optimal internal 
parameters are derived theoretically to 
produce no musical artifact in kurtosis.

The proposed method provided 
better results and generation 
of musical noise artifact is 
formulated in the Kurtosis of 
noise spectra.

No theoretical explanation is 
given, only experimental results 
are presented. Speech quality and 
intelligibility is not discussed.  
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III. Speech Intelligibility and Quality Potential of 
Various U-Scse Algorithms 

The Table I-II illustrates the problem statements, methodologies, 
contributions and limitations of U-SCSE algorithms. It is clear from 
Table I-II that the U-SCSE algorithms addressed the problem of the 
speech enhancement effectively for noise reduction, musical noise 
artifact and speech quality. Speech enhancement is usually used as 
the front-end to Automatic speech recognition systems where speech 
intelligibility is the more important attribute. It is observed from the 
survey of the above different classes that speech intelligibility attributes 
is not fully explored in most of the U-SCSE algorithms. This section 
provides an intense experimental evaluation to observe the quality and 
intelligibility potentials of the U-SCSE approaches.

A. Methods
The experiments represent the measures used to evaluate and 

validate the performance of speech enhancement algorithms. In 
experiments, the U-SCSE algorithms are evaluated by using a set of 60 
noisy speech sentences belonging to female and male speakers in terms 
of the speech intelligibility and quality. The noisy stimuli are generated 
by adding four real-time background noises to the clean speech 
utterances at several signal-to-noise ratios (SNR). The clean speech 
sentences are selected from the standard IEEE database [85] randomly. 
Four nonstationary noise sources (street, exhibition hall, airport, and 
multitalker babble noise) are chosen from the Aurora database [86]. The 
speech utterances are mixed at four SNR from 0dB to 15dB, spacing 
5dB applying the ITU-T P.51. The sampling rate is fixed at 8 kHz. 
Five classes of U-SCSE algorithms are included in the experiments 
performed for speech quality and intelligibility. The U-SCSE classes 

include Spectral Subtraction (SS), Wiener Filtering (WF), Minimum 
Mean Square Error (MMSE) estimators, Signal Subspace (SigSub) 
and EMD type. Table III provides the details of speech enhancement 
algorithms used in the experiments. Two evaluation measures are 
quantified in order to access the U-SCSE algorithms. The PESQ 
[87] is preferred for the speech quality; an ITU-T P.862 standard that 
substituted the obsolete ITU-T P.861 standard because of inadequate 
performance to evaluate the speech enhancement. The PESQ score 
follows the range of −0.5 and 4.5, but, during experiments the score 
follows the mean opinion score (MOS), that is, a range of 1.0 to 4.5. 
The PESQ scores are calculated using the following equation:

PESQ = η0 + η1.DSYM + η2.DASYM  (18)

Where η0 = 4.5, η1 = −0.1 and η2 = −0.039. 

TABLE III. List of U-SCSE Algorithms in Experiments

S. No Speech Enhancement Class Speech Enhancement 
Algorithm

1 Spectral Subtractive (SS)
SS [79]
SS-RDC [80]
MBSS [81]

2 Wiener Filtering (WF) WF [45]
WWF [82]

3 Minimum Mean Square 
Estimation (MMSE)

MMSE-SPU[1]
LMMSE [2]

4 Signal Subspace (SigSub) KLT [83]
PKLT [84]

5 Empirical Mode 
Decomposition (EMD) H-EMD [75]

TABLE II. Problem Statements, Methodologies, Contributions and Limitations of U-SCSE Algorithms

Method Problem Statement Methodology Contribution Limitation

SDW-
IFWF 
[51]

Speech enhancement 
for better quality and 
to reduce the musical 
noise distortion 

Speech-distortion weighted inter frame Wiener 
filters for noise reduction is implemented in a filter 
bank structure. The filters utilized a regularization 
parameter as a tradeoff between speech distortion 
and noise reduction. The method depends on the 
estimation of inter frame correlation coefficients and 
these coefficients are more robustly estimated using a 
secondary higher resolution filter bank.

The contribution of the paper 
is the implementation of the 
scalar SDW-IFWF gain in a 
HRFB, matching a principle 
in the crucial lower-resolution 
filter bank to improve the speech 
quality and noise reduction with 
less musical artifact 

The algorithm provided 
improved results in 
terms of the speech 
quality However, speech 
intelligibility potential of 
the proposed algorithm 
is not discussed and 
evaluated. 

LBLG-
NBLG
[52]

Speech enhancement 
for better quality 
speech and low 
speech Distortion   

The estimators are derived on the basis of MMSE to 
reduce the distortion of the fundamental speech. The 
musical artifact is reduced without affecting the noise 
reduction. LBLG and NBLG estimator are proposed. 
The input signal is decorrelated to obtain moment 
coefficients. The estimators are applied to estimate the 
clean signal in the decorrelated domain. The original 
signal is obtained in time domain.

The proposed method obtained 
better speech quality and noise 
reduction. Non-linear and linear 
bilateral Laplacian estimators are 
derived to improve the speech 
quality.     

Although method 
produced better speech 
quality as compare to 
traditional methods; 
however, the speech 
intelligibility and 
complexity potentials are 
not fully explored.     

EPW-
Sub [60]

Speech Separation in 
optimized subspace 
for improved quality 
and intelligibility.  

The separation is achieved by optimizing the subspace 
via decomposing the mixture signal into three 
subspaces: sparse, sub-sparse and low-rank subspaces. 
Soft masking is used for the final verdict. Two signals 
of different qualities are provided in two separate 
channels. The channel classification is made by 
using Fuzzy logics with two parameters.  F0 tracking 
algorithm is proposed to classify gender. 

Embedded pre-whitening 
subspace method is proposed 
based on controlled spectral-
domain for better speech quality 
and noise reduction in colored 
noises.

Although the proposed 
method offered better 
results but the speech 
intelligibility in non-
stationary noise sources 
is not discussed.

CASA-
SE
[65]

The Speech 
enhancement for 
improved quality and 
intelligibility in the 
data driven field of 
cochleagram. 

Iteratively weak-nonlinear method is used to obtain 
quality speech with less musical artifact. The 
generation of musical artifact is formulated by marking 
changes in kurtosis of the noise spectrum. Optimal 
internal parameters are derived theoretically to produce 
no musical artifact in kurtosis

Ideal Ratio Mask is estimated 
in the data driven field of 
cochleagram to enhance the noisy 
speech. The proposed method 
obtained considerable gain in 
speech quality. Better results in 
terms of energy loss and residue 
noise are contributed.    

The proposed algorithm 
has not incorporated the 
DF model into the STFT 
domain. The complexity 
of the algorithm is not 
discussed.  
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A separate evaluation metric is used to access the intelligibility of 
the enhanced speech. The short-time speech intelligibility (STOI) [88] 
is considered for this purpose. The STOI sores are calculated by the 
equation given as:

 

100f(STOI) = 
1 exp( STOI )a b+ +  (19)

The parameters a, b are set according to [8], a = −17.4906 and b = 
9.6921.

B. Results and Discussion
A performance comparison analysis at two levels is presented in this 

section. First, within-class performance comparison of the U-SCSE 
algorithms is established. The five classes are Spectral Subtractive, 
Statistical-models, Wiener-Filtering type, Subspace and EMD-type. 

This performance comparison was conducted to observe the significant 
performance differences within-class algorithms. Secondly, across-
classes performance comparison is conducted to evaluate and find the 
algorithm(s) that performed better in all noisy situations. 

1.	Within-Class Algorithm Comparison
Table IV provides the results for PESQ (speech quality) whereas 

average speech intelligibility results are demonstrated in Fig. 4. Of 
three tested spectral-subtractive algorithms, the multi-band spectral 
subtraction (MBSS) [81] performed constantly the best across all noisy 
situations in terms of the speech quality. The MBSS and SS-RDC [80] 
methods performed equivalently well excluding 0dB exhibition hall 
noise and 0dB street noise conditions. Noise distortion of SS-RDC 
algorithm was considerably less than the MBSS and SS [79] approaches 
in all noisy situations. In terms of speech intelligibility, the MBSS and 

TABLE IV. PESQ Analysis of U-SCSE Algorithms

Noise 
Type

SNR 
(dB)

Spectral Subtractive Wiener Type Statistical-Model Signal Subspace EMD
SS RDC MBSS WF WWF MMSE LMMSE KLT PKLT H-EMD

Airport

0dB
5dB
10dB
15dB

1.59
2.03
2.39
2.95

1.69
2.16
2.35
2.74

1.81
2.20
2.54
3.12

1.92
2.12
2.43
3.05

1.18
2.03
2.27
2.62

1.23
1.43
1.54
1.65

1.95
2.12
2.45
3.03

1.78
2.13
2.29
2.79

1.51
2.02
2.08
2.42

1.84
2.01
2.63
2.93

Babble

0dB
5dB
10dB
15dB

1.45
2.07
2.42
2.60

1.68
2.16
2.36
2.61

1.98
2.28
2.59
2.75

1.78
2.12
2.46
2.67

1.16
2.13
2.34
2.55

1.26
1.53
1.67
1.85

1.92
2.12
2.53
2.71

1.34
2.11
2.37
2.61

1.34
1.98
2.25
2.51

1.91
2.19
2.72
2.88

Exhibition 
Hall

0dB
5dB
10dB
15dB

1.25
1.87
2.47
2.82

1.49
1.91
2.14
2.46

1.43
2.01
2.44
2.82

1.69
2.01
2.40
2.78

1.33
1.81
2.39
2.65

1.33
1.61
1.79
1.95

1.72
1.95
2.46
2.79

1.37
1.89
2.44
2.86

1.63
1.50
2.28
2.50

1.77
1.93
2.57
2.89

Street

0dB
5dB
10dB
15dB

1.49
2.05
2.49
2.92

1.51
1.98
2.36
2.53

1.54
2.14
2.61
2.89

1.60
2.06
2.60
2.74

1.53
2.08
2.33
2.65

1.53
1.88
2.03
2.25

1.72
2.04
2.52
2.77

1.59
2.12
2.32
2.84

1.55
2.12
2.14
2.55

1.79
2.14
2.63
2.92

TABLE V. Across-Class Comparative Analysis of U-SCSE Algorithms in terms of PESQ 

Noise 
Type

SNR 
(dB)

Spectral 
Subtraction Wiener Filtering MMSE 

Estimation Signal Subspace EMD

SS RDC MSS WF WWF MMSE LMMSE KLT PKLT H-EMD

Airport 15dB
10dB

*
*

*
*

*
* *

Babble 15dB
10dB

*
*

*
*

*
*

*
*

*
*

Exhibition Hall 15dB
10dB

*
*

*
*

*
*

*
*

*
*

Street 15dB
10dB

*
*

* *
*

*
*

*

TABLE VI. Across-Class Comparative Analysis of U-SCSE Algorithms in terms of STOI 

Noise 
Type

SNR 
(dB)

Spectral 
Subtraction Wiener Filtering MMSE 

Estimation Signal Subspace EMD

SS RDC MSS WF WWF MMSE LMMSE KLT PKLT H-EMD

Airport 15dB
10dB

* *
*

*
*

*
*

*
*

Babble 15dB
10dB

* *
*

*
*

* *
*

*
*

* * *
*

Exhibition Hall 15dB
10dB

* * *
*

*
*

*
*

*
*

* *
*

Street 15dB
10dB

* *
*

* * *
*

*
*

* *

Note: Algorithms specified by asterisks sign executed equally well whereas algorithms without asterisks sign executed poorly.
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SS-RDC approaches equally performed in most of the noisy situations 
excluding 0dB exhibition hall noise and 0dB street noisy situations, 
where MBSS algorithm performed notably superior and presented 
less speech distortion. In brief, MBSS performed better than SS-RDC 
and SS, providing better overall speech intelligibility and quality. For 
speech quality, the two subspace approaches performed equally for the 
most of SNRs and noise types, excluding 0 dB babble noise. 

The two Wiener-type algorithms performed well for most SNR 
conditions and four types of noise except 0dB airport noise and 0dB 
babble noise. For speech quality, the WF [45] performed significantly 
better than the WWF [82] approach at all SNRs and noise sources. 
WWF performed poorly in all noise sources at almost all SNRs and 
significant residual noise is experienced in the enhanced speech. On 
the other hand WF-as offered better speech quality and the noise 
reduction capabilities were significant. For speech intelligibility, the 
WF-as performed well at all SNRs and noise sources as compared to 
WWF method. There is significant speech distortion observed in the 
output speech utterance of the WWF approach. 

The two statistical-model based approaches performed good for most 
of SNRs and noise types. The log-MMSE (LMMSE) [2] performed 
significantly better than the MMSE-SPU [1] approach at all SNRs and 
noise sources. MMSE performed poorly in all noise sources at almost 
all SNRs, and significant residual noise observed in the enhanced 
speech. On the other hand LMMSE offered better speech quality and 
noise reduction capabilities were significant. For speech intelligibility, 
the MMSE-SPU performed very poorly at all SNRs and noise sources. 
The small speech intelligibility signifies the higher speech distortion 
offered by MMSE-SPU. LMMSE offered better speech intelligibility 
and comparatively less speech distortion is experienced in the output 
speech. 

The generalized subspace approach, KLT [83] performed 
significantly better than the pKLT [84] approach at all SNRs and noise 
sources except 0dB exhibition hall noise. The KLT approach was more 
successful in suppressing the background noise and perceptual speech 
quality. In terms of speech intelligibility, KLT and pKLT approaches 
performed equally well at all SNRs and noise sources except 0dB 
exhibition hall noise. There is no significant improvement in speech 

intelligibility observed for pKLT approach. On the other hand, KLT 
improved speech intelligibility marginally. 

In terms of the speech quality, the EMD-H [75] algorithm performed 
well for all SNRs and noise types, except at 0dB exhibition hall noise 
and 0dB street noise. The EMD-H was successful in suppressing the 
background noise and improving the perceptual quality and speech 
intelligibility at all SNRs and the noise sources. 

2. Across-Class Algorithm Comparison
Table V-VI indicates the results achieved by using ANOVA statistical 

analysis for the speech quality and intelligibility. Asterisk sign in Table 
V-VI show lack of statistical significant difference between algorithms 
with the utmost scores and the denoted algorithms. The U-SCSE 
algorithms marked by the Asterisk sign in Table V performed similarly. 
Table V indicates no single algorithm is categorized as the best, and 
several speech enhancement algorithms performed equally well across 
SNRs situations and noise types. In terms of the speech quality, MMSE-
SPU, LMMSE, WF, EMD-H and MBSS performed equally well across 
all SNRs situations. Table VI indicates the results achieved from the 
ANOVA statistical analysis for speech intelligibility. The MMSE-SPU, 
LMMSE, MBSS and WF performed well. All algorithms produced low 
speech distortion (high intelligibility) across all SNRs situations and 
noise sources. KLT, SS-RDC and WWF algorithms also performed 
well in isolated SNR situations. 

IV.  Conclusion

This paper presented a comprehensive review of the different 
classes of the single-channel speech enhancement algorithms in 
unsupervised perspective in order to improve the intelligibility and 
quality of the contaminated speech. Various classes of the unsupervised 
speech enhancement approaches for enhancing the noisy speech have 
been discussed. We have summarized possible algorithms of the 
Spectral Subtraction (SS), Wiener Filtering (WF), Minimum Mean 
Square Error (MMSE) estimators, Signal Subspace (SigSub) and 
EMD type, explained state-of-the-art approaches and a many related 
studies have been reviewed. The review suggested that unsupervised 

Fig. 4. Average Speech Intelligibility prediction for U-SCSE algorithms in terms of STOI.
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speech enhancement methods show an acceptable speech quality but 
speech intelligibility potential remains medium. The algorithms of 
unsupervised class show better noise reduction however; decrease 
of the residual noise artifact and speech distortion requires further 
research. Different unsupervised speech enhancement approaches 
have distinctive advantages that make these algorithms appropriate for 
speech enhancement; in contrast, these algorithms have some serious 
limitations as well. Table I-II summarized the problem statements, 
methodologies, contributions and the limitations of many speech 
enhancement algorithms. On the basis of the limitations extracted 
from the reviewed papers and also from the experimental results, it is 
concluded that unsupervised speech enhancement improves the speech 
quality but the speech intelligibility improvement potential requires 
further research. The algorithm can use the noise estimators, but 
accurate estimate is also a difficult task. A too aggressive estimation 
may lose important speech contents which in turn affect the speech 
intelligibility whereas too low noise estimation may lead to the 
residual noise. We have outlined various problems that need research 
to design robust single-channel speech enhancement algorithms. This 
rapid progress in the unsupervised speech enhancement algorithms 
will possibly persist in the future. To conclude, some following open 
research problems are outlined that are extracted from research studies: 

1. Generalization to the Nonstationary Noise Sources: Although 
U-SCSE algorithms provide promising speech quality results in 
stationary noise sources, however, their performance in nonstationary 
noise sources is not high. Effective noise estimation must be integrated 
with U-SCSE algorithms for better speech quality and noise reduction 
results.

2. Speech Intelligibility in Nonstationary Noise Sources: U-SCSE 
provides enhanced speech with very low speech intelligibility. More 
effective algorithms are required that can improve speech intelligibility 
in nonstationary noise sources. 

3. Musical Noise Artifact and Speech Distortion: Unsupervised 
speech enhancement algorithms provide acceptable noise reduction, 
however reduction of the residual noise artifact and speech distortion 
requires further research. 
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