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I. Introduction

IN recent years, the continuous development of electrical loads, 
especially due to industrial plants and human activities, results in 

increased number of new transmission lines, power plants, distribution 
networks and interconnection between different power systems. This 
effect leads to higher currents and power losses accompanied by voltage 
drop. Distribution system (DS) is an essential part of this power system 
problem as it connects loads to the transmission line at substations. 
About 70% of the power system losses are occurring at distribution 
system [1]. Therefore, the reduction of the losses in DS is the main 
concern nowadays. Hence, the world directed to use new generation 
sources of renewable energy resources (RERs) such as photovoltaic 
(PV), wind turbines and biomass energy, which are considered 
economically for supplying energy to electrical grids and suitable for 
power generation in remote areas [2], [3]. There are many potential 
benefits of DGs depending on their size and location. Normally, the 
real power loss and the voltage profile are the base objectives. Some 

other technical parameters may accompany this base objective such as 
reactive power requirement, reliability and efficiency of distribution 
network, emission, load-ability, voltage stability, DG capacity 
maximization, or economy oriented objectives [4]. There are different 
types of DG units, which can be classified based on whether they 
generate or absorb reactive power along with active power generation 
to (a) type A-DG units or P-type, which produces active power only 
such as PV (b) type B-DG units or Q-type, which produces reactive 
power only, like capacitor banks (c) type C-DG units or PQ+-type, 
which produces active and reactive power like synchronous generators 
(d) Type D-DG units or PQ--type which produces active power and 
consumes reactive power, like wind power induction generators. 

The random placement of DGs and capacitors in DS can cause 
more voltage drop and higher power losses than losses without them 
[5], [6]. Therefore, determining the proper placement and capacity 
of DGs in DS becomes a crucial task for obtaining their maximum 
possible advantages. Several techniques have been proposed in recent 
years to determine the optimal locations and sizes of DGs in DS such 
as Ref. [7], which discussed the adaptive protection using neural 
networks for high penetration of DGs, but this technique takes very 
long training time. Ref. [8] made a very hard work to get the effective 
signals for optimal ratings of RERs as the objective function and 
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constraints are designed using fuzzy sets. In Ref. [9] authors discussed 
the achievement of the trade-off between the reliability improvement 
and DG capacity by examining the load shedding.

Recently, numerous optimization algorithms handled the problem of 
DGs locations and sizing in DS. Artificial bee colony (ABC) [10], Genetic 
Algorithm (GA) [11], cuckoo search algorithm (CSA) [12], mixed 
integer nonlinear programming (MINLP) [13], Differential Evolution 
(DE) [14], flower pollination algorithm (FPA) [15]. Although these 
heuristic algorithms have been implemented simply and free derivative, 
they need numerous iterations to guarantee that the solution is converged. 
Hence, these techniques are computationally intensive. Furthermore, 
some studies used hybrid algorithms with analytical to combine their 
features and eliminate the shortage like, simulated annealing uses 
Loss Sensitivity Factor (LSF) in [16], PSO uses sensitivity analysis in 
[17], and hybrid PSO in [18]. There is another type of hybridization, 
which is combining metaheuristic algorithms together such as, genetic 
algorithm (GA) with imperialist competitive algorithm [19], ant colony 
optimization with artificial bee colony (HACO) [20], hybrid grey wolf 
optimizer (HGWO) [21], backtracking search optimization algorithm 
(BSOA) [22], and in [23], which used particle ant bee colony with 
harmony search (PABC).  Other studies used the analytical approach such 
as in [24], which uses efficient analytical with optimal power flow (EA-
OPF), an improved analytical (IA) method in [25] and machine learning 
method in [26]. In addition to Naresh, who used an analytical expression 
for optimum location for DG [27]. Most of previous techniques use a 
simple single objective function for minimizing the power losses except 
[19], [21], [23] that use a multi-objective functions to reduce real losses 
and improve voltage stability. Further, only few methods deal with the 
renewable DGs like in [20], [22], ant lion optimization (ALO) algorithm 
in Ref. [28], and backtracking search (BSA) algorithm in Ref. [29]. The 
above mentioned algorithms seem to be efficient. However they may 
not guarantee reaching the optimal value and face difficulty in escaping 
from the local minimum as the power losses face nonlinear equality 
constraints. This makes the problem non-convex. 

A new hybrid GMSA is developed based on the incorporation of 
GA operations with adaptive mutation operator on the reconnaissance 
phase using genetic pathfinder moths and the expanding of artificial 
light sources over the swarm. The GMSA has some advantages over 
the other swarm algorithms such as (i) its simplicity and flexibility 
as it can be applied to different problems without changing the main 
algorithm structure. (ii) ability on avoiding the trap in local minima. (iii) 
achieving fast convergence characteristics [30]. Ref. [30] determined 
the optimal sizes and locations of DGs without considering the 
different types of DGs. In this paper, three types of DG units including 
PV, WTG, and capacitor bank based DGs are embedded in distribution 
system optimally for minimizing the power losses. A sensitivity 
analysis based-Voltage Stability Index (VSI) has been performed to 
determine the most candidate locations for inclusion the compensation 
devices in DS to reduce the search space of optimization techniques 
and simulation time. Then, the hybrid approach based on the genetic 
algorithm (GA) and moth swarm algorithm (MSA) [31], is presented 
to determine the optimal renewable DG capacity and locations in the 
DS to minimize the system power losses, and maintain the voltage 
profile for various electrical distribution systems. It is tested on 
standard distribution systems i.e., (33 and 69 -bus).  In addition, the 
obtained results from the proposed approach are compared with those 
obtained from other algorithms to confirm its superiority. The article 
is organized as follows; section II provides the objective function 
formulation. GMSA algorithm is represented in section III. In section 
IV, the implementing of GMSA code for solving the DGs allocation 
problem has been presented. Section V shows the numerical results of 
the proposed technique applied on multiple standard systems. The last 
section concludes the results and advantages of the proposed method. 

II. Problem Formulation

A. Load Flow Calculation
Radial distribution networks (RDN) creates some negative 

conditions such as radial meshed networks, unbalanced operation, 
high R/X ratios and distributed generation. Due to these problems, 
the Newton Raphson, Gauss Siedel and other conventional load flow 
algorithms are not effective to solve the load flow calculation of the 
distribution systems [32]. Therefore, the modern algorithm called 
backward/forward sweep [32] is used in this work to analyze the power 
flow in the tested IEEE distribution systems. Fig. 1 shows a single 
line diagram of RDN. The active power flow (Pk+1) and reactive power 
flow (Qk+1) in RDN including DG unit at bus (k+1) are calculated by 
(1) and (2):

 (1)

  (2)

where, k is the sending end and k+1 is the receiving end. Voltages 
of a transmission line and real power losses in the line can be calculated 
from (3), (4), and (5) respectively:

 (3)

 (4)

  (5)

The total system loss is calculated by summing all line losses in the 
system as shown in (6):

 (6)

Pk, Q k Pk+1, Q k+1

Rk+ JX k

PLk+ JQ Lk PL(k+1)+ JQ L(k+1)

Vk Vk+1

 
Fig. 1. Simple radial distribution system.

The system security level is important and can be determined using 
the voltage stability index as follows:

 (7)

VSI should be high in order to improve the voltage profile and this 
can be achieved by minimizing the voltage deviations (VD) as follows:  

 (8)
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where, n is the number of buses and Vref is the reference voltage, 
which commonly is 1 p.u.   

B. Objective Functions
The main aim of the optimal DG placement problem is to minimize 

the voltage deviation, reduce the real power losses and improve the 
system voltage stability. There is a contrasting relation between these 
objectives, as clearly identified and numerically obtained by [33]. 
Hence, the multi-objective functions have been performed by using the 
following mathematical statements: 

  (9)

 (10)

 (11)

where, nl is number of branches in RDN and nb is number of buses. 
The weighted sum method is used to evaluate the effectiveness of the 
proposed approach for optimal placement and sizing of DG units. The 
concept Pareto strategy is not appropriate for such purpose, where the 
challenge in multi-objective optimization based on Pareto strategy is 
to find the Pareto optimal point that meets the decision maker’s given 
preferences. From the perspective of mathematical optimization, the 
weighted sum method allows the multi-objective to be cast as a single-
objective mathematical optimization problem resulting in only one 
solution, in addition to its lower computational cost (CPU-time). These 
advantages are more proper for real world problems. Therefore, the 
generalized objective function based on weighted sum method can be 
formulated as follows:

 (12)

where, w1, w2, and w3 are weighting factors. The value of any 
weighting factor is selected based on the relative importance on the 
related objective function with others objective functions. The sum of 
the absolute values of the weight factors in (12) subjected to all impacts 
should equal one:

 (13)

C. Constraint Conditions
The multi-objective functions are subjected to the following 

constraints:

1. Active and Reactive Power Balance
The active and reactive power flow constraints, which represent the 

equality constraints could be established for maintaining the balance 
between generation and consumption.

 (14)

 (15)

2. Voltage Constraints
The buses voltages are the inequality constraints. The bus voltage 

magnitude of each bus must be maintained within the following range:

 (16)

where Vmax and Vmin are the maximum and minimum values of bus 
(k) voltages. The lower and upper values are taken as 0.9 and 1.05 Pu, 
respectively.

3. DG Capacity Limits
The constraints of DG capacities are as follows:

 (17)

 (18)

 (19)

 (20)

 (21)

where,  and  are the minimum and maximum real outputs of  
the DG source.  and  are the minimum and maximum power 
factor of the DG source. 

The input control vector xc is composed of independent adjustable 
variables for each DG units. Each DG has three input control variables: 
location (L), power factor (PF) and injecting active power (PDG). 
Multiple DG units can be installed in a system as follows:

=
, , … , , , , , , … ,

, ,  
 (22)

In this paper, in the case of capacitor banks, the PF is zero and 
for PV units, the PF is considered to be unity thus the DG unit only 
delivers active power. While, in the case of wind, the DG unit delivers 
active and reactive power. 

D. Equality and Inequality Constraints Treatment
Power-flow equations, equality constraints (14) and (15), can be 

satisfied during the process of power-flow calculation. In the encoding 
period, the inequality constraints (16)–(21) can be satisfied through 
adding penalty function into the objective function in such a way that it 
penalizes any violation of the constraints. Consequently, the constrained 
optimization problem is then converted into an unconstrained form.

III. Overview of GMSA

A. Genetic Algorithms
Genetic algorithms (GAs) were initially introduced by John 

Holland as the main global optimization technique. These algorithms 
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have been applied successfully to solve a large number of problems 
in different real-world fields by simulating the natural evolution 
systems. The recombination operation produces offspring that carry a 
combination of genetic material information from each parent where 
crossover operations are applied to exchange the chromosomes. The 
natural selection determines the evolution where the fittest survives 
with higher probability. Therefore, a suitable selection strategy is then 
used to determine the solutions that survives to the next generation 
based on their fitness values. The mutation operation is the main 
genetic operator that can achieve some diversity in the population. 

The steps of the MSA technique are discussed below.

B. Moth Swarm Algorithm
The moth swarm algorithm has been presented in 2017 by Al-

Attar et al. [30]. It is inspired by the orientation of moths towards 
moonlight. The available solution of an optimization problem using 
MSA is performed by the light source position, and its fitness is the 
luminescence intensity of the light source. Furthermore, the proposed 
method consists of three main groups, the first one is called pathfinders 
which are considered a small group of moths over the available space 
of the optimization. The main target of this group is to guide the 
locomotion of the main swarm by discriminating the best positions as 
light sources. Prospectors group is the second one which has a tendency 
to expatiate in a non-uniform spiral path within the section of the light 
sources determined by the pathfinders. The last one is the onlookers, 
this group of moths move directly to the global solution which has been 
acquired by the prospectors. 

C. Genetic Moth Swarm Algorithm (GMSA)
The proposed hybrid based algorithm aims to integrate advantages 

of the well-known GA in terms of sharing information and global 
search ability to find the optimal value of a given function using the 
following steps:

1. Initialization 
Initially, the positions of moths are randomly created for 

dimensional (d) and population number (n) as seen in (23). 

 (23)

where,  xj
max and xj

min are the upper and lower limits, respectively.
Afterwards, the type of each moth is selected based on the determined 

fitness. Consequently, the worst moths are selected as pathfinders that 
are modified to act genetically in the following reconnaissance phase. 
In the next two phases, the best individuals of the swarm are regarded 
as prospectors and onlookers, respectively, according to their fitness. 
In addition, each moth in the modified algorithm has its own light 
source which is available to share with others in the swarm.

2. Genetic Reconnaissance Phase
The moths may be concentrated in the regions which seem to provide 

good performance. Therefore, the swarm quality for reconnaissance 
may be decreased during processing the optimization and this process 
may lead to a stagnation case. To avoid the early convergence and 
enhance the solution diversity, a part of the swarm is compelled to 
determine the less congested area. The pathfinder moths that perform 
this role are manipulated to evolve by the genetic operators, with the 
size of (np=floor (n/2)) selected from the worst-performing individuals 
in the swarm. The crossover and mutation operators of GA are applied 
on all moths in the swarm to improve the pathfinder group. Therefore, 
after the sorting of the population, the first half of the individuals that 
have better luminescence intensity values are regarded as candidate 
parents (elite individuals). The size of the elite individuals can be 
simply calculated using  (ne=n-np).

The probability distribution function (pdf) is used to select parents, 
which is increased as the fitness of the individual is greater. Therefore, 
two of the moths from the elite individuals are randomly selected 
as parents for one pathfinder moth. In order to perform the possible 
mating, a single crossover point is identified on both parents’ vectors at 
random. The elite individuals are then divided at this point to exchange 
their tails thereby giving birth to the new child pathfinder (xp ). This 
ensures that the best candidates (local optima) are copying into the next 
generation. After the reproduction operation, a mutation operator based 
on normal distribution is applied on these offspring in order to increase 
their diversity and increase the ability to jump out of suboptimal/local 
solutions. For exploitation purpose, an adaptive mutation rate (mrate ) is 
proposed to decrease through all iterations T as follows: 

 (24)

The fitness value of the genetic pathfinder solution, xp
t+1, is 

determined after finishing the last procedure. The structure of worst 
half of the old population is then redesigned by comparing the fitness of 
these offspring with that of their previous positions f (xp

t). The suitable 
solutions that have the highest luminescence intensity are chosen to 
retain for the next generation, which is used for minimization problems 
as follows:

 (25)

Finally in this phase, the light sources are elected from among the 
combined population (survivors of the previous equation and their 
parents) to continue as guidance of the next phases. Therefore, the 
moths are changed dynamically in the GMSA model where any 
pathfinder moth uplifts to become prospector or onlooker moth if it 
discovers a solution with more luminescence than the existing light 
sources. That means the new lighting sources will be presented at 
the end of this stage. The probability pi of selecting the ith moth as a 
light source is proportional to the corresponding fitness, which can be 
calculated as follows: 

  (26) 

3. Transverse Orientation
Individuals that have been selected as elites or parents have another 

role at this stage as prospectors. The number of these moths �f is 
proposed to decrease with time progress as follows:

   (27)

After the pathfinders have finished their search, the information 
about luminescence intensity is shared with prospectors, which attempt 
to update their positions in order to discover new light sources. Each 
prospector moth Xj is soared into the logarithmic spiral path as shown 
in Fig. 2(a) to make a deep search around the corresponding artificial 
light source Xi, which is chosen on the basis of the probability Pi 
using (26). The new position of jth prospector moth, can be expressed 
mathematically as follows:

 (28)

where, θ ϵ [r, 1]   is a random number to define the spiral shape and 
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(r = -1-t/T). The GMSA is dealing with each variable according to the 
previous formula as an integrated unit. At the end of this stage, only 
moonlight is updated. It should be noted that all moths in the modified 
swarm cooperate to discover new sources of light, which increases the 
area of selection and prevents from falling into local solutions and thus 
increases the efficiency of the proposed algorithm.

4. Celestial Navigation
The diminishing of the number of prospectors during the 

optimization process increases the onlookers number (no=ne-nf). This 
may lead to an increase in the speed of the convergence rate of GMSA 
towards the global solution. The onlookers are the moths that have the 
lowest luminescent sources in the parent group. Their main aim for 
traveling directly to the moon is the most shining solution Fig. 2(b).  
In the GMSA, the onlookers are forced to search for the hot spots of 
the prospectors effectively. These onlookers are divided into the two 
following parts:

The first part, with the size of nG=round (no  ⁄2), walks according to 
Gaussian distributions. The new onlooker moth in this sub-group xi

(t+1) 
moves with series steps of Gaussian walks, which can be described as 
follows:

 (29)

 (30)

Where ε1 is a random number generated from Gaussian distribution, 
ε2 and ε3 are random samples drawn from a uniform distribution within 
the interval [0,1]. bestg is the global best solution (moonlight) obtained 
in the transverse orientation phase. Based on many optimization 
algorithms, there is a memory to transfer information from the current 
generation to the next generation. However, the moths may fall into the 
fire in the real world due to the lack of an evolutionary memory. This 
is due to the fact that the performance of moths is intensely affected 
by the short-term memory and the associative learning between the 
moths. Therefore, the second part of onlooker moths (nA=ne-nG) will 
sweep toward the moonlight using associative learning immediate 
memory (ALIM) to imitate the actual behavior of moths in nature. The 
instantaneous memory is initialized from the continuous uniform of 
Gaussian distribution on the range from (xi

min - xi
t) to (xi

max - xi
t). The 

updating equation of this type can be completed in form:

(a) (b)

Light
Source

Moon

Moth Flying
Direction

3.85 ×108 m

Fig. 2. Orientation behavior of moth swarm: (a) Moth flying in a spiral path 
into nearby light source (b) Moth flying in a fixed angle relative to moonlight.

                                
Where, r1and r2 are random numbers within the interval [0, 1], 2g/G 

is the social factor, (1-g/G) is the cognitive factor and bestp is a light 
source selected from the modified swarm based on the probability pi. 

IV. Results and Discussion 

To evaluate the validity and efficiency of the proposed GMSA 
method against power loss minimization, the distribution systems of 33 
and 69-bus have been applied for this simulation.  The MATLAB 8.6 ® 
is used and run on a personal computer that has core i5 processor, 2.50 
GHz, and 4 GB RAM to implement the GMSA technique for the optimal 
renewable DGs placement and sizing problems. The backward/forward 
sweep load flow program is used to solve the equations iteratively and 
update the voltage profile. The parameters of the GMSA are adopted 
after many trails and errors for all the test cases of RDNs mentioned 
in Table I appendix (A).  Three types of DG units including P-type, 
Q-type, and PQ--type are considered in this study. Each type is applied 
to the three cases of one DG, two DG, and three DG units. The GMSA 
is compared with all other types of algorithms such as analytical, 
metaheuristic methods, classical, and hybrid approaches. 

A. 33-Bus Test System
To evaluate the impact of the proposed hybrid GMSA on the 

medium network of the RDN, the 33-bus system has been tested. Fig. 3 
shows the single line diagram of this system. The system rated voltage 
is 12.66 kV with 100 MVA base. The total real and reactive power 
demands are 3,715 kW and 2,300 kVAR respectively. The load and line 
data are given in [34]. Load flow calculation is run before using DG 
units, the minimum bus voltage is registered as 0.9036 p.u at node 18 
and the total active power loss at nominal load is 210.98 kW. The best 
locations and sizes of the three types of PV, WTG, and capacitor banks 
that are captured by the proposed GMSA, and all obtained results, are 
listed in Table II appendix (A), such as, total power loss, minimum bus 
voltage, VD, VSI, and loss reduction percentage. 

Fig. 3. Single line diagram of the 33-bus RDN [34].

1. Case 1: Q-Type DG
In this case, Table III appendix (A) shows a comparison of different 

algorithms for the Q-type with three cases of 1DG, 2DGs, and 3DGs. 
For single DG unit, most methods selected bus 30 as the best location 
for the DG unit with different size values. GMSA produced better 
solutions, whereas the real power loss is diminished to 150.43 kW 
as 28.7% of the base case by using 1200 kVAR of capacitance. It is 
considered the lowest value compared to the other methods. Moreover, 
The GMSA has increased the minimum voltage value to 0.9175 p.u 
after compensation. For two DG units allocation, the optimal locations 
selected by the GMSA method are buses 12 and 30 with 450 and 1050 
kVAR, respectively. The reduction in power losses is 140.87kW, which 
is the best comparing with 141.83kW for HGWO, 141.94kW for Hybrid 
method, 143.11kW for MSA, and 151.12 kW with GA. Furthermore, 
the minimum bus voltage enhanced from 0.9175 p.u with one DG to 
09332 p.u with two DGs. In the case of determining three DG units, the 
GMSA performed well as the active power loss is diminished to 137.46 
kW. This value is the least of all other methods as seen in Table III. 
In addition, the system voltage profile is improved and the worst bus 
voltage is enhanced to 0.9334 p.u. It is shown that the proposed GMSA 
is more effective than the other approaches in case of Q-type DG under 
the medium scale of distribution system.



- 110 -

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 5, Nº 7

2. Case 2: P-Type DG
Table IV appendix (A) shows the optimal locations and capacities 

of PV units by the proposed GMSA method compared to different 
algorithms for the same three cases (1 DG, 2 DGs, and 3 DGs). The 
GMSA presented the best solutions as the power losses reduced to 
110.267 kW with only one PV unit installed at bus 6. This value is 
considered the best value comparing with other techniques and also 
better than the all three cases of Q-type DG. Moreover, it enhanced the 
voltage profile as the minimum bus voltage at bus 18 increased from 
0.9036 p.u to 0.9427 p.u. For 2 PV units case, the optimal bus places 
are at 13 and 30 for most methods. However, the proposed technique 
reduced the active power loss to 86.58 kW compared to 87.17 kW with 
PSO, 87.164 kW with HGWO, and 87.172 with EA. It is also observed 
from the results that the VD is enhanced to be 0.6723 p.u while the 
voltage stability is also enhanced to be 29.4035 p.u. In the last case of 
installing three PV units, GMSA selected buses 13, 24, and 30 to locate 
the PV units with 801, 1091, 1053 kW, respectively, which helps in 
reducing the real power loss to 72.299 kW and increasing the minimum 
bus voltage to 0.9712 p.u. 

(a)

(b)

(c)
Fig. 4. Power loss convergence rate of 33-bus system using GMSA for different 
DG types (a) Capacitor banks, (b) PV, (c) WTG. 

These results prove the superiority of the proposed GMSA 
compared to other methods as seen in Table IV. It is also observed that 
the power loss is minimized significantly as compared with the Q-type 
DGs, this helps in improvement in the system voltage profile.

(a)

(b)

(c)
Fig. 5. 33-Bus voltage profile level with (a) Single DG (b) Two DGs (c) Three 
DGs.  

3. Case 3: PQ--Type DG
Table V appendix (A) shows the results for the PQ+ -type such 

as, wind turbine generators (WTG), which injects both active and 
reactive power for the three cases. The results stated that this type 
of DGs is the best as only one WTG installed at bus 6 with the size 
of 3105 kVA and 0.82 pf using the GMSA. This one unit improved 
the minimum bus voltage value from 0.90369 p.u to 0.9586 p.u and 
reduced the total power loss to about 67.42kW, which is considered 
the least value compared to the three capacitor banks and the three PV 
units. Furthermore, it is the best compared with other algorithms as 
seen in Table V. Moreover, increasing the number of WTGs, leads to 
minimizing more in power loss. It is clearly seen from the results that 
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two WTG diminished the power losses to 28.33 kW, while three WTGs 
reduced it to 11.68 kW, which is the best-minimized power losses value 
for all cases of different DGs. Further, the voltage stability is enhanced 
to be 31.53 p.u and the VD is minimized to 0.1223 p.u. 

For this case of 33 bus system, the GMSA, HGWO, and EA 
produce better solutions compared to the other methods, whereas the 
best power loss value obtained by BSOA is much more than the rest of 
algorithms. The GMSA has a speedy and smooth rate of convergence 
to the minimum value without any oscillations and settles down early 
as shown in Fig. 4. On the other hand, the WTG has the best effect on 
the system performance as one WTG gave better results than 3 units 
of capacitor banks or 3 PV units. Fig. 5(a, b, c) shows a comparison 
between the different types of DGs in terms of voltage profile 
improvement.

B. 69-Bus Test System
To investigate the effectiveness of the proposed GMSA on a large 

scale of RDN, it is applied on the 69-bus system, which consists of 
69 buses and 68 branches as shown in Fig. 6. This system is operated 
with 100 MVA base, 12.66 kV rated voltage, and the total system load 
is (1.896MW+j1.347MVAR). All data of lines and loads are given in 
[35]. The total real power loss for the base case without using capacitors 
or DGs is found at 224.99 kW with the lowest bus voltage at bus 65 is 
0.9092 p.u. The best locations and sizes of the three types of PV, WTG, 
and capacitor banks that are obtained by the proposed GMSA and all 
results are listed in Table VI appendix (A) in terms of power losses, 
minimum and maximum bus voltages, VD, VSI, and the percentage of 
loss reduction.

Fig. 6. Single line diagram of the 69-bus RDN [35].

1. Case 1: Q-Type DG
In this case, using the capacitors banks as Q-type helps in reducing 

the 69 bus system power loss by 32.61% from the base case using one 
DG unit at bus 61 with the size of 1200 kVAR, using the GMSA. It is 
considered the lowest value compared to the other methods. Moreover, 
the GMSA has increased the minimum bus voltage value to 0.9296 p.u 
after compensation. While, the power losses are reduced to 35.27% and 
35.83% with two and three capacitors, respectively. Table VII appendix 
(A) summarized the obtained results by GMSA technique in case of 
installing 1 capacitor bank, 2 capacitor banks, and 3 capacitor banks 
units compared to other four algorithms. The results stated that as the 
number of capacitor banks units increased, the minimizing of power 
loss increased and consequently improved the whole system profile. 

2. Case 2: P-Type DG
As for the previous system 33-bus, the installing of PV units 

enhances the voltage profile of the 69 bus system. It is seen from Table 
VIII appendix (A) that the GMSA selected bus 61 to install 1.87 MW 
PV unit, which reduces the power losses to 82.4 kW compared to 83.22 
kW with MFO, HGWO and PSO, and 83.34 kW with EA. These four 
algorithms came in the second order after the GMSA method. While, 

a hybrid approach, MINLP, and IA came after that with 83.37, 83.38 
and 83.44 kW, respectively. Moreover, GMSA enhanced the minimum 
bus voltage from 0.9036 p.u to 0.9686 p.u. For 2 PV units, the optimal 
bus locations are the same at 17 and 61 for all the methods, except 
the GMSA at 15 and 61. The power loss is 71.37 kW by GMSA. It is 
the lowest of all techniques as seen in Table VIII. In the last case of 
installing three PV units, GMSA selected buses 11, 17, and 61 to place 
the PV units with 526, 380.7, 1718 kW, respectively, which helps in 
reducing the real power loss to 68.974 kW and increasing the minimum 
bus voltage to 0.9799 p.u. It is also observed from the results that the 
VD is enhanced to be 0.4471 p.u, while the voltage stability is also 
enhanced to be 66.2363 p.u. 

(a)

(b)

(c)
Fig. 7. 69-Bus voltage profile with (a) Single DG (b) Two DGs (c) Three DGs.  
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(a)

(b)

(c)

Fig. 8. Power loss convergence rate of 69-bus system using different DG types 
by GMSA.

3. Case 3: PQ--Type DG
To verify the effectiveness of the proposed GMSA method, it has 

been applied to assign the best locations of one, two, and three WTGs. In 
case of inclusion of one WTG DG, the kW loss is reduced to 22.98 kW 
and the VD is enhanced to be 0.5825 p.u while the voltage stability is 
also enhanced to be 65.7382 p.u. Furthermore, it increased the minimum 
bus voltage to 0.9728 p.u. In this case, it can be seen from Table IX 
appendix (A) that the results of the GMSA are the best compared to all 
other methods in terms of power loss and minimum bus voltage. Further, 
it can be noted that the use of only one WTG is better than the usage of 
3 capacitor banks or 3 PV units. Moreover, increasing the number of 

WTGs, leads to more reduction in power loss. The results stated that two 
WTG reduced the power losses to 7.144 kW, while three WTGs reduced 
it to 4.21 kW, which is the best-minimized power losses value for all 
cases and types of DGs. Further, the voltage stability is also enhanced 
to be 67.7559 p.u with minimizing the VD to 0.0617 p.u. The proposed 
hybrid algorithm provides a significant improvement of bus voltage 
profile and power loss in the case of PQ--type as compared with other 
cases. Fig. 7(a, b, c) shows a comparison between the different types of 
DGs in terms of voltage profile improvement.

The results stated that the GMSA method performed better than the 
other algorithms over all cases of the 69-bus system. In addition, the 
best performance of the proposed GMSA is noted by the flat and stable 
convergence curves of total real power losses as shown in Fig. 8.

V. Conclusion

In this article, the exploitation ability of the GMSA, in terms of 
quick convergence and fast execution time, has been maintained by 
using the best moths in the swarm to perform that role in the phases 
of the transverse orientation and celestial navigation. The tradeoff 
between the global and local search has been regulated by introducing 
an adaptive mutation operation of GA on the pathfinders as the largest 
population group in the swarm. In addition, individuals have cooperated 
to produce the light sources for the guidance of the transverse orientation 
phase, which assists the exploration ability in such exploitation phase 
and enhances the solution diversity. The complexity of reconnaissance 
phase has been reduced. The GA operations increased the information 
sharing and the performance of the proposed algorithm.

The new GMSA approach has been successfully applied on 
multiple systems (33 and 69-bus systems) for solving the problem 
of renewable energy distributed generation sources placement and 
ratings for minimizing the total power losses. A sensitivity analysis 
based-Voltage Stability Index (VSI) has been performed to determine 
the best candidate locations for inclusion of the compensation 
devices in distribution systems to reduce the search space of GMSA 
and simulation time. Furthermore, a detailed comparison has been 
conducted with other best results of alternative methods in the 
literature. The P-type, Q-type and PQ--type DG units have been used 
in this study. The PQ--type presented the best results for all three cases 
of the two test systems. This is due to the variability in the solution 
vector and flexibility of power factor, which leads to more availability 
to select of other variables. The proposed GMSA can improve the 
voltage profile at each bus in these systems. Consequently, enhances 
the performance of distribution networks. GMSA method presented a 
desirable and superior performance with stable convergence. Results 
stated that the proposed GMSA minimized the objective function, and 
provided remarkable results compared to other algorithms. Hence, the 
applications of the proposed GMSA method can be considered as the 
most recent optimization algorithms for the network reconfiguration 
and dealing with the protection coordination system in presence of 
capacitors banks and renewable energy distributed generation sources 
during grid faults are the future scope of this work.
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Appendix (A)

Nomenclature

Pk Real power flow from bus k

Qk Reactive power flow from bus k

PLk Real power load connected at bus k 

QLk Reactive power load connected at bus k 

PL(k+1) Real power load connected at bus k+1 

QL(k+1) Reactive power load connected at bus k+1 

Rk Resistance connected between buses k and k+1  

Xk Reactance connected between buses k and k+1  

Vk Voltage at bus k

Vk+1 Voltage at bus k+1

Psys Network active power

Qsys Network reactive power

ε1 Random samples drawn from Gaussian stochastic distribution

Qfc Reactive power compensation

Vmin Minimum bus voltage value

Vmax Maximum bus voltage value

PT loss Tap setting of transformer

np Number of pathfinders moths

µt Variation coefficient

σ tj Dispersal degree

bestg The global best solution

r1, r2 Random number within the interval    [0, 1]

Pj The real power loss during jth load level

n The number of candidate buses

Qfc The size of the shunt capacitor

ε2, ε3 Random numbers distributed uniformly within the interval [0,1]

TABLE I. Control-Parameters Values for the Different Algorithms

Parameter Value (s)

Maximum iteration 100

Number of Search Agents 50

Number of Pathfinders 20

Murate 0.05

Weighting factor (W1) 0.5

Weighting factor (W2) 0.25

Weighting factor (W3) 0.25

Mix rate parameter (mixrate) 1.0

Voltage limits 0.9 ≤ Vk ≤ 1.05 PU

 33-Bus

 69-Bus

 Q-type

 P-type

 PQ--type
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TABLE II. Optimal Locations and Rating of Renewable DGs for Units Using GMSA for 33-Bus System

Type Vmin (p.u) Vmax 
(p.u)* Ploss (kW) % Loss 

reduction VSI (p.u) VD
 (p.u) Optimal bus no, optimal DG (kVA), optimal (pf)

Without DG 0.9036 0.9971 210.98 –– 25.5401 1.8044 ––

1 DG 
1 Cap
1 PV
1 WT

0.9175 0.9976 150.426 28.7% 26.7764 1.4259 30(1200)

0.9427 0.9980 110.267 47.74% 28.6451 0.9235 6(2589)

0.9586 1.000 67.418 68.05% 29.8458 0.5646 6(3105), (0.82)

2 DG
2 Cap
2 PV
2 WT

0.9332 0.9978 140.876 33.23% 27.2855 1.2702 30(1050), 12(450)

0.9687 0.9984 86.58 58.96% 29.4035 0.6723 30(1157), 13(851)

0.9805 1.0009 28.326 86.57 31.2752 0.1867 30(1556, 0.73), 13(935, 0.9)

3 DG
3 Cap
3 PV
3 WT

0.9334 0.9979 137.466 34.84% 27.3357 1.2568 24(450), 12(450), 30(1050)

0.9712 0.9989 72.299 65.73% 29.6328 0.6124 24(1091), 13(801), 30(1053)

0.9924 1.0006 11.684 94.46%   31.5347  0.1223 24(1187, 0.9), 13(877, 0.9), 30(1441, 0.72)

TABLE III. Comparison Results of Different Optimization Techniques for Q-type DG Units for 33-Bus System

Technique

1 DG unit 2 DG units 3 DG units

Vmin 
(p.u)

Optimal 
(bus no, DG 

size kVA)

Total 
Ploss 

(kW)

CPU 
time 
(sec)

Vmin 
(p.u)

Optimal 
(bus no, DG 

size kVA)

Total 
Ploss 

(kW)

CPU 
time 
(sec)

Vmin 
(p.u)

Optimal (bus no, 
DG size kVA)

Total 
Ploss 

(kW)

CPU 
time 
(sec)

Base Case 0.9036 –– 210.98 –– 0.9036 –– 210.98 –– 0.9036 –– 210.98 ––

GMSA 0.9175 30(1200) 150.426 6.2 09332 30(1050) 
12(450) 140.87 6.22 0.9334 24(450), 12(450) 

30(1050) 137.46 6.26

GA 0.9173 29(1350) 153.121 7.31 0.9159 21(150) 
30(1200) 151.12 7.34 0.9333 6(750), 13(350) 

31(750) 142.07 7.48

MSA 0.9159 30(1200) 151.497 6.51 0.9297 8(750) 
30(900) 143.11 6.67 0.9298 2(150), 12(1050) 

30(450) 141.71 6.93

Hybrid [17] 0.9161 30(1230) 151.41 NA 0.9336 30(1040) 
12(430) 141.94 NA 0.9335 24(450), 12(450) 

30(1050) 138.37 NA

HGWO [20] 0.9163 30(1258) 151.36 NA 0.9338 30(1054) 
12(467) 141.83 NA 0.9334 24(450), 12(450) 

30(1050) 138.25 NA

TABLE IV. Comparison Results of Different Optimization Techniques for P-Type DG Units for 33-Bus System

Technique

1 DG unit 2 DG units 3 DG units

Vmin 
(p.u)

Optimal 
(bus no, DG 

size kVA)

Total 
Ploss 

(kW)

CPU 
time 
(sec)

Vmin 
(p.u)

Optimal 
(bus no, DG 

size kVA)

Total 
Ploss 

(kW)

CPU 
time 
(sec)

Vmin 
(p.u)

Optimal (bus no, 
DG size kVA)

Total 
Ploss 

(kW)

CPU 
time 
(sec)

Base Case 0.9036 –– 210.98 –– 0.9036 –– 210.98 –– 0.9036 –– 210.98 ––

GMSA 0.9427 6(2589) 110.267 6.55 0.9687 30(1157) 
13(851) 86.58 6.81 0.9712 24(1091), 13(801) 

30(1053) 72.299 6.61

BSOA [21] 0.9441 8(1857.5) 118.12 20.4 0.9665 31(924) 
13(880) 89.34 23.54 NA NA NA 24.95

PSO [16] NA 6(2590) 111.03 NA NA 30(1160) 
13(850) 87.17 NA NA 14(770), 24(1090) 

30(1070) 72.79 NA

Hybrid [17] 0.9451 6(2490) 111.17 NA 0.9687 13(830) 
30(1110) 87.28 NA 0.9713 13(790), 24(1070) 

30(1010) 72.89 NA

HGWO [20] 0.9455 6(2590) 111.018 NA 0.9714 13(852) 
30(1158) 87.164 NA 0.9715 13(802), 24(1090) 

30(1054) 72.784 NA

IA [24] 0.9425 6(2601) 111.1 NA 0.9539 6(1800) 
14(720) 91.63 NA 0.9690 6(900), 12(900) 

31(720) 81.05 NA

EA [23] NA 6(2530) 111.07 NA NA 13(844) 
30(1149) 87.172 NA NA 13(798), 24(1099) 

30(1050) 72.787 NA

MINLP [12] 0.9424 6(2590) 111.01 NA 0.9685 13(850) 
30(1150) 87.16 NA 0.9687 13(800), 24(1090), 

30(1050) 72.79 NA
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TABLE V. Comparison Results of Different Optimization Techniques for PQ--type DG Units for 33-Bus System

Technique

1 DG unit 2 DG units 3 DG units

Vmin 
(p.u)

Optimal (bus 
no, DG size 

kVA, pf)

Total 
Ploss 

(kW)

CPU 
time 
(sec)

Vmin 
(p.u)

Optimal (bus 
no, DG size 

kVA)

Total 
Ploss 

(kW)

CPU 
time 
(sec)

Vmin 
(p.u)

Optimal (bus no, DG 
size kVA, pf)

Total 
Ploss 

(kW)

CPU 
time 
(sec)

Base Case 0.9036 –– 210.98 –– 0.9036 –– 210.98 –– 0.9036 –– 210.98 ––

GMSA 0.9586 6(3105, 0.82) 67.418 6.79 0.9805 30(1556,0.73) 
13(935, 0.9) 28.326 6.77 0.9924 24(1187, 0.9), 13(877, 

0.9), 30(1441, 0.72) 11.684 7.03

BSOA [21] 0.9549 8(2265.5, 
0.82) 82.78 36.87 0.9796 13(777,0.89) 

29(1032,0.7) 31.98 49.80 NA NA NA 56.50

PSO [16] ? 6(3035, 0.82) 67.928 NA 13(914,0.91) 
30(1535,0.73) 28.56 NA 24(1188, 0.9), 13(863, 

0.91), 30(1431, 0.71) 11.76 NA

Hybrid [17] 0.9587 6(3028, 0.82) 67.937 NA 0.9801 13(1039,0.91) 
30(1508,0.72) 28.98 NA 0.9923 24(1186, 0.9), 13(873, 

0.9), 30(1441, 0.72) 11.76 NA

HGWO [20] 0.9585 6(3106, 0.82) 67.855 NA 0.9802 13(932,0.9), 
30(1558,0.72) 28.5 NA 0.9922 24(1182, 0.9), 13(878, 

0.89), 30(1439, 0.71) 11.74 NA

IA [24] 0.9425 6(3107, 0.82) 67.85 NA 0.9539 6(2195,0.82) 
30(1098,0.82) 44.39 NA 0.9690 6(1098,0.82),14(768, 

0.82), 30(1098,0.82) 22.29 NA

MINLP [12] 0.9424 6(3105, 0.82) 67.85 NA 0.9685 (13, 0.88), (30, 
0.8), (2477) 29.31 NA 0.9687 13(0.87), 24(0.88), 

30(0.8), (3481) 12.74 NA

EA [23] NA 6(3119, 0.82) 67.87 NA NA 13(938,0.9) 
30(1537,0.73) 28.52 NA NA 24(1189,0.9),13(886, 

0.9), 30(1450,0.71) 11.8 NA

TABLE. VI. Optimal Locations and Rating of Renewable DGs for Units Using GMSA for 69-Bus System

Type Vmin (p.u) Vmax (p.u)* Ploss (kW) % Loss 
reduction VSI (p.u) VD (p.u) Optimal bus no, optimal DG (kVA), optimal (pf)

Without DG 0.9092 0.9999 224.99 –– 61.2183 1.8374 ––

1 DG 
1 Cap
1 PV
1 WT

0.9296 0.9999 151.617 32.61% 62.2409 1.5361 61(1200)

0.9686 0.9999 82.4 63.38% 64.6524 0.8645 61(1872)

0.9728 0.9999 22.98 89.79% 65.7382 0.5825 61(2243.7, 0.81)

2 DG
2 Cap
2 PV
2 WT

0.9315 0.9999 145.646 35.27% 62.6248 1.4293 61(1200), 12(600)

0.9792 0.9999 71.371 68.28% 66.0147 0.5041 61(1777), 15(554)

0.9944 1.0003 7.144 96.82% 67.4868 0.1289 61(2131, 0.81), 17(630.8, 0.83)

3 DG
3 Cap
3 PV
3 WT

0.9318 0.9999 144.369 35.83% 62.7862 1.3844 61(1200), 53(350), 17(350)

0.9799 1.0002 68.974 69.34% 66.2363 0.4471 61(1718), 17(380.7), 11(526)

0.9943 1.003 4.21 98.13% 67.7559 0.0617 61(2058,0.81), 17(459,0.85), 11(603.7,0.8)

TABLE. VII. Comparison Results of Different Optimization Techniques for Q-type DG Units for 69-Bus System

Technique

1 DG unit 2 DG units 3 DG units

Vmin 
(p.u)

Optimal (bus 
no, DG size 

kVA)

Total 
Ploss 

(kW)

CPU 
time 
(sec)

Vmin 
(p.u)

Optimal (bus 
no, DG size 

kVA)

Total 
Ploss 

(kW)

CPU 
time 
(sec)

Vmin 
(p.u)

Optimal (bus no, 
DG size kVA)

Total 
Ploss 

(kW)

CPU 
time 
(sec)

Base Case 0.9092 –– 224.99 –– 0.9092 –– 224.99 0.9092 –– 224.99

GMSA 0.9312 61(1200) 151.617 14.3 0.9315 61(1200) 
12(600) 145.65 13.76 0.9318 61(1200) 53(350), 

17(350) 144.37 14.66

GA [29] 0.9311 61(1350) 152.07 NA 0.9310 61(1200) 
66(600) 147.63 NA 0.9308 12(600), 45(150) 

61(1200) 146.72 NA

MSA [29] 0.9310 61(1350) 152.05 NA 0.9288 61(1200) 
12(600) 146.69 NA 0.9299 2(1050), 17(350) 

61(1200) 146.61 11.42

Hybrid [17] NA 61(1290) 152.1 NA NA 61(1240) 
18(350) 146.49 NA NA 11(330), 18(250) 

61(1190) 145.28 NA

HGWO [20] 0.9311 61(1330) 152.04 NA 0.9315 61(1277) 
17(364) 146.44 NA 0.9317 11(412), 21(230) 

61(1231) 145.12 NA
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1 DG unit 2 DG units 3 DG units
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(p.u)

Optimal (bus 
no, DG size 

kVA, pf)

Total 
Ploss 

(kW)

CPU 
time 
(sec)

Vmin 
(p.u)

Optimal (bus 
no, DG size 

kVA)

Total 
Ploss 

(kW)

CPU 
time 
(sec)

Vmin 
(p.u)

Optimal (bus no, DG 
size kVA, pf)

Total 
Ploss 

(kW)

CPU 
time 
(sec)
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