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I.	 Introduction

TIME series  data are everywhere. Examples of time series data are the 
daily weather temperature, monthly sales, and annual milk production. 

Time series can be categorized into univariate and multivariate 
time series. Univariate time series can be obtained by recording a 
single phenomenon over time, for example, recording air pollution 
concentration. Multivariate time series, on the other hand, can be obtained 
by recording more than one phenomenon over time, for example, 
recording air pollution concentration and some weather information.

Multivariate time series can be found in many real problems such 
as in business and engineering domains. The importance of having 
multivariate time series is to take advantage of the available additional 
information from related time series in order to enhance the forecasting 
accuracy for each series individually.

Various models have been used for multivariate time series 
forecasting such as vector autoregression models, adaptive network-
based fuzzy inference system, belief rule based system, neural networks 
and other hybrid models [1]-[4]. 

Neural networks (NNs) have been applied extensively in time series 
forecasting due to some distinguishing features as reported in [5]. These 
reported features are the universal function approximator property in 
NNs that allow them to approximate any continuous function with an 
arbitrary degree of accuracy. Furthermore, NNs are a nonlinear data-
driven method with few a priori assumptions about underlying models. 
In addition, their generalization ability is good.

Higher order neural network (HONN) is a type of NNs that utilizes 
high order terms (e.g., multiplicative units) besides the commonly used 
summing units. HONNs are simple in their architecture and have fewer 
trainable parameters to deliver the input-output mappings as compared 
to multilayered NNs.

An example of a HONN is the feedforward ridge polynomial neural 
network (RPNN) [6]. RPNN has good mapping capabilities and it 
utilizes univariate polynomials that are easy to handle, unlike other 
HONNs which suffer an explosion of free parameters due to the use of 
multivariate polynomials [6]. Furthermore, the RPNN provides a more 
efficient and regular architecture compared to the ordinary HONNs 
while maintaining their fast learning property [6].

Based on the structure of the RPNN model, there are three recurrent 
neural networks, namely the dynamic ridge polynomial neural network 
(DRPNN) [7]-[8], the ridge polynomial neural network with error 
feedback (RPNN-EF) [9], and the ridge polynomial neural network 
with error and output feedbacks (RPNN-EOF) [10]. The DRPNN has 
a feedback based on its network output as an additional input to the 
network, whereas the feedback in the RPNN-EF is its network error. 
The RPNN-EOF has both feedbacks.

The feedforward RPNN and the three recurrent networks can be 
grouped into two groups. The first group, which is referred in this 
paper as Group A, contains the RPNN and DRPNN that use only 
autoregressive inputs (i.e., lagged variables of one or more time series), 
whereas Group B contains the RPNN-EF and RPNN-EOF that use 
autoregressive and moving-average (i.e., error feedback) inputs.

Based on studies about ridge polynomial based neural network 
models retrieved in this paper, the four existing ridge polynomial based 
neural network models have not yet been applied in multivariate time 
series forecasting.
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The well-known multivariate time series called Box-Jenkins gas 
furnace time series was used in this paper [3]. This time series has 
been frequently used for the assessment of new identification and 
modeling techniques. A combustion process of a methane-air mixture 
was used to record this series. The gas flow rate was kept constant, but 
the methane rate was randomly changed. The resulting carbon dioxide 
concentration (CO2) in the output gases was measured.

The main objective of this paper is to investigate and compare the 
forecasting efficiency of neural network models in the two groups in 
forecasting this well-known multivariate time series. To the best to 
our knowledge, this is the first study that has attempted to achieve this 
objective. This is important to investigate the difference in the forecasting 
ability between the two groups. Also, a comparison with some models 
reported in the literature with this time series was reported.

We organized our paper as follows. The neural network models 
used in this paper are described in Section II. Section III discusses 
the methodology used to conduct the experiments. The findings are 
presented and discussed in Section IV, and in Section V the conclusion 
and future works are given.

II.	 Related Works

Neural networks provide a promising alternative tool for forecasters 
[11]. Numerous applications have been reported on using different 
types of neural networks to model time series. A basic example to show 
how a NN is used to learn the nonstationary time series is shown in Fig. 
1. Simply, during training, the past time series (i.e., lagged variables) 
are fed to the neural network. Network output (i.e., forecast) based on 
the given inputs is produced then compared with the desired output to 
calculate the error. This error is used to update the network parameters 
until a specified goal is attained.

Fig. 1.  Learning time series with a neural network.

The RPNN is a type of neural network that has only one layer of 
adjustable weights, and it uses the pi-sigma neural network (PSNN) 
as basic building blocks [6]. According to [6], the RPNN utilizes a 
constructive learning algorithm which allows it to automatically 
determine the necessary network order. For a given problem, the 
RPNN starts with a small order of the PSNN block(s), and then an 
extra block of higher orders is added during the learning process. The 
learning process stops when the desired level of approximation error is 
attained, or when the maximum number of epochs or the appropriate 
order of the network has been reached [6]-[9].

According to [6], the RPNN has the ability to uniformly approximate 
any continuous function on a compact set in a multidimensional input 
space with arbitrary degree of accuracy. Moreover, the RPNN utilizes 
univariate polynomials which are easy to handle, thus it avoids the 
explosion of the number of trainable parameters as the number of 
inputs increases, which happens with some neural networks [6]. Fig. 2 
shows an example of the RPNN. It can be seen that the weights linking 
the hidden and the output units are fixed to unity. The inputs to the 
RPNN are only the lagged variables from the time series.

Fig. 2.  Architecture of the ridge polynomial neural network [6].

Like any feedforward network, the output of the RPNN is only a 
function of the current input; in other words, the node equations are 
memoryless. Therefore, the dynamic RPNN which is a recurrent 
version of the RPNN was proposed [7]. The DRPNN uses its network 
output value as an additional input to the input layer. Therefore, it is 
provided with memory that helps to retain information to be used later 
to affect the processing of future inputs [7]. Fig. 3 shows an example 
of the DRPNN.

Fig. 3.  Architecture of the dynamic ridge polynomial neural network [7].

Due to the existence of the recurrent feedback, learning instability 
problem could occur in the DRPNN. Therefore, the learning rate was 
controlled by a Lyapunov function [8]. This solution improves the 
forecasting accuracy of the DRPNN and reduces its training time. 
In this paper, we used the DRPNN that uses Lyapunov function and 
referred to it as DRPNN.

The inputs of the DRPNN is given as follows:

	 (1)
where xg(t) is the lagged variables from the time series, m is the 

number of past lagged values from the time series, and y(t) is network 
output at time t.
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Both the RPNN and DRPNN use only autoregressive inputs (i.e., 
lagged variables of one or more time series). However, an alternative to 
autoregressive modeling has been suggested by feeding back network 
error to the input layer of a neural network [9]-[10], [12]-[13] in order 
to model the nonlinear moving-average processes more directly and 
parsimoniously [13].

The RPNN-EF [9] is a network based on the RPNN and is 
incorporated with network error as shown in Fig. 4. As shown in Fig. 
4, the error term is calculated by subtracting the target from network 
output (i.e., forecast).

The RPNN-EF was used to forecast univariate time series [9]. It was 
found that the RPNN-EF showed better forecasting performance with 
respect to the RPNN and DRPNN using four univariate time series. 
Furthermore, the forecasting performance of the RPNN-EF was found 
better than some existing techniques with some benchmark time series.

Fig. 4.  Architecture of the ridge polynomial neural network with error feedback [9].

The inputs to the RPNN-EF are given as follows:

	 (2)
where xg(t) is the lagged variables from the time series, m is the 

number of past lagged values from the time series, e(t) is the error, y(t) 
is the network output, and d(t) is the desired output.

The RPNN-EOF [10] is a network based on the DRPNN and is 
incorporated with network error as shown in Fig. 5. The inputs for the 
RPNN-EOF is given by the following equation:

	 (3)
where xg(t) is the lagged variables from the time series, m is the 

number of past lagged values from the time series, e(t) is the error, y(t) 
is network output, and d(t) is the desired output.

The RPNN-EOF was evaluated using the Mackey-Glass differential 
delay equation time series [10]. Based on the findings in [10], the 
RPNN-EOF produced smaller error as compared to some state-of-the-
art models.

The ridge polynomial based neural network models have 
been utilized in different applications as tabulated in Table I. The 
feedforward RPNN was used in various applications, whereas the 
three recurrent networks were used only for time series forecasting. 
With regard to time series forecasting, all the studies in Table I were 
applied to forecast only univariate time series [7]-[10], [14], [19]. 
Based on [7], [9], and [14], the recurrent RPNN models are better than 
the feedforward RPNN model for univariate time series forecasting. 
Moreover, the RPNN-EF is better than those without error feedback 
(i.e., RPNN and DRPNN) on average [9].

Based on the aforementioned, there is a scope to do further research 
for applying ridge polynomial based neural network models for 
multivariate time series forecasting. Therefore, the main objective of 
this paper is to apply and compare the forecasting ability of two groups 
of neural networks in multivariate time series forecasting: neural 
network models that use only autoregressive inputs (i.e., RPNN and 
DRPNN), simply referred to as Group A; and neural network models 
that use autoregressive and moving-average (i.e., RPNN-EF and 
RPNN-EOF) inputs, simply referred to as Group B.

III.	Methodology

A.	Box-Jenkins Gas Furnace Data
It is one of the well-known and frequently used benchmark problems 

[3] that has been frequently used for the assessment of new identification 
and modeling techniques. This time series consists of 296 records and 
was downloaded from the following website http://www.stat.purdue.
edu/~chong/stat520/bjr-data/gas-furnace. A combustion process of a 
methane-air mixture was used to record this series. The gas flow rate 
was kept constant, but the methane rate was randomly changed. The 
resulting carbon dioxide concentration (CO2) in the output gases was 
measured. The sampling interval is 9 seconds.

There are different fitting models used by researchers. In this paper, 
the following fitting model was chosen to compare our findings with 
[1] and [2]:

	 (4)
where v(t) is the methane gas flow into the furnace, and y(t) is the 

CO2 concentration in the outlet gas.
Based on (4), there are 292 input/output data pairs. By following [1] 

and [2], these pairs were partitioned in 200 and 92 pairs for training 
and out-of-sample sets, respectively. Fig. 6 and 7 show the training and 
out-of-sample values of the CO2 concentration y(t).

Fig. 6.  CO2 concentration time series for the Box-Jenkins gas furnace data.

Fig. 5.  Architecture of the ridge polynomial neural network with error-output 
feedbacks [10].

http://www.stat.purdue.edu/~chong/stat520/bjr-data/gas-furnace
http://www.stat.purdue.edu/~chong/stat520/bjr-data/gas-furnace
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Fig. 7.  Methane gas flow time series for the Box-Jenkins gas furnace data.

The time series were scaled to the range [0.2 - 0.8] by using the 
minimum and maximum normalization method which is given by:

  	 (5)
where min1 and max1 are the respective minimum and maximum 

values of all observations, min2 and max2 refer to the desired minimum 
and maximum of the new scaled series, y refers to the original value, 
and  is the normalized version of y. The min1 and max1 for the methane 
gas flow into the furnace are equal to -2.716 and 2.834, respectively. 
Similarly, the min1 and max1 for the CO2 concentration in the outlet gas 
are equal to 45.6 and 60.5, respectively.

B.	Network Topology and Parameters’ Settings
Network structure and the values used to train the four models are 

shown in Table II. These settings are based on previous works using 
these models for time series forecasting [8]-[10].

C.	Performance Metric
Root mean squared error (RMSE) metric was used in this paper. The 

equation for the RMSE metric is given by:

	 (6)
where N, y and  represent the number of test pairs, actual output 

and network output, respectively.

TABLE II. Network Topology and Training for the Ridge Polynomial 
Based Neural Network Models

Setting Value
Initial weights [-0.5,0.5]
Network order Incrementally grown from 1 to 5.

Stopping criteria

Minimum Squared Error = 0.000001 or after 
accomplishing the 5th order network learning 
or reaching the maximum number of epochs 

= 3000.
Extra criterion for the DRPNN, RPNN-EF and 

RPNN-EOF: network becomes unstable.
Learning rate (n) [0.01-1]

Decreasing factors for n 0.8
Momentum [0.4-0.8]

Threshold of successive 
PSNN addition (r) [0.00001-0.1]

Decreasing factors for r [0.05, 0.2]

D.	Model Selection
As mentioned before, the data were partitioned into two sets only; 

training and out-of-sample sets as used in [1] and [2]. In order to 
evaluate the forecasting performance of the four models, the adjustable 
parameters after finishing the training of each network’s order were 
selected for generalization purpose (i.e., out-of-sample forecasting) 
[7]. Then, the training is continued with increasing network’s order, 
and this continues until the stopping criteria are met [7]. Network 
structure with the lowest RMSE on the out-of-sample set is considered 
the best model.

E.	Wilcoxon Sign-rank Test
In order to know if there is any significance in the forecasting 

performance, the Wilcoxon sign-rank test [22] was used. This test is a 
nonparametric and distribution free test, thus it is statistically safer and 
more robust than parametric tests [23]. The Wilcoxon signed-rank test 
was conducted using IBM SPSS software.

F.	Comparison with Other Forecasting Models 
In this paper, we compared the forecasting performance of the four 

models from the two groups with other forecasting models reported 
in [1] and [2]. In addition, we used the well-known multilayer feed-
forward network model (MLP) and extreme learning machines (ELM) 
[24] models in the comparison. 

The function nnetar in the R package ‘forecast’ [25] was used to build 
the MLP model. The number of hidden neurons are selected between 1 and 
25. For that, 40 simulations for each hidden neuron size were conducted, 
yielding 1000 total simulations. The data is scaled by subtracting the 
column means and dividing by their respective standard deviations 

TABLE I. Studies Applied The Ridge Polynomial Based Neural Network Models

Study Model Inputs Application

[6]

RPNN Autoregressive

Multivariate function approximation, realization of multivariate polynomial, 
and data classification

[15] Image compression

[16] OFDM (Orthogonal Frequency Division Multiplexing) systems signals as a 
nonlinear compensator

[17] Character recognition
[18] Modeling nonlinear chemical kinetics
[20] Microwave characterization of dielectric materials
[21] Data classification
[19]

Univariate time series forecasting
[7]-[8], [14] Dynamic RPNN Autoregressive

[9] RPNN with error feedback Autoregressive & 
Moving-average[10] RPNN with error-output feedbacks
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because it gives better forecasting performance based on our experiments.
To build the ELM model, we used the function elm in the R package 

‘nnfor’ [26]. We used a multiplication of 10 to 100 for the number 
of hidden nodes as well as the available option to be determined 
automatically by the algorithm. Ridge regression with cross validation 
was used as an estimation type for output layer weights because it gives 
better forecasting accuracy as compared to the other three types based 
on our experiments. Direct input-output connections to model strictly 
linear effects was used. We ran 1000 simulations using the ELM model.

IV.	Results and Discussion

This section presents one-step forecasts comparison between 
two neural network models that use only autoregressive inputs (i.e., 
Group A: RPNN and DRPNN) and two neural network models that 
use autoregressive and moving-average inputs (i.e., Group B: RPNN-
EF and RPNN-EOF) in forecasting the Box-Jenkins gas furnace time 
series.

After finishing the training of each network’s order with 225 
different settings, the final values for the trainable parameters were 
selected for generalization purpose. 

Among 1,125 simulations, the average RMSE results of best 20, 50 
and 100 simulations for each model are shown in Table III. In addition, 
the results of the Wilcoxon sign-rank test are shown in Table IV.

TABLE III. Average of Best Top Simulation Results Comparison Between 
Neural Network Models Using the Rmse (Based on the Normalized Data)

No. 
Simulations

Group A Group B
RPNN DRPNN RPNN-EF RPNN-EOF

20 0.0214 0.0207 0.0159 0.0165
50 0.0231 0.0215 0.0173 0.0176
100 0.0245 0.0225 0.0182 0.0182

Best results are in boldface.

TABLE IV. Results of the Wilcoxon Sign Rank Test

No. 
Simulations 20 50 100

RPNN-EF 
vs. RPNN

-3.920  
(p < 0.000089)

-6.154  
(p < 0.000000)

-8.682  
(p < 0.000000)

RPNN-EOF 
vs. DRPNN

-3.920  
(p < 0.000089)

-6.154  
(p < 0.000000)

-8.682  
(p < 0.000000)

DRPNN vs. 
RPNN

-3.920  
(p < 0.000089)

-6.154  
(p < 0.000000)

-8.682  
(p < 0.000000)

RPNN-EOF 
vs. RPNN

-3.920  
(p < 0.000089)

-6.154  
(p < 0.000000)

-8.682  
(p < 0.000000)

As shown in Table III and Table IV, the models in Group B produce 
significantly better forecasting performance as compared to the models 
in Group A in all cases. In other words, the RPNN-EF is significantly 
better than the RPNN, and the RPNN-EOF is significantly better than 
the DRPNN. Based on that, it can be concluded that incorporating error 
feedback to neural network models makes the models more suitable to 
deal with this time series. This is because the models in Group B have 
autoregressive and moving-average inputs, unlike the models in Group 
A that have only autoregressive inputs. Since an approach to identify 
the component of a non-linear model similar to the Box-Jenkins 
identification approach, which is used for linear model identification, 
is still not available, it is difficult to prove that the time series possess 
a non-linear moving-average component. However, it was found that 
neural networks with error feedback are more suitable than neural 
networks without error feedback in modelling univariate time series 
that possess a moving-average component [12]- [13].

We observe from Table III and Table IV that all recurrent models 
achieve significant results as compared to the feedforward RPNN that 
produced the highest forecasting error. Moreover, the RPNN-EF has 
the best average forecasting performance.

The best simulation results for the four models in the two groups 
are shown in Table V. In addition, the best results obtained by the MLP 
and ELM models are shown in Table V. For fair comparison with the 
models reported in [1] and [2], all the results in Table V are after the 
de-normalization (i.e., returned to the original data scale). Even though 
the models in Table V have different structures as compared to the four 
models, it is widely accepted to compare the final results with those 
reported since all the models use the same model mentioned in (4), the 
training and out-of-sample sets are identical, and the reported results 
are in the original scale. It is good to note that the best model using the 
MLP is with 14 hidden neurons while the best model for the ELM used 
100 hidden neurons.

TABLE V. Comparison of the Performance of Various Existing Models 
(Based on the De-Normalized Data)

Model RMSE
MLP 0.9098
ELM 0.6736

RPNN 0.4920
DRPNN 0.4804

Belief rule based (BRB) system with the number of 5 * 5 
referential values [1] 0.4616a

Adaptive network-based fuzzy inference system (ANFIS) [2] 0.4053a

Pseudo-Gaussian basis function network (PG-BF) [2] 0.3962a

RPNN-EF 0.3652
RPNN-EOF 0.3617

Hybrid neural fuzzy inference system (HyFIS) [2] 0.3074a

Generalized fuzzy neural network (G-FNN) [2] 0.2728a

a The original work reported the results in MSE

It can be seen from Table V that among the neural network models 
used in this paper, the RPNN-EOF produces the best simulation. Similar 
to the results shown in Table III, the models in Group B produce the 
better forecasting performance as compared to the models in Group A. 
The recurrent models also produce better results as compared to the 
feedforward model.

Moreover, as tabulated in Table V, the RPNN-EF and RPNN-EOF 
outperform hybrid models such as the MLP, ELM, BRB, ANFIS and 
PG-BF models. However, the hybrid HyFIS and G-FNN models 
outperform the RPNN-EF and RPNN-EOF. Therefore, using more than 
one error feedback in the RPNN-EF and RPNN-EOF could help to 
improve their forecasting performance.

Regarding the number of final parameters (i.e., weights and biases), 
the minimum number of parameters is with the RPNN where it equals 
18 parameters. The maximum number of parameters is 60 with the 
DRPNN. The RPNN-EF and RPNN-EOF have 24 and 30 parameters, 
respectively.

The learning curve for these best models are shown in Fig. 8 - Fig. 
11. It can be seen from these figures that the MSE per epoch decreases 
monotonically. The fastest training model based on these figures is the 
RPNN-EF with less than 70 epochs.
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Fig. 8.  Learning curve for the RPNN.

Fig. 9.  Learning curve for the DRPNN.

Fig. 10.  Learning curve for the RPNN-EF.

Fig. 11.  Learning curve for the RPNN-EOF.

Fig. 12 and Fig. 13 show the best out-of-sample forecasting result 
using the four models. The idea behind dividing the results into two 
figures is to show the difference in the forecasting ability between the 
model with and without error feedback. Therefore, the RPNN is drawn 
with the RPNN-EF in Fig 12, whereas the DRPNN is drawn with the 
RPNN-EOF in Fig. 13. It is clear that all models are able to produce 
forecasts close to the targets in most cases. However, the RPNN-EF 
and RPNN-EOF have better ability to follow the peaks and troughs as 
compared to the RPNN and DRPNN, respectively.

The best simulation performance among the four models is achieved 
using the RPNN-EOF model as shown in Table V. This model is as 
follows:

 
 

 
 

	 (7)
 

 
 

 	(8)

 

 
 

 
 

 	(9)

 	 (10)
where x1 is the methane gas flow into the furnace, x2 is the CO2 

concentration in the outlet gas, e(t) is the past network error, and y(t) is 
the past network output. The inputs should be normalized, as explained 
in Eq. (5). The e(t) and y(t) to be used with the first out-of-sample 
sample are -0.001954 and 0.781819, respectively. It is worth noting 
that the numbers (i.e., weights) shown in Eq. (6) – Eq. (9) are rounded 
to 6 decimal places.

The main contribution of this paper is that it shows how good the 
forecasting performance is when error feedback is incorporated into 
the structure of the neural networks as compared to their counterparts 
without error feedback when forecasting the Box-Jenkins gas furnace 
data. This better forecasting performance can be attributed to the direct 
modelling of the non-linear moving-average component via error 
feedback. 

The limitation of the study is that we conducted only one-step 
forecasts comparison. However, to the best of our knowledge, neural 
network models available in the literature that use error feedback have 
not yet tested for recursive multi-step forecasting. That is because 
the error cannot be observed until the real value for the current time 
is available. However, the unobserved errors can be replaced with 
zeros as in the autoregressive and moving-average (ARMA) model, 
or other solutions can be further investigated for recursive multi-step 
forecasting. Another limitation is the comparison with the MLP and 
ELM models. There are no options to select different ranges for the 
learning parameters such as learning rate with both functions used. 
Therefore, 1000 simulations were conducted to find best performance 
for both models.

V.	 Conclusion

In this paper, one feedforward and three recurrent neural networks 
based on the ridge polynomial neural network were used to forecast 
the well-known Box-Jenkins gas furnace multivariate time series. 
These four models are grouped into two groups. Group A consists of 
models that use only autoregressive inputs, whereas Group B consists 
of models that use autoregressive and moving-average (i.e., error 
feedback) inputs. Overall, the following points can be concluded from 
the obtained results:
•	 The models in Group B achieve better and more significant 

forecasting performance as compared to the models in Group A in 
forecasting this time series.

•	 The recurrent models are better and more significant than the 
feedforward RPNN model to forecast this time series.

•	 The significance in the forecasting performance for Group B 
models reveals that the time series could possess moving-average 
component. Therefore, the used error feedback with the models 
helps to better modeling the series.

In future, more multivariate time series could be explored with the 
models in the two groups. Incorporating more loops into the recurrent 
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models are also a subject of the future work. Moreover, recursive 
multi-step forecasting will be further explored with univariate and 
multivariate time series. 
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