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I.	 Introduction

Currently, an important level of research has emerged for detecting 
forgery in digital images [1]. The detection of forged images has 

applications ranging from tampered handwriting [2] to insurance claims 
[3]. Forgers use different image editing tools [4]. This paper focuses on 
detecting scene editing with one of the currently least researched tool: 
the digital brush.

There are two contributions in this paper. The main contribution is 
the design of a new approach to detect brush editing along with the 
algorithm of the filter that detects this editing (see Section IV.D). As 
further described in Section III, there are few approaches designed to 
detect brush strokes, compared to other image modification techniques, 
such as cloning or image composition. The second contribution of this 
paper is the introduction of intentions as a subjective metric, along 
with its assessment application to forgery detection, in contrast with 
the more classical objective forgery metrics (see Section III.B).

II.	 Related Work

This section reviews the state of the art of forged image detection.

A.	Types of Digital Image Forgeries
Often authors [1][4][5][6] classify the forgery to be detected into 

five categories:
1.	 Copy-moving (or cloning). A region of the image is selected and 

then copy-pasted to a different region of the same image. This is 
the most popular form of forgery due to its simplicity to conceal 

unwanted portions of the image, and effectiveness in leaving no 
visible traits of manipulation. Although the texture, color and 
noise of the pasted region are compatible with the rest of the 
image, there exists a wide variety of techniques to detect it (see, 
for instance, the survey in [6]).

2.	 Image splicing (or image composites). Image editing software 
usually allows for combining image fragments (typically 
represented as layers) from different images. One difference with 
copy-move forgery is that in composite image forgery there are no 
duplicate regions to be identified. Another difference is that if the 
forgers want to create a realistic image, they often have to apply 
geometric transformations (rotation, scaling, skew, etc.) to the 
spliced regions before pasting them into the target image [7][8]. 
That is, the size or orientation of the spliced regions in the source 
and target image usually does not match without these geometric 
transformations. Logically, geometric transformation in copy-
move forgery detection has also been researched (e.g. [9][10]).

To identify the edited regions, often inconsistencies in region 
features are identified. For instance, [11] identifies JPEG 
compression features inconsistencies, the authors of [12][13][14] 
identify noise discrepancies in regions, [15] detects sharp changes 
surrounding the spliced region, and [16] identifies inconsistencies 
in shadow boundaries.

3.	 Blurring and sharpening. Blurring is an effective operation to 
remove traces in forged regions, especially at the edges of the 
manipulated regions. Fortunately, there are robust detection 
techniques to this attack (e.g. [17]). Sharpening is used to enhance 
the appearance of objects in an image, which is another form of 
forging. Cao et al. have studied sharpening detection in depth. 
They propose both, a method to detect unsharp masking (a popular 
sharpening operation) [18], and a method to detect sharpening in 
general though histogram aberration and ringing artifacts [19].
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4.	 Image painting. This category includes image tampering by 
painting and drawing. [20]. Cutzu et al [21] have proposed a 
method to discriminate between drawn images and genuine photo 
images by detecting changes in the hue, edge and texture features. 
Elgammal et al. [22] have developed a method to analyze forged 
strokes in paintings by characterizing personal strokes in drawings. 
Farid [23] has modeled brush detection as a segmentation problem, 
using a graph-cut algorithm to detect changes in intensity or 
texture. Lin and Huang [24] have detected air-brush and brush 
strokes by: (1) using the expectation-maximization (EM) 
algorithm in the JPEG coefficients, (2) generating a probability 
map in the frequency domain and (3) segmenting the periodicity 
in the probability map.

5.	 Image retouching. This category groups more subtle changes in 
the image that enhance or reduce certain features. For instance, 
Sutthiwan et al. [25] have proposed a method to detect changes 
in clarity or color of the texture. Mahalakshmi et al. [26] have 
proposed a method to detect affine transformations (rotation, 
scaling, etc.) by analyzing changes in the texture of the transformed 
region.

B.	Current Approaches, Strategies and Features
Forged image detection techniques have been broadly divided into 

active and passive (or blind) approaches [4][5][6][27][28]. Active 
approaches usually watermark or sign the image in order to detect 
future changes. Passive approaches use only the received image to 
assess if the image has suffered some kind of post-processing. The rest 
of this paper focuses on passive approaches.

H. Farid [27] (2009) classified forensic strategies into five categories. 
Ali Qureshi and Deriche [1] (2015) propose similar categories, but 
refer to these strategies as tools. In particular, these categories are:

1.	 Pixel-based strategies detect spatial irregularities in the pixel 
distribution properties. These strategies include, for instance, 
changes in noise level [12] or inter-block correlation [29]. These 
strategies have proved to be especially effective in identifying 
edited regions.

2.	 Compression-based strategies detect traces of forgery in the 
transformed domain, i.e., they are mainly designed for forensic 
analysis of JPEG images. These techniques can detect effects such 
as compression with a specific JPEG quantization table [30][31] 
or the quantization with two different quantization tables [32].

3.	 Camera-based strategies detect alterations in the characteristic 
artifacts that a specific camera model introduces. An example 
of these artifacts are the characteristic camera noise [33], or the 
remaining color after sensor interpolation (demosaicing) [34]. 
This means that they cannot be applied to analyze any image, 
since they only apply in certain camera models.

4.	 Lighting-based strategies detect inconsistencies in the 3D real 
world lighting effects, specular lighting or highlights in the 
surface geometry [35]. These techniques often require manual 
intervention to identify and analyze possible inconsistencies.

5.	 Perspective-based strategies detect when constraints are not met 
in the perspective of objects with respect to the camera, because 
the object has undergone a geometric transformation [36][37]. 
Although these strategies are named geometric-based in [1][27], 
we call them perspective-based, to distinguish them from the 
detection of geometric transformations in sliced regions (e.g. [7]).

Regardless of the strategy, most forgery detection methods are 
based on the general concept of features: the information extracted 
from the image to detect forgeries. These methods usually have two 
stages: 1) Feature extraction measures relevant characteristics of the 
image, and 2) Feature matching searches regions of the image with 

similar features. The existence of regions with similar features is an 
indicator that one region may have been cloned from the other.

The extracted features can in turn be divided into three main types:
1.	 Block-based features are extracted from (overlapping or non-

overlapping) rectangular blocks. The most typical features are 
the frequency representation, such as the histogram (e.g. [38]), 
or the Discrete Cosine Transform (DCT) (e.g. [39][40]) of the 
blocks. Other features are the texture of the blocks (e.g. [41]) or 
the moment invariant features, which are block features invariant 
to rotation and scaling [42].

2.	 Keypoint-based features are extracted from distinctive parts of 
the image such as corners, edges, or textures [43]. With these 
features, [44] identifies three issues to address: the non-uniform 
distribution of the keypoints, the threshold to select keypoints 
with low contrast, and how to cluster forged areas. For instance, 
[17] uses a Gabor filter for keypoint texture retrieval. Most of 
these features tend to be more robust to affine transformations. 
SIFT (Scale Invariant Feature Transform) is the most popular 
affine transform invariant keypoint feature. SURF [45] is an 
improvement on SIFT to reduce the dimension of the features and 
the computational time. The authors of [46] combine a point of 
interest detector with SIFT to extract more features points.

3.	 Multi-scale features allow for analyzing the image at different 
levels to achieve better detection results. The authors of [47] 
analyze textures at different levels to find copy-moved regions. 
The authors of [48] use multi-scale representation to cluster 
regions based on geometric constraints. The authors of [14] use 
multi-scale variation in noise to detect spliced regions.

As indicated above, feature matching searches for similarities 
(copy-move) or dissimilarities (spliced regions, blurring, retouching) 
between image features. An example of an effective matching method 
is clustering: the search space is divided into regions with similar 
features-vector distributions (e.g. [38]). Another popular feature 
matching is sorting. For instance, the authors of [49] use as features 
a histogram of oriented gradients that are lexicographically sorted to 
find duplicated blocks.

III.	Proposed Approach

As we have described in Section II.A, there is an extensive 
bibliography addressing the detection of forgery techniques of copy-
move (cloning), image splicing (composites), blurring and sharpening. 
However, although graphic designers use the brush on a daily basis, 
its detection has not received the same level of attention. In the 
forth category in Section II.A we have described, to the best of our 
knowledge, the current research in brush painting forgeries.

Disturbances in the JPEG compression coefficients have already 
been successfully used to detect spliced regions [15][50] or double-
compression [29][51]. In this work, we have hypothesized that brush 
editing also alters the distribution of these coefficients. However, the 
metric we use to detect these disturbances is different. Specifically, 
we first cancel the effect of lighting, and then assess the number of 
normalized coefficients that the JPEG compressor has discarded.

A.	Forgery Localization and Forgery Mask
There are two granularity levels to represent image forgery 

localization:
1.	 Image-based localization classifies the entire image. Binary 

classification determines whether the image is forged or not. 
In this case, the true / false and positive / negative rates of the 
classifier are evaluated (see, for instance [40]). One way to 
represent the fuzzyness in the classification decision is to assign 
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a forgery probability to the image. To evaluate this probability, it 
may be useful to have a confidence interval, rather than a single 
point estimate. For this reason, authors such as [52] study the 
confidence intervals of the probabilistic classification.

2.	 Region-based localization is used when the application requires 
identifying the parts of the scene that have been modified. This 
occurs when a change in the image modifies the semantics of 
the scene. For example, a change in the light of a traffic light 
might eliminate the traffic offense of the scene. The forgery 
mask is a tool to represent these areas of the image with high 
probability of falsification. Our experiments use this forgery 
mask to highlight tampering. For example, Fig. 1(c) shows the 
forgery mask for an unedited image, and Fig. 1(d) shows the 
forgery mask after sharpening the monkey's body. In particular, 
in our forgery mask dark pixels indicate high probability of 
alteration.

 

Fig. 1. Region based forgery localization for a sharpened monkey.

B.	Intentions and Interactive Forgery Mask
Typically, research in image forensics evaluates classification 

performance at either image or region level using an objective metric. 
For binary classification, they frequently use two metrics: sensitivity, 
i.e., the percentage of forgery correctly identified, and specificity, i.e., 
the percentage of unedited image correctly identified. Other alternative 
metrics, from the field of information retrieval, are precision, recall or 
the F-score  (e.g., in [9][40]).

A drawback of these objective metrics is that a result like the one 
shown in our experiment in Fig. 2(d) has a relatively low sensitivity 
rate Se = 0.5622 (percentage of tampered pixels correctly detected). 
However, a visual inspection allows concluding that the image is 
forged. This is because a human is able to detect the intention of the 
forger without having to resort to soft computing techniques [53].

A second drawback of the objective metrics is their dependency 
on a threshold parameter. However, there is no general guideline to 
obtain this threshold, because usually each image has a threshold 
for maximum detection performance [54]. A human operator can 
effectively use semantics to effectively address this problem by 
means of an interactive gauge that allows the operator to visualize 
the forgery mask with different thresholds. We will refer to this 
gauge as the interactive forgery mask. Table I shows the sensibility 
Se and specificity Sp for different threshold values with Fig. 2(b). 
Fig. 3 shows the corresponding forgery masks. Note that for a human 
operator the interactive mask is more helpful than the objective 
metrics.

 

(a) Original image (b) Tampered image

(c) Original image forgery mask 
T=20, Se=0/0, Sp=1.0

(d) Tampered image forgery mask  
T=20, Se = 0.5622, Sp=0.9956

Fig. 2. First experiment (added caption).

Fig. 3. Interactive forgery mask with three threshold levels in Fig. 2 (b).

TABLE I.  
Sensibility and Specificity for Different Threshold Values in Fig. 2(b)

Threshold Sensibility Se Specificity Sp

5 0.1542 0.9987

10 0.3781 0.9973

20 0.5622 0.9956

25 0.6119 0.9951

30 0.6517 0.9947

35 0.7065 0.9843

40 0.7811 0.7924

A third drawback of the objective metrics is that editing does not 
prove tampering. For instance, the experiments in [55] reported that 
frequently the double-compression artifact was merely due to an 
image resaved with a different quality level. A human operator can 
semantically interpret the image to effectively decide if the marked 
area corresponds to an intentional forgery. This operator can also use an 
interactive forgery mask to best "focus" each image at its appropriate 
threshold level.

In spite of this, in order to facilitate the comparison, we have added 
to the figures of the reported experiments the objective sensitivity Se 
and specificity Sp.

IV.	Method

The method does not require the original image (untampered 
image). It requires only an analyzed image (potentially tampered 
image) in JPEG format in order to calculate the editing evidence of 
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each block. There is a twofold output:
1.	 An objective metric with the sensibility Se and specificity Sp of 

the classification.
2.	 A subjective metric with the interactive forgery mask indicating 

the probability of edition of each block (see Fig. 3).

A.	Detected Effect
JPEG image compression uses the DCT to concentrate each 

block's energy in the low frequency coefficients, and high frequency 
coefficients are often reduced to zero. As described in [56], these high 
frequencies correspond to excessively sharp changes, which are the 
least noticeable for the human eye. The DCT tends to assign a low 
magnitude to these coefficients, and subsequently the JPEG compressor 
tends to round them to zero. In the rest of this paper we will refer to 
these zeroed coefficients as discarded coefficients.

Our working hypothesis is that brush strokes regenerate these 
unnoticeable sharp changes in the edited blocks. Consequently, 1) 
edited blocks will concentrate these high frequency coefficients, and 
2) as a whole, the unedited blocks possesses a fewer count, in contrast 
with edited blocks.

Therefore, during recompression the JPEG compressor will need to 
discard a fewer number of coefficients to achieve the same compression 
ratio as the original image (as indicated in Section V, in our experiment 
we have used Adobe Photoshop default JPEG quality level: Q=12). This 
effect would be even more prominent when the forger saves the image 
in a lossless format with the intention of preventing detection by other 
methods (e.g. double-compression [55][57][58]). As a consequence, 
edited blocks will have fewer discarded coefficients.

Note that, we are not indicating that brush painting necessarily 
increases the number of high coefficients than are in a natural photo 
(e.g. there are blurring brushes). What we are hypothesizing is that a 
higher number of coefficients will remain in the tampered area because 
during recompression the compressor discards a fewer number of them.

B.	Tools
The tools to search for the abovementioned effect are the following:

1.	 Counting discarded coefficients. In our preliminary experiments 
we have observed that brush edited and recompressed blocks 
(especially those in the borders) keep a larger number of high 
coefficients, i.e., have a fewer number of discarded coefficients. 
Therefore, we use this count to gauge the editing probability of 
each block.

2.	 Normalized energy. In our preliminary experiments we found 
that lighting also influences the count of discarded coefficients. 
In particular, lighted areas (original or tampered) yield a lower 
count of discarded coefficients. So, before counting discarded 
coefficients, we need to normalize the energy of the analyzed 
image to eliminate the bias in the coefficients due the effect 
produced by lighting. After normalization, the count of discarded 
coefficients will not depend on the lighting of the blocks. The 
following section describes this normalization in more detail.

C.	Canceling the Effect of Differences in Lighting
The magnitudes of the DCT coefficients indicate the energy of the 

block: lighter blocks will have larger DCT coefficients, and so fewer 
of them will be discarded. We cancel the effect of lighting in the 
magnitude of the coefficients by means of normalization. 

To normalize the energy of the coefficients faster, we avoid 
converting them to their spatial representation, using the Parseval 
relationship. This relationship states that the mean energy of the spatial 
signal �[𝑛, �] is equal to the mean energy of the coefficients in the 
frequency domain �[�, �]. In particular, given an �x� block, Parseval 

relationship states that:

	 (1)
Where �, 𝑛 are indexing the spatial block, p,q are indexing the 

coefficient of the corresponding block, and |·| refers to the absolute 
value of the samples. Note that the spatial samples �[𝑛, �] are integers 
in the range 0..255, while the coefficients �[�, �] are, in general, 
complex numbers.

Therefore we accomplish normalization in two steps:
1.	 Squaring the coefficients to measure energy and eliminate 

negative values:

	 (2)
2.	 Scaling the �[�, �] values to the JPEG compressor storage range 

(i.e., 0..255). We can obtain these values using the following 
formula:

	 (3)
Where min{} and max{} refer to the minimum and maximum value 

in the block.

D.	Filter Algorithm
The proposed filter algorithm is as follows:

1.	 Divide the image into non-overlapping blocks of 8x8 pixels each. 
We propose using N=8, as this is the block size that the JPEG 
encoder typically uses.

2.	 Calculate the DCT coefficients of each block. 
3.	 Normalize the energy of the blocks as described in Section IV.C.
4.	 Calculate the forgery evidence for each block as the sum of 

discarded coefficients 𝑆 in the block (i.e., zeroed coefficients). In 
our implementation, for a given threshold �, we calculate forgery 
evidence 𝐸 for each block with the following rule:

 if 𝑆<� then
    𝐸=1.0
 else if 𝑆<2� then
    𝐸=0.5
 else
    𝐸=0.0

5.	 Create the forgery mask representing forgery evidence by 
assigning a grayscale level to each block. In our implementation a 
black pixel means definitely edited (𝐸=1.0), a white pixel unedited 
(𝐸=0.0), and a gray pixel that there is doubt (𝐸=0.5). 

Fig. 1(d) and Fig. 3 are examples of the result of applying this 
algorithm. Note that in our implementation the forgery mask uses 3 
gray levels to visually show the forgery evidence for each block. It is 
always possible to increase the number of gray levels, but we believe 
that, in general, it is difficult for the user to visually interpret more than 
3 levels.

V.	 Validation Methodology

This section demonstrates and assesses the proposed filter with 
different forgery techniques. For this purpose, we have surveyed 
the ability of the tool to detect intentions according to the purposes 
described in Section III.B. In addition, we are adding the sensibility 
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Se and specificity Sp to the figure of each experiment. Due to space 
limitations in this section we only show a representative experiment 
of each type of analyzed forgery. All reported experiments have been 
performed with grayscale images. In the case of RGB images, the 
described procedure can be repeated in each channel of the JPEG 
image.

A.	Detection of Brush Editing
For the reported experiments we have used Adobe Photoshop and 

done our best to create semantically realistic forgeries without sharp 
borders or any other forgery sign. We have saved the forged images 
with the default quality level of Adobe Photoshop (Q=12), assuming 
that this default value is the more likely to be used by a forger. The 
figure of each experiment indicates a threshold T manually chosen for 
the interactive forgery mask.

1)	Experiment 1: Added Caption
The first experiment was made by adding a caption with perspective 

and blended border to the original image in Fig. 2(a). The forged image 
is shown in Fig. 2(b). Fig. 2(c) shows the forgery mask that the filter 
produces with threshold T=20 on the original image.

Fig. 4. Second experiment (brush painting).

The forgery mask in Fig. 2(c) does not indicate signs of forgery 
in any block (Se = 0/0, Sp = 1.0). Fig. 2(d) shows the forgery mask 
with T = 20 on the forged image. The signs of forgery are evident, 
and a human can easily detect the semantic intention. However, the 
objective metric is reporting relatively low sensibility Se = 0.5622, i.e., 
the proportion of forged blocks that are correctly identified as such is 
56.22%. Fig. 3 shows the result of the analysis of the same image with 
three different threshold values.

2)	Experiment 2: Brush Painting
For the second experiment in Fig. 4 we have used an 80% solid 

brush to turn the broken lines into a solid line. Note that the forgery 
mask in Fig. 4 correctly detects the edited blocks without leaving doubt 
about the forger's intention. In addition, the forgery mask reaches a 
high objective detection score: Se = 0.7794, Sp = 0.9997.

B.	Detection of Other Forgeries
Our experiments have revealed promising results with the detection 

of other types of forgeries, although without reaching the same level 
of precision. Therefore, we are demonstrating below the results that we 
are obtaining with these other types of forgeries.

1)	Experiment 3: Copy-move (Cloning)
The third experiment is for copy-move forgery. Fig. 5(b) shows a 

copy-moved cat from the original photo in Fig. 5(a). The forgery mask 
gives some evidence of forgery, but mainly detects forgery in the edges 
of the forged region. Note that while the forgery mask enables us to 
perceive the forgery, the objective metric indicates a very low detection 
rate Se = 0.0319.

2)	Experiment 4: Splicing (Composite)
The fourth experiment is for image splicing. In Fig. 6(b) a duck 

has been added to the lake. The forgery mask in Fig. 6(c) shows some 
sign of editing in the original image. We have downloaded the original 
lake image from the Internet, so we do not have access to the original 
photo. However, we think that the vegetation of the lower right corner 
has been edited (possibly with a contrast enhancement filter). Also the 
shadow over the water seems to have been artificially generated. 

Regarding the forgery mask in Fig. 6(d), it gives some evidence of 
forgery, mainly in the edges of the spliced region.

Fig. 5. Third experiment (copy-move).

Fig. 6. Fourth experiment (splicing). 
Original image source: http://www.northamericatouring.com/images/10

3)	Experiment 5: Blurring
For the fifth experiment we have spliced a bottle image in Fig. 7(b) 

obtaining the forgery mask in Fig. 7(c), which has traces of forgery on 
the edges. Then we have applied a Gaussian Blur filter with radius 3 to 
the tampered image in Fig. 7(b), and then recalculated the forgery mask 
in Fig. 7(d). These results show that our method loses it effectiveness 
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when the forger applies a blurring filter to the edited image.

VI.	Conclusions and Future Work

We have observed that the recompression of an edited image block 
leaves a significant amount of undiscarded high frequency coefficients, 
and we have identified that the compressor is the responsible for it. 
In particular, this effect occurs because the first compression of the 
original JPEG image removes a large portion of these coefficients, 
and so the compressor is not as greedy for high coefficients when 
recompressing. The effect is more noticeable when the forger saves 
the image in a lossless format, but it is enough if the forger saves the 
image in a lossy format, as is the case in the reported experiments. The 
experiments also show that this effect is more prominent with brush-
edited images, but is also able to detect other forgeries.

Fig. 7. Fifth experiment (splicing and blurring).

The experiments also reveal that the clustering of potentially 
modified blocks in semantically noticeable areas (intentions) has 
two benefits. 1) It makes the subjective human evaluation best 
determine forged areas that with a classical objective classification 
rate. For example, the forgery mask in the traffic infraction photo in 
Fig. 4 serves to provide enough evidence to identify an intentionally 
tampered image.  2) The interactive forgery mask (see Fig. 3) eases 
the determination of a suitable threshold with the help of an human 
operator, compared to using an optimal automatic threshold search 
algorithm (e.g., [54]).

The major limitation of our method is that the forger can easily erase 
the effect that we search for by blurring the edited region. This means 
that to detect blurred edited areas, our method should be combined 
with other methods, such as [18][59].

A.	Future Work
The first pending future work is to assess and compare intention 

recognition in alternative state of the art methods. The second future 
work is the execution of the implemented method with a standard 
forgery image database, such as [60][61].
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