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Abstract

In this paper, a robust adaptive fuzzy neural network sliding mode (AFNNSM) control design is proposed to 
maximize the captured energy for a variable speed wind turbine and to minimize the efforts of the drive shaft. 
Fuzzy neural network (FNN) is used to improve the mathematical system model, by the prediction of model 
unknown function, which is used by the Sliding mode control approach (SMC) and enables a lower switching 
gain to be used despite the presence of large uncertainties. As a result, the used robust control action did not 
exhibit any chattering behavior. This FNN is trained on-line using the backpropagation algorithm (BP). The 
particle swarm optimization (PSO) algorithm is used in this study to optimize the learning rate of BP algorithm 
in order to improve the network performance in term of the speed of convergence. The stability is shown 
by the Lyapunov theory and the trajectory tracking errors converge to zero without any oscillatory behavior. 
Simulations illustrate the effectiveness of the designed method.
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I.	Introduction

Wind energy is an abundant renewable source of new electrical 
generation capacity in the  world, and it is exploited by 

converting the kinetic energy of moving air mass into electricity; 
therefore, it is necessary to introduce tools to make these installations 
more profitable [1]. Practically, there are two main types of horizontal 
axis wind turbines: fixed speed and variable speed [2]. In this study, 
we consider the case of variable speed, due to its great ability in the 
extraction of energy. In addition to that, variable speed system is more 
complex and requires an efficient control strategy [3]. Several studies 
have been devoted to the control of the aeroturbine mechanical as well 
as the electrical components. This work is devoted to the mechanical 
part (aeroturbine), with the main objective of designing a controller in 
order to maximize the energy captured from the wind and minimize the 
stress on the drive train shafts that takes into consideration the nonlinear 
nature of the system behavior and the flexibility of the drive-train shaft. 
The proposed control structure also overcomes the drawbacks of some 
existing control methods. 

The sliding mode control [4-7], is widely used in the control of a 
variable speed wind turbine. This is due to its property of robustness 
with respect to uncertainties and disturbances [8],[9]. The chattering 
behavior is especially the main problem in the design of SMC. 

One possible method to solve this problem is the boundary layer 
approach [6]. This technique has given good results when the system 
uncertainties are small. However, when these uncertainties are large, a 
high gain is needed and higher amplitude of chattering is produced.  In 
order to solve this problem, we proceed to use FNN for the estimation 
of the unknown model function so that the system uncertainties can be 
kept small and hence enable a lower switching gain to be used.  The 
designed method is a combination of traditional SMC and FNN with 
online adaptation of the parameters.

Intelligent systems such as fuzzy systems and neural networks are 
being used successfully in an increasing number of application areas 
[10]-[14]-[23]. Fuzzy neural networks (FNNs) have the low-level 
learning and computation power of neural networks, and the high-
level human-like thinking and reasoning of fuzzy theory. The proposed 
control consists of the so called equivalent control added with robust 
control term, the FNN predicted unknown terms are incorporated in the 
equivalent control component, thus enable the robust component to be 
used with a small gain which is responsible to compensate the network 
errors prediction. The FNN is trained on-line using the backpropagation 
algorithm (BP). The learning rate is one of the parameters of BP 
algorithm which have a significant influence on results; learning rate 
which is too small or too large may not be favourable for convergence. 
Particle swarm optimization (PSO) algorithm is used in this work to 
optimize this parameter in order to improve the training speed.

This study is organized as follows. The next section presents the 
wind turbine modelling. Section 3 shows the design of the proposed 
adaptive fuzzy neural network sliding mode control. In Section 4, 
simulation results are provided to demonstrate the robust control 
performance of the proposed (AFNNSM) control. Finally, in section 5 
a concluding remark is given.
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II.	 Wind Turbine Modelization

Wind energy across a surface vA  depends on the cube of the wind 
speed v , and the density of the air ρ . This energy is given by:

3

2

1
vvAPv ρ=

	 (1)

where:

2RAv π= 	  (2)

R  is the radius of the rotor. A variable speed wind turbine is 
composed of aeroturbine, a gearbox, and a generator. The aerodynamic 
power captured by the rotor is given as follows:

P R C va p= ( )1

2

2 3ρπ λ β,
	 (3)

Where pC  is the power coefficient, β  is the pitch angle and the 
tip-speed ratio, λ , is given as follows:

v

Rrω
λ =

	 (4)

With rω  is the rotor speed. By using the relationship:

ara TP ω= 	 (5)

The aerodynamic torque expression is:

 	 (6)

Where:

( ) ( )
λ
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,
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q

C
C = 	 (7)

( )βλ,qC  is the torque coefficient.
In the literature, the wind turbine is presented by the modelling of 

the mechanical part [15]-[17], or by that of the electrical part [18], [19]. 
In this paper, we are interested in the modelling of the mechanical part 
of the variable speed wind turbine, which is presented by a two-mass 
model that is shown in Fig. 1. 

The dynamics of the rotor is characterized by a differential equation 
of the first order:

	 (8)

rJ and rK  are respectively the rotor inertia and the rotor friction 
coefficient.

The low-speed shaft torque  resulting effects of friction and 
torque generated by the differences between the rotor angular velocity 

rω  and that of the output shaft  (see Fig. 1): 

	 (9)

and  are respectively the shaft stiffness coefficient and the 
shaft damping coefficient.   

rθ  and 
 
are respectively the rotor side angular deviation and the 

gearbox side angular deviation.

The relationship between the high-speed shaft torque  and the 

generator electromagnetic torque  is given by:

	 (10)

gJ , gω  and gK  are respectively the generator inertia, the 
generator speed and the generator friction coefficient.  Let’s assume an 
ideal gearbox with transmission ratio gn , we get:

	 (11)

gθ  
is the generator side angular deviation. 

Fig. 1. Two-mass model of wind turbine.

Replacing the time derivative of  from (9) and using (10) and 
(11) we get the following dynamic system model (12) : 

Where:
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The nonlinear character of this system is due to the aerodynamic 
torque as follows:

	 (12)

This depends on a strongly nonlinear way, the rotor speed rω , the 

blade pitch angle β  and the wind speed v  which is a not controllable 
input, random and strongly fluctuating. 

III.	Design of The Fuzzy Neural Network Sliding Mode 
Control 

The main control objective is to maximize the captured wind energy 
and minimize the efforts of drive train shafts. The power coefficient 

curve ( )βλ,pC  has a unique maximum which corresponds to the 
optimal wind energy [20]:

( )
optpoptoptp CC =βλ ,

	 (13)

The rotor, thus, provides maximum aerodynamic power, only to the 

tip-speed optλ :

v

R
optr

opt

ω
λ =

	 (14)

To maximize the captured energy of the wind, the variables λ  
and β  must be maintained at their optimal values in order to ensure 
maximum value of pC . So, the blade pitch angle is fixed at its optimal 
value optβ . The tip-speed λ  depends on both of the wind speed v  
and the rotor speed rω .  As the wind speed is not a controllable input, 
the rotor speed rω  must be adjusted by  (As seen in Fig. 2), to 
track the optimal reference given by:

v
R
opt

ropt

λ
ω =

	 (15)

Fig. 2. Basic configuration of wind turbine system.

A.	Controller Design 
Let define , rx ω=1  and gx ω=3 , the dynamic system 

model described by (12) can be rewritten in the state space as follows:

	 (16)

Ru ∈  and Ry ∈  are respectively the input and the output of the 
system,  is the state vector of the system which 
is assumed to be available for measurement, and ( 321 ,, xxxf  is the 
nominal representation of the system given as:

	 (17)

 represents the unknown model part of the system (uncertainties 
and external disturbances) and  is known constant.

In the following, the tracking error is defined as:

optrre ωω −=
	 (18)

The relative degree of the system (16) is 2=r . 
The sliding variable can be defined as:

( ) ( )topttopt xxeeS ωγωγ −+−=+= 12 

	 (19)

Where γ  is a positive constant. 

Differentiating S  with respect to time, we have: 

	 (20)

where the function:

( ) ( ) ( ) ( )tdxxxxftxF topttopt ++−+= ωγωγ 2321 ,,,
 	 (21)

The following condition (22) must be satisfied [6] to guarantee the 
existence of sliding mode in finite time:

SSS η−< 	 (22)

Where η  is a small positive constant. The control law that satisfies 
Eq. (20) is given by:

	 (23)

Where , with )txF ,ˆ  is the Fuzzy neural 
 
network prediction of smooth unknown nonlinear function F , given 
in the next section.  The additive control is:
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Where (.)sat  is the saturation function given by: 

	 (25)

L is the boundary layer thickness and α  is chosen according to the 
following theorem.

The fuzzy neural network prediction error is denoted:

FFF ε=− ˆ 	 (26)

With *
FF εε <  and *

Fε  is the upper bound of the network error 
prediction assumed known.

The block diagram of the AFNNSM system is depicted in Fig. 3.

Fig. 3. Block diagram of the proposed AFNNSM control wind turbine.

Theorem: Consider the system described by (16) in the presence of 
large uncertainties. If the system control is designed as:

	 (27)

Where , with ( )txF ,ˆ   is the output of the proposed 

fuzzy neural  network, αηε <+*
F ; the trajectory tracking errors 

will converge to zero in finite time.
Proof: Consider the candidate Lyapunov function:

By replacing the expression of u  given in the theorem we have: 

( ) ( )( ))(,ˆ, SsattxFtxFSV α−−=

)(

)()(
* SSsatS

SSsatFSSSsatFS
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By choosing αηε <+*
F  we have: For any 0>L , if LS > , 
)()( SsignSsat =  the function . However, 

in a small L-vicinity of the origin [6], 
L

S
Ssat =)(  is continuous, the 

system trajectories are confined to a boundary layer of sliding mode 
manifold .0=S .

B.	Fuzzy Neural Network Representation
In this paper, we consider a FNN with five-layered of adjustable 

weights (Fig. 4). The { } 2,1=iix  are input variables, ),(ˆˆ txF ξ=  is  
the output variable. Fig. 4 shows the structure of the FNN, which 
is comprised of the input, the membership, the rule, the normalized 
and the output layers. To give a clear understanding of the signal 
propagation and mathematical function in each layer, the following 
section describes FNN functions layer by layer.

Fig. 4. The architecture of the proposed fuzzy neural network for the prediction 
of uncertain part.

Layer 1: This layer, which corresponds to one input variable

)2,1( =kxk , only transmits input values to the next layer directly.
Layer 2: In this layer, each node performs a membership function 

and acts as a unit of memory. The Gaussian function is adopted as the 
membership function. For the kth  input, the corresponding net input 
and output of the lth  node can be expressed as:
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where l
kc  and l

kσ ; Ml ,,2,1 =  are the mean and standard 
deviation of the Gaussian function of the lth  partition for the kth  
input variable kx  , respectively, and M is the total number of fuzzy 
rules. 

Layer 3: This layer represents one fuzzy logic rule and performs 
precondition matching of a rule.The output of a rule node in this layer 
is calculated by the product operation as follows.

)()(
2

1
k

k

l
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	 (29)

Layer 4: In this layer, each of these firing strengths of the rules 
is compared with the sum of all the firing strengths. Therefore, the 
normalized firing strengths are computed in this layer as,

∑
=
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	 (30)

Layer 5: This layer (or output layer) calculates the summation of its 
input values from the previous. 
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The aim of the learning algorithm is to adjust the weights of 
lwς̂ , 

lcς  and 
l
ςσ .The on-line learning algorithm is a gradient descent (GD) 

search algorithm in the space of network parameters [21]. The essence 
of (GD) consists of iteratively adjusting the weights the direction 
opposite to the gradient of error, so as to reduce the discrepancy 
according to:

lFwl l
w φεη= 	 (31)

Where l
ywη  is the leaning rate for l

yw  

The updated laws of 
lcς  and l

ςσ  also can be obtained by the gradient 
decent search algorithm:
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 Where l
kcη  and l

kσ
η  are the learning-rate parameters of the mean 

and the standard deviation of the Gaussian functions.

C.	Particle Swarm Optimization Algorithm 
The objective is to optimize the learning rate 

lwη  by the PSO 
algorithm.

In PSO, m particles fly through an n-dimensional search space. 
For each particle i, there are two vectors: the velocity vector

 and the position vector ( )niii ixxxX ,...,, 21= . 
 Similar to bird socking and fishes schooling, the particles are updated 

according to their previous best position  and 

the whole swarm’s previous best position . This 

means that particle i adjusts its velocity iV  and position iX  in each 
generation according to the equations bellow [22]: 

	 (32)

	 (33)

Where nd ,...,2,1= ; 21, cc  are the acceleration coefficients 
with positive values, which we take as: 11 =c  and  22 =c  in this 
paper; )1rand , ( )2rand  are random numbers between 0 and 1. The 
new velocity and position for each particle are calculated using the 
equations (32) and (33) based on its velocity , best position  
and the swarm’s best position . 

In order to calculate the optimized parameter of learning rate lwη
given in equation (29), the PSO is used on-line to minimize the neural 
network prediction error. 

We define the quadratic errors  as: 
The objective function f  to be minimized is chosen as the norm of 

the quadratic error:  with  the vector that contains 
all errors . 

The PSO algorithm tests the search space using m particles 

according to (30) and (31). Each particle i moves in search space and 
stores its best position , then, it compares all positions to finally 
take out the chosen optimumk −η  that gives the minimum value of the 
objective function f .

IV.	Simulation Results

Different simulation cases are considered for the case of a two-mass 
model of the wind turbine with:
•	 Presence of constant additive control disturbance d  of 10 , 
•	 Presence of an additive measurement noise on gω , with a SNR of 

approximatively 7 .   
•	 A wind speed profile of 7 m/s means value.

The two-mass model parameters are presented below: 

Three membership functions have been used for each of the two 
inputs of the FNN. The associated fuzzy sets with Gaussian membership 
function for each input signal, have initial input for the mean and the 
standard deviation:

21.9693]  1.2640    [-6.4470c1 =

2.1675]0.0241    [0.0043 * 0051.0e1 +=σ

30.8045]-      275.7842- [-130.1245c2 =

4.1794]   0.0261    [0.0140* 0051.0e2 +=σ

The initial output weights :

118.3859] 119.7829  10.9070- [ −=w , being the initial 
weights, which are obtained hors-line identification system.

Fig. 5 presents the wind speed profile used in this study. Fig. 6 
shows the estimation error for the predicting function F. 

Fig. 5. Wind speed profile of 7 m/s mean value.
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Fig. 5 is proposed for an average speed, it was considered the case 
where the wind speed is highly variable and the case where the wind 
speed does not change rapidly. 

Fig. 6. Error estimation of the predicting function F.

Fig. 7. Rotor speed with α = 1.2.

To gain a large enough alpha = 1.2 we see the output controlled 
by the standard sliding mode converges slowly. However that 
commissioned by the proposed method NNSMC converges rapidly to 
the desired output

Fig. 8. Electromagnetic torque with α = 1.2.

Fig. 8 shows the actual and optimal trajectory of the rotor speed, we 
find that the best tracking performance is obtained when applying the 
RFNNSM.

Fig. 9. Rotor speed with α = 0.9.

For comparison we have considered in the control law, for both 
AFNNSM and traditional SMC controllers, the same gain α = 1.2(see 
the obtained outputs in Fig. 7) and α = 0.9 (see the obtained outputs 
in Fig. 9). From these figures, it can be seen that, the best tracking 
performance is obtained when the proposed AFNNSM controller 
is applied. The corresponding control signals are given in Fig. 8 for  
α = 1.2, and in Fig. 10 for α = 0.8. Fig. 9 shows that the standard SMC 
controller totally failed to control the system.

Fig. 10. Electromagnetic torque with α = 0.9.

By using the a gain aloha = 0.9, Fig. 10 shows the   optimal 
trajectory of the rotor speed, otherwise we  find that the best tracking 
performance is obtained when the RFNNSM is  applying.

Table 1 contains both the gain used in this study as well as the 
number of the iteration in order to find the global optimum particle of 
learning rate, so we can remark that the global optimum is found from 
the 21st iteration.



- 94 -

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 4, Nº6

TABLE I. The Global Optimum Particle of Learning Rate

Iteration number lwη  for α = 0.9 lwη  for α = 1.2

1 0.7395 0.4492

2 0.7100 0.4665

3 0.6821 0.4804

4 0.6745 0.4940

5 0.6745 0.5156

6 0.6794 0.5264

7 0.6897 0.5230

8 0.6997 0.5142

9 0.7035 0.5092

10 0.7011 0.5102

11 0.6967 0.5113

12 0.6953 0.5119

13 0.6949 0.5121

14 0.6954 0.5139

15 0.6956 0.5145

16 0.6968 0.5147

17 0.6975 0.5143

18 0.6976 0.5138

19 0.6975 0.5136

20 0.6972 0.5137

21 0.6971 0.5138

22 0.6971 0.5138

23 0.6972 0.5138

24 0.6972 0.5138

25 0.6972 0.5138

26 0.6972 0.5138

27 0.6972 0.5138

28 0.6972 0.5138

29 0.6972 0.5138

30 0.6972 0.5138

V.	 Conclusion

This paper addressed the robust optimal reference tracking 
problem for a variable speed wind turbine. The designed method is 
a combination of traditional sliding mode control approach and fuzzy 
neural network. The later is employed to approximate the unknown 
nonlinear model function with online adaptation of parameters via BP 
learning algorithm. This provides a better description of the plant, and 
hence enables a lower switching gain to be used despite the presence of 
large uncertainties. The particle swarm optimization (PSO) algorithm 
is used to optimize the learning rate of BP algorithm in order to get 
faster convergence. The comparison with the traditional sliding mode 
control has been realized and simulation results have shown a good 
performance of the proposed method to track the optimal reference 
without any chattering problem.
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