
- 33 -

* Corresponding author.
E-mail addresses: pallavibagga315@gmail.com (Pallavi Bagga),
rahulhans@gmail.com (Rahul Hans), vipuls85@gmail.com
(Vipul Sharma).

I. Introduction

A collection of executable programs known as a Mobile agent
(MA) migrates from one execution platform to another in a

heterogeneous network to perform various tasks on the behalf of its
user [1]. The employment of mobile agents introduce many benefits
to the distributed computing including network load reduction,
overcoming network latency, executing dynamically, asynchronously
and autonomously [2]. In many respects, a mobile agent is analogous
to a computer virus, since it travels from one computer to another and
it utilizes computer resources or it creates clones of itself to achieve its
goals. The major difference between both is the usefulness of mobile
agent and its friendly behavior. However, the mobile agents while
moving in the network, brings with them the fear of Trojan horses,
viruses and other invasive means or entities [3]. This is because
the attacks can be occurred when the mobile agent traverses in the
communication channel and there may be some muggers earwigging
the network either to gain some of the information carried by the agent

or information stored in the agent platform (i.e. passive attack) or
mutating that information for their own advantage (i.e. active attack)
[4, 37]. In recent years, numerous researchers have done considerable
studies in order to prevent malicious mobile agents causing any harm
to Mobile Agent Platform (MAP).

Wahbe et al. [11] proposed a Sandboxing technique, which offers
an isolated environment (or a restricted area) for the execution of
suspected mobile agents. This isolation prevents the mobile agent
from accomplishing specific code exercises, for example local file
system interaction, and accessing system properties. Noordende et al.
[12] proposed a Mansion API where the agents execute in a protected
environment like Sandboxing technique. Additionally, the agents are
authenticated based on the trust level between agent owners as well as
platform owners. Marikkannu et al. [13] suggested a Dual checkpoint
mechanism involving two gates, inner and outer for the mobile agent
verification consisting of Digital signatures as well as checksum ensuring
the validity of a mobile agent. Alfalayleh et al. [14] recommended a Code
Signing mechanism in which the sign of originator on code is checked by
agent platform for verifying that it has not been modified. Lee et al. [15]
proposed a technique in which the agent byte code compiles the proof
carried by mobile agent with the platform’s security policy. Upon receipt,
the agent platform employs a proof checker for the purpose of checking
and verifying the security proof of incoming agent byte code. Ordille [16]
proposed the use of Path history that enables the platform either to run

N-grams Based Supervised Machine Learning
Model for Mobile Agent Platform Protection against
Unknown Malicious Mobile Agents
Pallavi Bagga1, Rahul Hans2, Vipul Sharma3 *

1 Assistant Professor, Department of Computer Science and Engineering, Lovely Professional University, Phagwara, Punjab (India)
2 Assistant Professor, Department of Computer Science and Engineering, DAV University, Jalandhar,
Punjab (India)
3 Assistant Professor, Department of Computer Science and Engineering, Jaypee University of Information
Technology, Solan (India)

Received 8 February 2017 | Accepted 20 March 2017 | Published 30 March 2017

Keywords

Classification, Malicious
Mobile Agents, Nested
Cross Validation, N-gram
Feature Extraction.

Abstract

From many past years, the detection of unknown malicious mobile agents before they invade the Mobile Agent
Platform has been the subject of much challenging activity. The ever-growing threat of malicious agents calls
for techniques for automated malicious agent detection. In this context, the machine learning (ML) methods
are acknowledged more effective than the Signature-based and Behavior-based detection methods. Therefore,
in this paper, the prime contribution has been made to detect the unknown malicious mobile agents based on
n-gram features and supervised ML approach, which has not been done so far in the sphere of the Mobile Agents
System (MAS) security. To carry out the study, the n-grams ranging from 3 to 9 are extracted from a dataset
containing 40 malicious and 40 non-malicious mobile agents. Subsequently, the classification is performed
using different classifiers. A nested 5-fold cross validation scheme is employed in order to avoid the biasing in
the selection of optimal parameters of classifier. The observations of extensive experiments demonstrate that the
work done in this paper is suitable for the task of unknown malicious mobile agent detection in a Mobile Agent
Environment, and also adds the ML in the interest list of researchers dealing with MAS security.

DOI: 10.9781/ijimai.2017.03.013

Regular Issue

- 34 -

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 4, Nº6

the agent or discard it; and to decide the trust level, privileges, resources
and services that should be acknowledged to the agent if it is permitted
to. Path History contains the identities of the current platform as well as
the next platform in the itinerary. Cao et al. [17] proposed the use of agent
path history information on the role activation and permission activation.
The roles activated for an agent will be filtered by path patterns whereas
the permissions for roles will be finely tuned by a set of host patches.
Furthermore, Idrissi et al. [34, 36] proposed an authentication process
based on Diffie–Hellman Key Exchange integrated with digital signature
DSA to prevent the vulnerabilities arisen due to the unavailability of
authentication, which makes it well resistant to the Man in the Middle
attack; as well as another mobile agent platform security technique based
on Elliptic Curve Cryptography (ECC) and dynamic role assignments
using Role Based Access Control (RBAC) policy.

Venkatesan et al. [18] proposed Malicious Identification Police (MIP)
that uses Attack Identification Scanner (AIS) to scan the incoming agent
byte code in order to diagnose the maliciousness in it. In Policy Based
MIP proposed by Venkatesan et al. [19], the privileges of an agent are
also checked in addition to AIS [18], to know if it wants to do more than
the privileges granted to it. Otherwise, Intelligent AIS (IAIS) decides
to start the lexical analyzer by its own decision, where agent byte code
is turned into tokens and diagnose the non-match tokens by comparing
with tokens present in the Knowledge Base (KB). Afterwards, unknown
tokens are executed and tested in an isolated environment to check for
their malicious intentions and updates the KB containing malicious codes,
with the newly diagnosed (if any) vicious code. In order to fend off this
waiting time of the agent, Venkatesan et al. [20] further included the agent
clones to handle multiple incoming agents simultaneously. Additionally,
the pipelining concept was introduced by separating the operations i.e.
the tasks of scanning, pattern extracting and detecting unknown codes
are performed by different agents, which ultimately reduces the time
complexity. Clearly, many researchers have been buckled down in the
field of MAP security. However, the unknown malicious mobile agent
detection before invading the MAP is still a challenge and a concern
owing to the growth of malicious agents in recent years.

Nowadays, malicious code detection techniques employ one of
these two approaches: Signature-based or Behavior-based. Signature-
based methods involve the identification of distinctive tokens in the
binary code [5]; whereas Behavior-based methods rely on the rules
created by the experts that define the malicious behavior or non-
malicious behavior of code [6]. While being very precise, signature-
based methods are unable to diagnose previously unknown malicious
codes whereas behavior-based methods can only detect the presence
of malicious content after the code has been executed [7]. Realizing
the necessity of a detection method for the unknown malicious code,
in recent years, the machine learning algorithms or Classification
Algorithms were magnificently employed which was highly inspired
by the Text categorization problem [8]-[9], [23]-[25].

In this paper, an attempt has been made for detecting unknown
malicious mobile agents using Machine Learning algorithms, which
represents a novel contribution in the field of MAP security as per the
survey done by the authors. This attempt addresses several facets of
the detection challenge: mobile agent representation, classification
and performance evaluation. The present work is also influenced by
the objective to achieve very high classification accuracy rate while
maintaining the low false negatives (i.e. misclassifying malicious
agent as non-malicious). Though there are various representations
of executable files: “Portable Executable (PE)”, “Byte Sequence
n-grams”, and “plain-text string features” [9]; in this paper, n-gram
representation of the agent executable is considered to be used as
features for the classification process, since an extensive n-grams
analysis is also one of the major focuses of this paper. N-grams are
overlapping substrings obtained in a sliding window fashion [10].

The extracted n-gram features are then fed into four commonly used
Classification algorithms: Naive Bayesian, SMO, IBK, J48 Decision
Tree, for discriminating between two categories of agent classification
(malicious mobile agent and non-malicious mobile agent), which
is supported by WEKA tool [21]. The extensive experiments are
performed on a collection of 80 files, in which half of the total files
are malicious. The experimental results are evaluated based on
standard performance evaluation measures such as “Sensitivity Rate”,
“Specificity Rate”, “Positive Predictive Value”, “Negative Predictive
Value”, “F-score”, “Receiver Operating Characteristics – Area Under
Curve”, “Miss Rate”, “Fall out” and “Accuracy Rate”, while employing
the 5-fold nested cross validation scheme.

II. Material and Methods

A. Dataset Used
To the best of author’s knowledge, there is no standard data set

available for the detection of malicious mobile agents. Therefore, the
benchmark dataset of malicious files known as CSDMC201011 API
sequence corpus, containing Windows API/System-Call trace files,
is selected for the purpose of classification. The dataset contains
388 files involving 320 malware traces as well as 68 benign traces
(considered as non-malicious in this paper). For the training dataset,
only 40 malicious files and 40 non-malicious files are collected after
random sampling (equal number for malicious and non-malicious files
is considered in order to avoid the Class-imbalance problem). This
standard dataset is preferable for the proposed approach since agent
byte code can be viewed as a sequence of agent API function calls. This
assumption is made on account of the previous studies of extracting
API call sequences from byte codes [31],[32].

B. Performance Evaluation Measures
To evaluate the classification performance of detecting malicious

mobile agents successfully, it is necessary to identify appropriate
performance metrics. The measures derived from the Confusion
Matrix (Figure 1) to calculate and be applied to classifier evaluation
are described in Table I [26]. The confusion matrix indicates the correct
and incorrect classification outcomes predicted by the classifier when
compared with the actual classification outcome. The measures other
than Accuracy Rate and Misclassification Rate are considered to figure
out whether the present framework holds good for the classification of
either malicious mobile agents or non-malicious mobile agents or both.

PREDICTION OUTCOME

A
C

TU
A

L
VA

LU
E

N
on

-M
al

ic
io

us
M

al
ic

io
us

Malicious Non-Malicious

False
Negative

True
Negative

False
Positive

True
Positive

Fig. 1. Confusion Matrix to evaluate the performance of classifier.

• True Positives (TP): Number of malicious agents classified as
malicious.

• True Negatives (TN): Number of non-malicious agents classified
as non-malicious.

• False Negatives (FN): Number of malicious agents classified as
non-malicious.

1 http://www.csmining.org/index.php/malicious-software-datasets-.html

- 35 -

Regular Issue

• False Positives (FP): Number of non-malicious agents classified
as malicious.

C. Methodology
The major objectives of present methodology are as follows:

• To automate the detection of malicious mobile agents before they
conquer the Mobile Agent Platform.

• To evaluate the performance of n-gram representation of mobile
agent.

• To use Machine Learning algorithms for the task of unknown
malicious mobile agent detection.

• To scrutinize the performance of various classifiers for classifying
the mobile agents.

The methodology used in this paper is shown in Figure 2. It mainly
consists of two consecutive steps: n-gram feature extraction of
mobile agent and classification. These steps are described in detail in
subsequent sub-sections.

1. Mobile Agent Representation using Byte n-grams – Data
Preparation

A standard n-gram analysis is used to extract features from the
malicious and non-malicious files. This method is purely machine-
learning based method and exploits Natural Language Processing (NLP)
also [30]. The n-grams are extracted in a sliding-window fashion, where
a window of fixed length (n) slides one byte at a time. In general, n-grams
are all substrings of a larger string with length “n” [24]. In present context,
byte n-grams are viewed as API call based features. Many researches in
recent years have released the importance of n-gram based methods in
malware detection, since this technique of extracting features is simple
and easy to implement. Each n-gram is analogous to a word or a term
of a text document in the Text Categorization problem. For instance,
there are eight 3-grams in the text “abc_dabc_e”: “abc”, “bc_”, “c_d”,
“_da”, “dab”, “abc”, “bc_” and “c_e”. For the preparation of data, the
unique n-grams are identified in all the mobile agent files and are merged
together. In above example, there are only six distinct n-grams i.e. “abc”,

TABLE I. Performance Evaluation Measures for Classification of Malicious Mobile Agents

Metric Definition Formula Expected Value

Sensitivity Also known as True Positive Rate (TPR) or Recall. It evaluates the
ability of a classifier to correctly identify an agent as malicious.

 Maximum

Specificity Also known as True Negative Rate (TNR). It evaluates the ability of
a classifier to correctly identify an agent as non-malicious. Maximum

Positive Predictive
Value (PPV)

Also known as Precision. It is the percentage of agents classified as
malicious which are truly malicious.

 Maximum

Negative Predictive
Value (NPV)

It is the percentage of agents classified as non-malicious which are
truly non-malicious. Maximum

Miss Rate Also known as False Negative Rate (FNR). It evaluates the
proportion of malicious agents that are classified as non-malicious.

 Minimum

Fall out Also known as False Positive Rate (FPR). It evaluates the proportion
of non-malicious agents that are classified as malicious.

 Minimum

ROC-AUC The curve is drawn by plotting the TPR against the FPR at different
threshold settings.

Between 0.9

and 1

Accuracy It evaluates the ability of a classifier in classifying the whole dataset. Maximum

F-measure
Also known as F-score. It is an evaluation of classifier’s accuracy,
which combines both the precision as well as the recall as a
harmonic mean.

 Maximum

Note: NA means Not Applicable

Fig. 2. Present Methodology for Malicious Mobile Agent Detection.

- 36 -

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 4, Nº6

“bc_, “c_d”, “_da”, “dab”, “c_e”. The procedure of n-gram extraction
repeats for different values of n. To limit the experiments for present
study, the varying n-grams are employed with the value of n ranging
from 3 to 9 only. This is because if the value of n increases, the number
of unique n-gram features also increases. The number of distinct n-grams
extracted from dataset files is 1403, 2236, 3074, 4055, 5137, 6445 and
7727 for 3-gram, 4-gram, 5-gram, 6-gram, 7-gram, 8-gram and 9-gram
respectively.

2. Classification
Since the unknown mobile agent can be classified either malicious

or non-malicious, the Binary Classification is taken into account.
The standard commonly used classification algorithms such as Naïve
Bayesian [22], Instance based Learner [22], Sequential Minimal
Optimization [27]-[29], and J48 Decision Tree [22], are implemented.
These classification algorithms differ in performance within different
domains. In this paper, the best fitted algorithm for the dataset has been
identified by the experimentation as shown in the subsequent section.

i) IBK
IBK is a WEKA implementation of k-Nearest Neighbor (k-
NN). In general, the nearest neighbor classifiers compare a
given test tuple with the identical training tuples. The training
tuples are characterized using n features. Each tuple represents
a point in an n-dimensional space. Hence, all the training
tuples are exemplified in an n-dimensional feature space.
When an unknown tuple is given as an input, a k-NN classifier
explores the feature space for the closest k training tuples to the
unknown tuple [22].

The closeness is defined in terms of Distance Metrics such
as Chebyshev distance, Manhattan distance, and Euclidean
distance. The unknown tuple is labeled with the most common
class among its k-nearest neighbors. The value of k is usually
an odd number to avoid tied votes; however, choosing the value
of k is very analytical. The smaller value of k indicates the
higher influence of noise on the result whereas the larger value
of k makes the classification computationally very expensive.
The pseudo code of IBK is shown in Algorithm 1.

Algorithm 1. IBK classification algorithm
Algorithm IBK(k, X, Y, x)
//Input: k- an integer odd value (number of nearest neighbors),
X- Training data consisting of n tuples, Y- Class Labels of X, x-
Unknown tuple
//Output: Class label of x
1. for i ß 1 to n do
2. compute distance (Xi, x)
3. end for
4. sort the distances in ascending order
5. select the first k points from the sorted list (these are the k
nearest training tuples to unknown tuple)
6. return class label that belongs to the majority of k selected tuples

ii) Naïve Bayesian
This classifier is so called because it relies on the Bayesian
Theorem. Moreover, it is called “Naive”, because it assumes
the independence between every pair of attributes (or features),
which is known as “class conditional independence” [22].
The classifier takes an unknown tuple as an input, for which
the class label is not known, and returns a class label as an
output for which the maximum probability is obtained as per
the probabilistic calculations. This classifier is particular suited
for the higher dimensionality of features. The pseudo code of
Naïve Bayesian is shown in Algorithm 2.

Algorithm 2. Naïve Bayesian classification algorithm

Algorithm naiveBayesian(D,X,m,n,A)
 //Input: D - Training set of tuples and their associated class labels,
n- number of attributes, A - set of attributes (A1,A2,….An), X -
n-dimensional attribute vector (x1,x2,….xn), m – number of classes
 //Output: Class of tuple X
 1. for i ß 1 to m do
 2. calculate the Posterior probability conditioned on X i.e. (|)
using
 Bayes’ theorem

(|) =
)
 (1)

 where in Equation (1),
 P(X) is constant for all classes,

 () =
|
 , where |Ci,D| is the number of training tuples of

Class Ci in D

(|)) (|) (|) (|)
 (2)

 and,in Equation (2), xk refers to the value of attribute Ak for tuple X
3. end for
4. return class label with maximum (|)

iii) J48 Decision Tree
A Decision tree classifies the tuples as per a set of tree-structured
if-then-rules. Each internal node represents a test on an attribute
(or a feature), each branch represents the outcome of test,
whereas each leaf node holds a class label. J48 is a WEKA
implementation of the C4.5 decision tree. It consists of two
steps: the decision tree induction and the tree pruning [22]. The
pseudo code of decision tree algorithm is shown in Algorithm 3.

Algorithm 3. J48 Decision Tree classification algorithm

//Input: D- set of training tuples and their associated class labels,
A- attribute list
//Output: Decision Tree
1. create a node N
2. if all tuples of D belong to same class C, then
3. return N as a leaf node labeled with class C and
terminate.
4. if A is empty, then
5. return N as a leaf node labeled with the most common
class in D
 (Majority Voting)
6. apply Gain Ratio feature selection method to find the best
criterion ‘a’ ∈ A
7. label N with ‘a’
8. for each value j of ‘a’ do
9. grow a branch from N with condition a=j
10. let Dj be the set of tuples in D with a=j
11. if Dj is empty then
12. add a leaf node labeled with most common class
in D to N
13. else add the node returned by decisionTree(Dj, A-a) to N
14. end for
15. return N

iv) SMO
SMO is a WEKA implementation of Support Vector Machine
(SVM). SVM was originated from statistical learning theory
with the objective to find the solution of interested problem
without solving a more difficult problem as an intermediate
step [27]. The statistical learning theory offers a framework
that helps to choose the hyper plane space such that it diligently
symbolizes the underlying function in the target space [28].

- 37 -

Regular Issue

SVM avoids over-fitting to the training dataset.

Given a training set of instance-label pairs (xi, yi), i=1,…
.,N where xi ∈ Rn and y ∈ {1,-1}l, SVM finds the solution
of an optimization problem as shown in Algorithm 4 [29].
The training tuples xi are represented into a higher (possibly
infinite) dimensional space using function ∅. In other words,
the kernel ∅ is used to transform data from input to the feature
space. There are four basic kernels: Linear, Polynomial, Radial
Basis Function (RBF) and Sigmoidal.

Algorithm 4. SMO Optimization Problem

Optimization Problem:
Given Constraints in Equation (3):

q
(∅ ()) ≥ 1 − ξ

h E F i i d i
 and ξ ≥ 0

i (4
 (3)

Minimize the Error Function as mentioned in Equation (4):

∑ ξ (4)

where,
C>0 is the penalty parameter of the error term, and is called
Capacity Constant. The choice of C is made carefully in order to
avoid over-fitting. Larger the C, more the error is penalized.
w is the vector of coefficients.
b is a constant.
ξ represents parameters for handling non-separable data (inputs)
i labels the N training cases
xi represents the independent variables.

III. Results and Discussions

The classification of mobile agent into two categories based on their
n-gram features has been performed on 80 agent files of dataset of API
calls sequence. An extensive setting of parameters is done to optimize
the performance of each classification algorithm (NB, SMO, IBK and
J48), such as “value of k”, “distance measure”, or “nearest neighbor
search algorithm” in IBK, “pruning”, or “confidence factor” in J48
decision tree, “complexity parameter”, or “kernel” in SMO. The nested
five-fold cross validation scheme is performed to obtain unbiased
evaluation results [33]. In nested five-fold cross validation method, the
data is randomly divided into five disjoint folds. The four folds are
used for tuning of classifier parameters (using cross validation scheme)
and then the tuned classifier is validated on left out fold.

This procedure repeats for five times, each time with different
left-out folds. This nesting of cross validation loops avoids so-called
resubstitution-bias [33]. Additionally, the standard parameters such as
Sensitivity, Specificity, ROC, PPV, NPV, FNR, FPR, F-measure and
Accuracy, evaluate the performance results and the results of all iterations
are averaged to get the final outcome. It has been evidenced that the
performance of present work highly depends on the choice of classifier.

The results of various classifiers (NB, SMO, IBK and J48) for different
values of n for n-grams i.e. n=3 to 9 have been investigated and are
presented in Table II. To help with nested cross validation, WEKA tool
has been used to adjust the classifier settings repeatedly in order to get
the results on suitable parameter values. The results demonstrate that IBK
classifier, J48 classifier, SMO classifier and NB classifier gives maximum
accuracy rate of 96.25%, 97.50%, 95.00% and 93.75% respectively (as
shown in Figure 3), while maintaining the miss rate of 2.50%, 2.50%,
5.00% and 7.50% for trigrams, 9-grams, 5-grams to 9-grams and 7-grams
respectively (as depicted in Figure 4) in distinguishing malicious files
from non-malicious. The value for Area under ROC curve is more than
0.92 for each classifier. IBK gives maximum sensitivity of 97.50 % and
specificity of 95.00% for 3-gram features. J48 gives maximum sensitivity
of 97.50 % as well as specificity of 97.50% for 9-gram features as shown

in Figure 5 and Figure 6. Moreover, the highest values of PPV and NPV
(97.50% each) belong to J48 classifier for 9-grams.

TABLE II. Results of Different Classifiers for Different Values of N
in N-Gram

n Classifier Accuracy
Rate (%)

Miss
Rate
(%)

Fall out
(%)

PPV
(%)

NPV
(%)

F-measure
(%)

ROC
area

3

Bayesian 85.00 15.00 15.00 85.00 85.00 85.00 0.94
SMO 92.50 7.50 7.50 92.50 92.50 92.50 0.93
J48 95.00 2.50 7.50 92.86 97.37 95.12 0.94
IBK 96.25 2.50 5.00 95.12 97.44 96.30 0.97

4

Bayesian 87.50 12.50 12.50 87.50 87.50 87.50 0.93
SMO 93.75 5.00 7.50 92.68 94.87 93.83 0.94
J48 93.75 5.00 7.50 92.68 94.87 93.83 0.94
IBK 93.75 5.00 7.50 92.68 94.87 93.83 0.94

5

Bayesian 90.00 12.50 7.50 92.11 88.10 89.74 0.94
SMO 95.00 5.00 5.00 95.00 95.00 95.00 0.95
J48 95.00 2.50 7.50 92.86 97.37 95.12 0.94
IBK 93.75 5.00 7.50 92.68 94.87 93.83 0.93

6

Bayesian 91.25 10.00 7.50 92.31 90.24 91.14 0.95
SMO 95.00 5.00 5.00 95.00 95.00 95.00 0.95
J48 96.25 2.50 5.00 95.12 97.44 96.30 0.95
IBK 92.50 2.50 12.50 88.64 97.22 92.86 0.93

7

Bayesian 93.75 7.50 5.00 94.87 92.68 93.67 0.96
SMO 95.00 5.00 5.00 95.00 95.00 95.00 0.95
J48 95.00 5.00 5.00 95.00 95.00 95.00 0.94
IBK 92.50 2.50 12.50 88.64 97.22 92.86 0.93

8

Bayesian 92.50 7.50 7.50 92.50 92.50 92.50 0.96
SMO 95.00 5.00 5.00 95.00 95.00 95.00 0.95
J48 96.25 2.50 5.00 95.12 97.44 96.30 0.96
IBK 92.50 2.50 12.50 88.64 97.22 92.86 0.94

9

Bayesian 92.50 10.00 5.00 94.74 90.48 92.31 0.97
SMO 95.00 5.00 5.00 95.00 95.00 95.00 0.95
J48 97.50 2.50 2.50 97.50 97.50 97.50 0.97
IBK 92.50 5.00 10.00 90.48 94.74 92.68 0.93

Fig. 3 Graph showing Accuracy Rate of Different Classification Algorithms.

Fig. 4 Graph showing Miss Rate of Different Classification Algorithms.

This means IBK and J48 decision tree are the best in distinguishing
actual malicious agents (positives) and actual non-malicious agents
(negatives) using 3-gram and 9-gram features respectively. The
performance of other classification algorithms reduces with the
increase in number of features.

It is shown in Figure 5 that the sensitivity rate increases up to n=7
using NB classifier and then decreases. Using SMO, the sensitivity rate

- 38 -

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 4, Nº6

increases up to n=4 and then remains the same with further increase in
value of n. Using J48 and IBK classifiers, sensitivity rate is minimum
for n=3, which decreases and then again increases with increase in
value of n. The Figure 6 indicates that the minimum specificity rate
(85.00%) is obtained using NB classifier for 3-grams, which further
increases with the increase in value of n. SMO and J48 classifiers
provide the minimum specificity rate of 92.50%. From 5-gram to
9-grams, specificity is constant with SMO classifier whereas from 6 to
8-grams, IBK increases with increase in value of n.

Fig. 5 Graph showing Sensitivity Rate of Different Classification Algorithms.

Fig. 6 Graph showing Specificity Rate of Different Classification Algorithms.

IV. Conclusions and Future Scope

This paper aims for probing the suitability of machine learning
algorithms for the task of classification of mobile agent either
malicious or non-malicious in a Mobile Agent Environment using
a specific dataset. In particular, n-grams are used as features during
the classification process. Different classification algorithms used
are Naïve Bayesian, Sequential Minimization Optimization, Instance
Based Learner, and J48 Decision Tree. J48 decision tree algorithm
gives higher accuracy rate of 97.50% and miss rate of 2.50% for
9-grams whereas IBK gives higher accuracy rate of 96.25% and
miss rate of 2.50% for 3-grams, as compared to other classification
algorithms. In other words, out of all the classifiers, J48 gives better
result with 7727 features whereas IBK with 1403 features, but J48
increases the computational cost due to large feature space. Therefore,
IBK is declared to be the best classifier. Clearly, the optimistic results
boost the use of present research for MAP protection.

In near future, the work can be extended with the use of more
different classifiers with higher values of n for n-gram features in
order to evaluate the performance of classification task. Moreover,
large number of n-gram features burdens the classification process;

therefore, feature selection methods can be applied in future. The work
can even be done on different datasets, since the classifiers may give
different results on different datasets.

References

[1] A. Aneiba, and S.J. Rees, “Mobile Agents Technology and Mobility”,
in Proceedings of the 5th Annual Postgraduate Symposium on the
Convergence of Telecommunications, Networking and Broadcasting,
2004. pp. 14-20.

[2] D.B. Lange, and M. Oshima, “Seven good reasons for Mobile Agents”,
Communications of the ACM, vol. 42, no. 3, pp. 88-89, 1999.

[3] L.L. Thomsen, and B. Thomsen, “Mobile Agents – The new paradigm in
computing”, ICL- The Systems Journal, vol. 12, pp. 14-40, 1997.

[4] R. Oppliger, “Security issues related to mobile code and agent-based
systems”, Computer Communications, vol. 22, no. 12, pp. 1165-1170,
1999.

[5] D. Venugopal, and G. Hu, “Efficient signature based malware detection
on mobile devices”, Mobile Information Systems, vol. 4, no. 1, pp. 33-49,
2008.

[6] W. Ma, P. Duan, S. Liu, G. Gu, J. Liu, “Shadow attacks: automatically
evading system-call-behavior based malware detection”, Journal in
Computer Virology, vol. 8, no. 1, pp. 1-13, 2012.

[7] R. Moskovitch, C. Feher, N. Tzachar, E. Berger, M. Gitelman, D.
Shlomi, and Y. Elovici, “Unknown Malcode Detection Using OPCODE
Representation”, Intelligence and Security Informatics, vol. 5376, pp. 204-
15, 2008.

[8] A. Shabtai, R. Moskovitch, Y. Elovici, and C. Glezer, “Detection of
malicious code by applying machine learning classifiers on static features:
A state-of-the-art survey”, Information Security Technical Report, vol. 14,
no. 1, pp. 16-29, 2009.

[9] J.Z. Kotler, and M.A. Maloof, “Learning to detect malicious executables
in the wild”, in Proceedings of the tenth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Aug 22, New
York, ACM Press, pp. 470-478, 2004.

[10] S. Jain, and Y.K. Meena, “Byte Level n-Gram Analysis for Malware
Detection”, in Proceedings of the 5th International Conference on
Information Processing, ICIP 2011, Aug 5-7, Banglore, India, Springer
Berlin Heidelberg, pp. 51-59, 2011.

[11] R. Wahbe, S. Lucco, T.E. Anderson, and S.L. Graham, “Efficient Software-
Based Fault Isolation”, in Proceedings of the Fourteenth ACM Symposium
on Operating Systems Principles, SOSP ’93, Dec 5-8, Asheville, North
Carolina, USA, ACM Press, pp. 203-216, 1993.

[12] G. Noordende, F. M. Brazier, and A.S. Tannenbaum, “A security framework
for a mobile agent system”, in Proceedings of the 2nd International
Workshop on Security in Mobile Multiagent Systems, SEMAS 2002,
Bologna, Italy, pp. 43-50, 2002.

[13] P. Marikkannu, and A. Jovin, “A Secure Mobile Agent System against
Tailgating Attacks”, Journal of Computer Science, vol. 7, no. 4, pp. 488-
492, 2011.

[14] M. Alfalayeh, and L. Brankovic L, “An overview of security issues and
techniques in mobile agents”, in Proceedings of the 8th IFIP TC-6 TC-
11 Conference on Communications and Multimedia Security, pp. 59-78,
2005.

[15] P. Lee, and G. Necula, “Research on proof-carrying code for mobile-code
security”, in DARPA workshop on foundations for secure mobile code, pp.
26-28, 1997.

[16] J.J. Ordille, “When agents roam, who can you trust?”, in Proceedings
of the IEEE First Annual conference on Emerging Technologies and
Applications in Communications, pp. 188-191, 1996.

[17] C. Cao, and J. Lu, “Path-history-based access control for mobile agents,”
International Journal of Parallel, Emergent and Distributed Systems, vol.
21, no. 3, pp. 215-225, 2006.

[18] S. Venkatesan, and S. Chellappan, “Protection of mobile agent platform
through Attack Identification Scanner (AIS) by Malicious Identification
Police (MIP)”, in Proceedings of the IEEE First International Conference
on Emerging Trends in Engineering and Technology (ICETET ’08), IEEE,
pp. 1228-1231, 2008.

[19] S. Venkatesan, C. Chellappan, T. Vengattaraman, P. Dhavachelvan,
and Vaish, “Advanced mobile agent security models for code integrity

- 39 -

Regular Issue

and malicious availability check”, Journal of Network and Computer
Applications, vol. 33, no. 6, pp. 661-671, 2010.

[20] S. Venkatesan, R. Baskaran, C. Chellappan, A. Vaish, and P. Dhavachelvan,
“Artificial immune system based mobile agent platform protection,”
Computer Standards & Interfaces, vol. 35, no. 4, pp. 365-373, 2013.

[21] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reuteman, and I.H.
Witten, “The WEKA data mining software: an update”, ACM SIGKDD
Explorations Newsletter, vol. 11, no. 1, pp. 10-18, 2009.

[22] J. Han, “Data mining: concepts and Techniques”, 2000.
[23] D. Gavriluţ, M. Cimpeşu, D. Anton, and L. Ciortuz, “Malware

Detection Using Machine Learning”, in Proceedings of the International
Multiconference on Computer Science and Information Technology, Oct
12, IEEE, pp. 735-741, 2009.

[24] T. Abou-Assaleh, N. Cercone, V. Kešelj, and R. Sweidan, “N-gram-based
detection of new malicious code”, in Proceedings of the IEEE 28th Annual
International Conference on Computer Software and Applications, pp. 41-
42, 2004.

[25] I. Santos, Y.K. Penya, J. Devesa, and P.G. Bringas. “N-grams-based
File Signatures for Malware Detection”, in Proceedings of the 2009
International Conference on Enterprise Information Systems, pp. 317-
320, 2009.

[26] M. Sokolova, and G. Lapalme, “A systematic analysis of performance
measures for classification tasks”, Information Processing & Management,
vol. 45, no. 4, pp. 427-437, 2009.

[27] R. Burbidge, B. Buxton, “An Introduction to Support Vector Machines for
Data Mining”, Keynote Speakers, young OR12, pp. 3-15, 2001.

[28] V. Jakkula, “Tutorial on Support Vector Machine (SVM)”, School of
EECS, Washington State University, 2006.

[29] C.W. Hsu, C.C. Chang, C.J. Lin, “A Practical Guide to Support Vector
Classification”, Technical Report, Department of computer Science,
National Taiwan University, 2003.

[30] C.Y. Suen, “n-Gram Statistics for Natural Language Understanding and
Text Processing”, IEEE Transactions on Pattern Analysis, vol. PAMI-1,
no. 2, pp.164-172, 1979.

[31] T.T. Nguyen, H.V. Pham, P.M. Vu, and T. T. Nguyen, “Learning API
Usages from Bytecode: A Statistical Approach”, in Proceedings of the
38th International Conference on Software Engineering (ICSE ‘16), May
14-22, Austin, Texas, ACM Press, pp. 416-427, 2016.

[32] Y. Qiao, Y. Yang, J. He, C. Tang, and Z. Liu, “CBM: Free, Automatic
Malware Analysis Framework Using API Call Sequences”, in Proceedings
of the Seventh International Conference on Intelligent Systems and
Knowledge Engineering, Dec 2012, Beijing, China, Springer Berlin
Heidelberg, pp. 225-236.

[33] S. Varma, and R. Simon, “Bias in error estimation when using cross
validation for model selection”, BMC Informatics, vol. 7, no. 1, 2006.

[34] H. Idrissi, E. M. Souidi, and A. Revel, “Security of mobile agent platforms
using access control and cryptography”, in Proceedings of the 9th KES
international conference (KES-AMSTA), pp. 27–39, 2015.

[35] H. Idrissi, A. Revel, and E. M. Souidi, “Security of Mobile Agent Platforms
using RBAC based on Dynamic Role Assignment”, International Journal
of Security and Its Applications, vol. 10, no. 4, pp.117-134, 2016.

[36] M. Malathy, S.J. Smilee, J. N. Samuel, “Secure Mobile Agent in
M-Commerce over Internet”, in Proceedings of International Conference
on Emerging Trends in Engineering, Technology and Science (ICETETS),
pp. 1-5, 2016.

Pallavi Bagga

Pallavi Bagga is presently working as an Assistant
Professor in the Department of Computer Science and
Engineering at Lovely Professional University, Phagwara,
Punjab, India. She has accomplished her Master of
Technology in Computer Science & Engineering from
DAV University, Jalandhar, Punjab, India in 2016.
Earlier, she has completed her Bachelor of Technology in

Computer Science & Engineering from Punjab Technical University, Punjab,
India in 2014. Her predominant areas of research interests include Distributed
Computing and Machine Learning. Nowadays, she is actively pursuing her
research career in the sphere of Mobile Agents System Security using Machine
Learning Algorithms.

Rahul Hans

Rahul Hans is currently working as an Assistant Professor
in the Department of Computer Science and Engineering at
DAV University, Jalandhar, Punjab, India. He has received
his B.Tech degree in Computer Science and Engineering
from Punjab Technical University, Jalandhar, Punjab, India
and subsequently his M.Tech degree in Computer Science
and Engineering from Guru Nanak Dev University,

Amritsar, Punjab, India. He has a teaching experience of more than four years.
He is also a member of Computer Society of India (CSI). He has published
16 research papers in various International Conferences and Journals. His
research areas include Security and Fault tolerance in Mobile Agent Systems in
Distributed Computing as well as the Machine Learning.

Vipul Sharma

Dr. Vipul Sharma is currently working as an Assistant
Professor (Senior Grade) in the Department of Computer
Science and Engineering at Jaypee University of
Information Technology, Solan, India. He has received
his B.Tech. Degree in Computer Science and Engineering
from Punjab Technical University, Jalandhar, Punjab,
India and subsequently his M.E. and Ph.D. Degrees in

Computer Science & Engineering from UIET, Panjab University, Chandigarh,
India. His Ph.D. thesis focused on use of machine learning techniques to
associate low level image features with the query concepts, relevance feedback
techniques to learn users’ intention and feature selection to find an optimal set
of features that can not only capture the texture of images but also enhances
the semantic interpretability for reducing the semantic gap in medical image
retrieval. He is actively pursuing research in Medical Image Processing. He is
the awardee of TEQIP-II fellowship during Ph.D. He also received the UIET,
Panjab University Research Award-2015 and a cash prize of Rs 10000 for his
outstanding publication in the Medical & Biological Engineering & Computing
Journal (SCI Journal). He is a member of many professional bodies including
Society of Photo-Optical Instrumentation Engineers, USA; Engineering in
Medicine & Biology Society; Association for Computing Machinery; IEEE;
IEEE Computer Society Technical Committee on Pattern Analysis and
Machine Intelligence; Multimedia Computing; IEEE Young Professionals.
He has published 16 research articles in reputed journals and conferences. His
current research includes development of effective classification and retrieval
techniques for the retrieval of medical images from large image databases.

