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I. Introduction

A collection of executable programs known as a Mobile agent 
(MA) migrates from one execution platform to another in a 

heterogeneous network to perform various tasks on the behalf of its 
user [1]. The employment of mobile agents introduce many benefits 
to the distributed computing including network load reduction, 
overcoming network latency, executing dynamically, asynchronously 
and autonomously [2]. In many respects, a mobile agent is analogous 
to a computer virus, since it travels from one computer to another and 
it utilizes computer resources or it creates clones of itself to achieve its 
goals. The major difference between both is the usefulness of mobile 
agent and its friendly behavior. However, the mobile agents while 
moving in the network, brings with them the fear of Trojan horses, 
viruses and other invasive means or entities [3]. This is because 
the attacks can be occurred when the mobile agent traverses in the 
communication channel and there may be some muggers earwigging 
the network either to gain some of the information carried by the agent 

or information stored in the agent platform (i.e. passive attack) or 
mutating that information for their own advantage (i.e. active attack) 
[4, 37]. In recent years, numerous researchers have done considerable 
studies in order to prevent malicious mobile agents causing any harm 
to Mobile Agent Platform (MAP).

Wahbe et al. [11] proposed a Sandboxing technique, which offers 
an isolated environment (or a restricted area) for the execution of 
suspected mobile agents. This isolation prevents the mobile agent 
from accomplishing specific code exercises, for example local file 
system interaction, and accessing system properties. Noordende et al. 
[12] proposed a Mansion API where the agents execute in a protected 
environment like Sandboxing technique. Additionally, the agents are 
authenticated based on the trust level between agent owners as well as 
platform owners. Marikkannu et al. [13] suggested a Dual checkpoint 
mechanism involving two gates, inner and outer for the mobile agent 
verification consisting of Digital signatures as well as checksum ensuring 
the validity of a mobile agent. Alfalayleh et al. [14] recommended a Code 
Signing mechanism in which the sign of originator on code is checked by 
agent platform for verifying that it has not been modified. Lee et al. [15] 
proposed a technique in which the agent byte code compiles the proof 
carried by mobile agent with the platform’s security policy. Upon receipt, 
the agent platform employs a proof checker for the purpose of checking 
and verifying the security proof of incoming agent byte code. Ordille [16] 
proposed the use of Path history that enables the platform either to run 
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the agent or discard it; and to decide the trust level, privileges, resources 
and services that should be acknowledged to the agent if it is permitted 
to. Path History contains the identities of the current platform as well as 
the next platform in the itinerary. Cao et al. [17] proposed the use of agent 
path history information on the role activation and permission activation. 
The roles activated for an agent will be filtered by path patterns whereas 
the permissions for roles will be finely tuned by a set of host patches. 
Furthermore, Idrissi et al. [34, 36] proposed an authentication process 
based on Diffie–Hellman Key Exchange integrated with digital signature 
DSA to prevent the vulnerabilities arisen due to the unavailability of 
authentication, which makes it well resistant to the Man in the Middle 
attack; as well as another mobile agent platform security technique based 
on Elliptic Curve Cryptography (ECC) and dynamic role assignments 
using Role Based Access Control (RBAC) policy. 

Venkatesan et al. [18] proposed Malicious Identification Police (MIP) 
that uses Attack Identification Scanner (AIS) to scan the incoming agent 
byte code in order to diagnose the maliciousness in it. In Policy Based 
MIP proposed by Venkatesan et al. [19], the privileges of an agent are 
also checked in addition to AIS [18], to know if it wants to do more than 
the privileges granted to it. Otherwise, Intelligent AIS (IAIS) decides 
to start the lexical analyzer by its own decision, where agent byte code 
is turned into tokens and diagnose the non-match tokens by comparing 
with tokens present in the Knowledge Base (KB). Afterwards, unknown 
tokens are executed and tested in an isolated environment to check for 
their malicious intentions and updates the KB containing malicious codes, 
with the newly diagnosed (if any) vicious code. In order to fend off this 
waiting time of the agent, Venkatesan et al. [20] further included the agent 
clones to handle multiple incoming agents simultaneously. Additionally, 
the pipelining concept was introduced by separating the operations i.e. 
the tasks of scanning, pattern extracting and detecting unknown codes 
are performed by different agents, which ultimately reduces the time 
complexity. Clearly, many researchers have been buckled down in the 
field of MAP security. However, the unknown malicious mobile agent 
detection before invading the MAP is still a challenge and a concern 
owing to the growth of malicious agents in recent years. 

Nowadays, malicious code detection techniques employ one of 
these two approaches: Signature-based or Behavior-based. Signature-
based methods involve the identification of distinctive tokens in the 
binary code [5]; whereas Behavior-based methods rely on the rules 
created by the experts that define the malicious behavior or non-
malicious behavior of code [6]. While being very precise, signature-
based methods are unable to diagnose previously unknown malicious 
codes whereas behavior-based methods can only detect the presence 
of malicious content after the code has been executed [7]. Realizing 
the necessity of a detection method for the unknown malicious code, 
in recent years, the machine learning algorithms or Classification 
Algorithms were magnificently employed which was highly inspired 
by the Text categorization problem [8]-[9], [23]-[25].

In this paper, an attempt has been made for detecting unknown 
malicious mobile agents using Machine Learning algorithms, which 
represents a novel contribution in the field of MAP security as per the 
survey done by the authors. This attempt addresses several facets of 
the detection challenge: mobile agent representation, classification 
and performance evaluation. The present work is also influenced by 
the objective to achieve very high classification accuracy rate while 
maintaining the low false negatives (i.e. misclassifying malicious 
agent as non-malicious). Though there are various representations 
of executable files: “Portable Executable (PE)”, “Byte Sequence 
n-grams”, and “plain-text string features” [9]; in this paper, n-gram 
representation of the agent executable is considered to be used as 
features for the classification process, since an extensive n-grams 
analysis is also one of the major focuses of this paper. N-grams are 
overlapping substrings obtained in a sliding window fashion [10].  

The extracted n-gram features are then fed into four commonly used 
Classification algorithms: Naive Bayesian, SMO, IBK, J48 Decision 
Tree, for discriminating between two categories of agent classification 
(malicious mobile agent and non-malicious mobile agent), which 
is supported by WEKA tool [21]. The extensive experiments are 
performed on a collection of 80 files, in which half of the total files 
are malicious. The experimental results are evaluated based on 
standard performance evaluation measures such as “Sensitivity Rate”, 
“Specificity Rate”, “Positive Predictive Value”, “Negative Predictive 
Value”, “F-score”, “Receiver Operating Characteristics – Area Under 
Curve”, “Miss Rate”, “Fall out” and “Accuracy Rate”, while employing 
the 5-fold nested cross validation scheme. 

II. Material and Methods

A. Dataset Used
To the best of author’s knowledge, there is no standard data set 

available for the detection of malicious mobile agents. Therefore, the 
benchmark dataset of malicious files known as CSDMC201011 API 
sequence corpus, containing Windows API/System-Call trace files, 
is selected for the purpose of classification. The dataset contains 
388 files involving 320 malware traces as well as 68 benign traces 
(considered as non-malicious in this paper). For the training dataset, 
only 40 malicious files and 40 non-malicious files are collected after 
random sampling (equal number for malicious and non-malicious files 
is considered in order to avoid the Class-imbalance problem). This 
standard dataset is preferable for the proposed approach since agent 
byte code can be viewed as a sequence of agent API function calls. This 
assumption is made on account of the previous studies of extracting 
API call sequences from byte codes [31],[32].

B. Performance Evaluation Measures
To evaluate the classification performance of detecting malicious 

mobile agents successfully, it is necessary to identify appropriate 
performance metrics. The measures derived from the Confusion 
Matrix (Figure 1) to calculate and be applied to classifier evaluation 
are described in Table I [26]. The confusion matrix indicates the correct 
and incorrect classification outcomes predicted by the classifier when 
compared with the actual classification outcome. The measures other 
than Accuracy Rate and Misclassification Rate are considered to figure 
out whether the present framework holds good for the classification of 
either malicious mobile agents or non-malicious mobile agents or both.
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Fig. 1. Confusion Matrix to evaluate the performance of classifier.

• True Positives (TP): Number of malicious agents classified as 
malicious.

• True Negatives (TN): Number of non-malicious agents classified 
as non-malicious.

• False Negatives (FN): Number of malicious agents classified as 
non-malicious.

1    http://www.csmining.org/index.php/malicious-software-datasets-.html
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• False Positives (FP): Number of non-malicious agents classified 
as malicious.

C. Methodology
The major objectives of present methodology are as follows:

• To automate the detection of malicious mobile agents before they 
conquer the Mobile Agent Platform.

• To evaluate the performance of n-gram representation of mobile 
agent. 

• To use Machine Learning algorithms for the task of unknown 
malicious mobile agent detection.

• To scrutinize the performance of various classifiers for classifying 
the mobile agents.

The methodology used in this paper is shown in Figure 2. It mainly 
consists of two consecutive steps:  n-gram feature extraction of 
mobile agent and classification. These steps are described in detail in 
subsequent sub-sections. 

1. Mobile Agent Representation using Byte n-grams – Data 
Preparation

A standard n-gram analysis is used to extract features from the 
malicious and non-malicious files. This method is purely machine-
learning based method and exploits Natural Language Processing (NLP) 
also [30]. The n-grams are extracted in a sliding-window fashion, where 
a window of fixed length (n) slides one byte at a time. In general, n-grams 
are all substrings of a larger string with length “n” [24]. In present context, 
byte n-grams are viewed as API call based features. Many researches in 
recent years have released the importance of n-gram based methods in 
malware detection, since this technique of extracting features is simple 
and easy to implement. Each n-gram is analogous to a word or a term 
of a text document in the Text Categorization problem. For instance, 
there are eight 3-grams in the text “abc_dabc_e”:  “abc”, “bc_”, “c_d”, 
“_da”, “dab”, “abc”, “bc_” and  “c_e”. For the preparation of data, the 
unique n-grams are identified in all the mobile agent files and are merged 
together. In above example, there are only six distinct n-grams i.e. “abc”, 

TABLE I. Performance Evaluation Measures for Classification of Malicious Mobile Agents

Metric Definition Formula Expected Value

Sensitivity Also known as True Positive Rate (TPR) or Recall. It evaluates the 
ability of a classifier to correctly identify an agent as malicious.

 Maximum

Specificity Also known as True Negative Rate (TNR). It evaluates the ability of 
a classifier to correctly identify an agent as non-malicious. Maximum

Positive Predictive 
Value (PPV) 

Also known as Precision. It is the percentage of agents classified as 
malicious which are truly malicious.

 Maximum

Negative Predictive 
Value (NPV) 

It is the percentage of agents classified as non-malicious which are 
truly non-malicious. Maximum

Miss Rate Also known as False Negative Rate (FNR). It evaluates the 
proportion of malicious agents that are classified as non-malicious.

 Minimum

Fall out Also known as False Positive Rate (FPR). It evaluates the proportion 
of non-malicious agents that are classified as malicious.

 Minimum

ROC-AUC The curve is drawn by plotting the TPR against the FPR at different 
threshold settings.

 
Between 0.9 

and 1

Accuracy It evaluates the ability of a classifier in classifying the whole dataset.  Maximum

F-measure
Also known as F-score. It is an evaluation of classifier’s accuracy, 
which combines both the precision as well as the recall as a 
harmonic mean.

 Maximum

Note: NA means Not Applicable

Fig. 2. Present Methodology for Malicious Mobile Agent Detection.
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“bc_, “c_d”, “_da”, “dab”, “c_e”. The procedure of n-gram extraction 
repeats for different values of n. To limit the experiments for present 
study, the varying n-grams are employed with the value of n ranging 
from 3 to 9 only. This is because if the value of n increases, the number 
of unique n-gram features also increases. The number of distinct n-grams 
extracted from dataset files is 1403, 2236, 3074, 4055, 5137, 6445 and 
7727 for 3-gram, 4-gram, 5-gram, 6-gram, 7-gram, 8-gram and 9-gram 
respectively. 

2. Classification
Since the unknown mobile agent can be classified either malicious 

or non-malicious, the Binary Classification is taken into account. 
The standard commonly used classification algorithms such as Naïve 
Bayesian [22], Instance based Learner [22], Sequential Minimal 
Optimization [27]-[29], and J48 Decision Tree [22], are implemented. 
These classification algorithms differ in performance within different 
domains. In this paper, the best fitted algorithm for the dataset has been 
identified by the experimentation as shown in the subsequent section.

i) IBK 
IBK is a WEKA implementation of k-Nearest Neighbor (k-
NN). In general, the nearest neighbor classifiers compare a 
given test tuple with the identical training tuples. The training 
tuples are characterized using n features. Each tuple represents 
a point in an n-dimensional space. Hence, all the training 
tuples are exemplified in an n-dimensional feature space. 
When an unknown tuple is given as an input, a k-NN classifier 
explores the feature space for the closest k training tuples to the 
unknown tuple [22].

The closeness is defined in terms of Distance Metrics such 
as Chebyshev distance, Manhattan distance, and Euclidean 
distance. The unknown tuple is labeled with the most common 
class among its k-nearest neighbors. The value of k is usually 
an odd number to avoid tied votes; however, choosing the value 
of k is very analytical. The smaller value of k indicates the 
higher influence of noise on the result whereas the larger value 
of k makes the classification computationally very expensive. 
The pseudo code of IBK is shown in Algorithm 1.

 

Algorithm 1. IBK classification algorithm
Algorithm IBK(k, X, Y, x)
//Input: k- an integer odd value (number of nearest neighbors), 
X- Training data consisting of n tuples, Y- Class Labels of X, x- 
Unknown tuple
//Output: Class label of x
1. for i ß 1 to n do
2. compute distance (Xi, x)
3. end for
4. sort the distances in ascending order
5. select the first k points from the sorted list (these are the k 
nearest training tuples to unknown tuple)
6. return class label that belongs to the majority of k selected tuples

ii) Naïve Bayesian
This classifier is so called because it relies on the Bayesian 
Theorem. Moreover, it is called “Naive”, because it assumes 
the independence between every pair of attributes (or features), 
which is known as “class conditional independence” [22]. 
The classifier takes an unknown tuple as an input, for which 
the class label is not known, and returns a class label as an 
output for which the maximum probability is obtained as per 
the probabilistic calculations. This classifier is particular suited 
for the higher dimensionality of features. The pseudo code of 
Naïve Bayesian is shown in Algorithm 2. 

Algorithm 2. Naïve Bayesian classification algorithm

Algorithm naiveBayesian(D,X,m,n,A)
   //Input: D - Training set of tuples and their associated class labels, 
n- number of attributes, A - set of attributes (A1,A2,….An), X - 
n-dimensional attribute vector (x1,x2,….xn), m – number of classes
   //Output: Class of tuple X
  1. for i ß 1 to m do
  2. calculate the Posterior probability conditioned on X i.e. ( | )  
using 
   Bayes’ theorem

( | ) =
) 
                                           (1)

     where in Equation (1),
     P(X) is constant for all classes,

     ( ) =
|
 , where |Ci,D| is the number of training tuples of 

Class Ci in D

( | ) ) ( | ) ( | ) ( | ) 
   (2)

    and,in Equation (2), xk  refers to the value of attribute Ak for tuple X
3. end for 
4. return class label with maximum ( | ) 

iii) J48 Decision Tree
A Decision tree classifies the tuples as per a set of tree-structured 
if-then-rules. Each internal node represents a test on an attribute 
(or a feature), each branch represents the outcome of test, 
whereas each leaf node holds a class label. J48 is a WEKA 
implementation of the C4.5 decision tree. It consists of two 
steps: the decision tree induction and the tree pruning [22]. The 
pseudo code of decision tree algorithm is shown in Algorithm 3.

Algorithm 3. J48 Decision Tree classification algorithm

//Input: D- set of training tuples and their associated class labels, 
A- attribute list
//Output: Decision Tree
1. create a node N
2. if all tuples of D belong to same class C, then
3. return N as a leaf node labeled with class C and 
terminate. 
4. if A is empty, then
5.  return N as a leaf node labeled with the most common 
class in D
    (Majority Voting)
6. apply Gain Ratio feature selection method to find the best 
criterion ‘a’ ∈ A
7. label N with ‘a’
8. for each value j of ‘a’ do
9.           grow a branch from N with condition a=j
10.         let Dj be the set of tuples in D with a=j
11.         if Dj is empty then
12.                     add a leaf node labeled with most common class 
in D to N
13.         else add the node returned by decisionTree(Dj, A-a) to N
14. end for
15. return N

iv) SMO
SMO is a WEKA implementation of Support Vector Machine 
(SVM). SVM was originated from statistical learning theory 
with the objective to find the solution of interested problem 
without solving a more difficult problem as an intermediate 
step [27].  The statistical learning theory offers a framework 
that helps to choose the hyper plane space such that it diligently 
symbolizes the underlying function in the target space [28]. 
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SVM avoids over-fitting to the training dataset.

Given a training set of instance-label pairs (xi, yi), i=1,…
.,N where xi ∈ Rn  and y ∈ {1,-1}l, SVM finds the solution 
of an optimization problem as shown in Algorithm 4 [29]. 
The training tuples xi are represented into a higher (possibly 
infinite) dimensional space using function ∅. In other words, 
the kernel ∅ is used to transform data from input to the feature 
space. There are four basic kernels: Linear, Polynomial, Radial 
Basis Function (RBF) and Sigmoidal.

Algorithm 4. SMO Optimization Problem

Optimization Problem:
Given Constraints in Equation (3):

q
( ∅ ( ) ) ≥ 1 − ξ  

h E F i i d i
 and ξ ≥ 0 

i (4
                            (3)

Minimize the Error Function as mentioned in Equation (4): 

∑ ξ                                                                    (4)

where, 
C>0 is the penalty parameter of the error term, and is called 
Capacity Constant. The choice of C is made carefully in order to 
avoid over-fitting. Larger the C, more the error is penalized.
w is the vector of coefficients.
b is a constant.
ξ   represents parameters for handling non-separable data (inputs)
i labels the N training cases 
xi represents the independent variables.

III. Results and Discussions

The classification of mobile agent into two categories based on their 
n-gram features has been performed on 80 agent files of dataset of API 
calls sequence. An extensive setting of parameters is done to optimize 
the performance of each classification algorithm (NB, SMO, IBK and 
J48), such as “value of k”, “distance measure”, or “nearest neighbor 
search algorithm” in IBK, “pruning”, or “confidence factor” in J48 
decision tree, “complexity parameter”, or “kernel” in SMO. The nested 
five-fold cross validation scheme is performed to obtain unbiased 
evaluation results [33]. In nested five-fold cross validation method, the 
data is randomly divided into five disjoint folds. The four folds are 
used for tuning of classifier parameters (using cross validation scheme) 
and then the tuned classifier is validated on left out fold. 

This procedure repeats for five times, each time with different 
left-out folds. This nesting of cross validation loops avoids so-called 
resubstitution-bias [33]. Additionally, the standard parameters such as 
Sensitivity, Specificity, ROC, PPV, NPV, FNR, FPR, F-measure and 
Accuracy, evaluate the performance results and the results of all iterations 
are averaged to get the final outcome. It has been evidenced that the 
performance of present work highly depends on the choice of classifier.

The results of various classifiers (NB, SMO, IBK and J48) for different 
values of n for n-grams i.e. n=3 to 9 have been investigated and are 
presented in Table II. To help with nested cross validation, WEKA tool 
has been used to adjust the classifier settings repeatedly in order to get 
the results on suitable parameter values. The results demonstrate that IBK 
classifier, J48 classifier, SMO classifier and NB classifier gives maximum 
accuracy rate of 96.25%, 97.50%, 95.00% and 93.75% respectively (as 
shown in Figure 3), while maintaining the miss rate of 2.50%, 2.50%, 
5.00% and 7.50% for trigrams, 9-grams, 5-grams to 9-grams and 7-grams 
respectively (as depicted in Figure 4) in distinguishing malicious files 
from non-malicious. The value for Area under ROC curve is more than 
0.92 for each classifier. IBK gives maximum sensitivity of 97.50 % and 
specificity of 95.00% for 3-gram features. J48 gives maximum sensitivity 
of 97.50 % as well as specificity of 97.50% for 9-gram features as shown 

in Figure 5 and Figure 6. Moreover, the highest values of PPV and NPV 
(97.50% each) belong to J48 classifier for 9-grams. 

TABLE II. Results of Different Classifiers for Different Values of N 
in N-Gram

n Classifier Accuracy 
Rate (%)

Miss 
Rate 
(%)

Fall out 
(%)

PPV 
(%)

NPV 
(%)

F-measure 
(%)

ROC 
area

3

Bayesian 85.00 15.00 15.00 85.00 85.00 85.00 0.94
SMO 92.50 7.50 7.50 92.50 92.50 92.50 0.93
J48 95.00 2.50 7.50 92.86 97.37 95.12 0.94
IBK 96.25 2.50 5.00 95.12 97.44 96.30 0.97

4

Bayesian 87.50 12.50 12.50 87.50 87.50 87.50 0.93
SMO 93.75 5.00 7.50 92.68 94.87 93.83 0.94
J48 93.75 5.00 7.50 92.68 94.87 93.83 0.94
IBK 93.75 5.00 7.50 92.68 94.87 93.83 0.94

5

Bayesian 90.00 12.50 7.50 92.11 88.10 89.74 0.94
SMO 95.00 5.00 5.00 95.00 95.00 95.00 0.95
J48 95.00 2.50 7.50 92.86 97.37 95.12 0.94
IBK 93.75 5.00 7.50 92.68 94.87 93.83 0.93

6

Bayesian 91.25 10.00 7.50 92.31 90.24 91.14 0.95
SMO 95.00 5.00 5.00 95.00 95.00 95.00 0.95
J48 96.25 2.50 5.00 95.12 97.44 96.30 0.95
IBK 92.50 2.50 12.50 88.64 97.22 92.86 0.93

7

Bayesian 93.75 7.50 5.00 94.87 92.68 93.67 0.96
SMO 95.00 5.00 5.00 95.00 95.00 95.00 0.95
J48 95.00 5.00 5.00 95.00 95.00 95.00 0.94
IBK 92.50 2.50 12.50 88.64 97.22 92.86 0.93

8

Bayesian 92.50 7.50 7.50 92.50 92.50 92.50 0.96
SMO 95.00 5.00 5.00 95.00 95.00 95.00 0.95
J48 96.25 2.50 5.00 95.12 97.44 96.30 0.96
IBK 92.50 2.50 12.50 88.64 97.22 92.86 0.94

9

Bayesian 92.50 10.00 5.00 94.74 90.48 92.31 0.97
SMO 95.00 5.00 5.00 95.00 95.00 95.00 0.95
J48 97.50 2.50 2.50 97.50 97.50 97.50 0.97
IBK 92.50 5.00 10.00 90.48 94.74 92.68 0.93

Fig. 3 Graph showing Accuracy Rate of Different Classification Algorithms.

Fig. 4 Graph showing Miss Rate of Different Classification Algorithms.

This means IBK and J48 decision tree are the best in distinguishing 
actual malicious agents (positives) and actual non-malicious agents 
(negatives) using 3-gram and 9-gram features respectively. The 
performance of other classification algorithms reduces with the 
increase in number of features.

It is shown in Figure 5 that the sensitivity rate increases up to n=7 
using NB classifier and then decreases. Using SMO, the sensitivity rate 
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increases up to n=4 and then remains the same with further increase in 
value of n. Using J48 and IBK classifiers, sensitivity rate is minimum 
for n=3, which decreases and then again increases with increase in 
value of n. The Figure 6 indicates that the minimum specificity rate 
(85.00%) is obtained using NB classifier for 3-grams, which further 
increases with the increase in value of n. SMO and J48 classifiers 
provide the minimum specificity rate of 92.50%. From 5-gram to 
9-grams, specificity is constant with SMO classifier whereas from 6 to 
8-grams, IBK increases with increase in value of n.

Fig. 5 Graph showing Sensitivity Rate of Different Classification Algorithms.

Fig. 6 Graph showing Specificity Rate of Different Classification Algorithms.

IV. Conclusions and Future Scope

This paper aims for probing the suitability of machine learning 
algorithms for the task of classification of mobile agent either 
malicious or non-malicious in a Mobile Agent Environment using 
a specific dataset. In particular, n-grams are used as features during 
the classification process. Different classification algorithms used 
are Naïve Bayesian, Sequential Minimization Optimization, Instance 
Based Learner, and J48 Decision Tree. J48 decision tree algorithm 
gives higher accuracy rate of 97.50% and miss rate of 2.50% for 
9-grams whereas IBK gives higher accuracy rate of 96.25% and 
miss rate of 2.50% for 3-grams, as compared to other classification 
algorithms. In other words, out of all the classifiers, J48 gives better 
result with 7727 features whereas IBK with 1403 features, but J48 
increases the computational cost due to large feature space. Therefore, 
IBK is declared to be the best classifier. Clearly, the optimistic results 
boost the use of present research for MAP protection. 

In near future, the work can be extended with the use of more 
different classifiers with higher values of n for n-gram features in 
order to evaluate the performance of classification task. Moreover, 
large number of n-gram features burdens the classification process; 

therefore, feature selection methods can be applied in future. The work 
can even be done on different datasets, since the classifiers may give 
different results on different datasets.
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