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Abstract — This paper studies the effects of learning-induced 
alterations of distributed search systems’ organizations. In 
particular, scenarios where alterations of the search-systems’ 
organizational setup are based on a form of reinforcement learning 
are compared to scenarios where the organizational setup is kept 
constant and to scenarios where the setup is changed randomly. 
The results indicate that learning-induced alterations may 
lead to high levels of performance combined with high levels of 
efficiency in terms of reorganization-effort. However, the results 
also suggest that the complexity of the underlying search problem 
together with the aspiration level (which drives positive or negative 
reinforcement) considerably shapes the effects of learning.
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I.	 Introduction

The organizational setup of distributed search systems is a topic that 
is investigated in many disciplines, such as control theory, complex 

systems science or computational organization theory (for extensive 
reviews cf. [1], [2], [3]). The coherence of and the coordination within 
distributed search systems are among the predominant issues in this 
line of research, where the former is defined in terms of some of the 
systems’ properties (e.g., solution quality) and the latter is concerned 
with actions and interactions of agents collaborating in a distributed 
search system [4], [5]. Thus, the key topics of the organizational 
setup of distributed search systems addressed refer to the appropriate 
segmentation of the overall search problem into sub-tasks, the way 
sub-tasks are assigned to agents, and the mechanisms to consolidate 
the (partial) solutions to sub-tasks into an overall solution. The overall 
solution should be as satisfactory as possible where its quality is 
determined on the basis of coherence metrics (e.g., [4], [5], [6]). 

Hence, feasible consensus mechanisms, performant algorithms 
for search and optimization, and the appropriate assignment of tasks 
are of particular interest in this line of research [1] – in order to 
contribute to improving results with respect to coherence metrics of 
relevance. However, this line of research (mostly implicitly) assumes 
that the designer of a distributed search system decides which of 
these mechanisms, algorithms and ways of assignment are employed 
in the organizational setup of the search system. This paper follows 
an approach that, in a way, can be regarded as complement to the 
aforementioned line of research: not the designer of a search system is 
allowed to (exogenously) decide on the systems’ organizational setup 
but the search system’s organizational setup evolves endogenously. 
In particular, we allow for self-adaptation of the search systems’ 
organizational setup, i.e., while searching for better solutions for the 
overall search problem (during “run-time”) the search system is allowed 
to change its organization, where changes are based on feedback [7]. 

The idea of self-adaptive distributed search systems builds on prior 

studies which provide evidence that distributed search processes could 
remarkably benefit with respect to solution quality obtained from 
inducing organizational dynamics while searching for better solutions – 
may it be in the organizational setup of collaborating robots or “swarms” 
of unmanned aerial vehicles or in the organizational design of a firm 
where managers search for higher levels of firm performance [8], [9], 
[10], [11]. Apparently, organizational change per se tends to enhance 
the performance of a search system by inducing a shift towards more 
exploration, i.e., discovery of new solutions, and less exploitation, i.e., 
stepwise improvement. However, it is worth emphasizing that these 
studies employ merely random-driven organizational change in the 
sense that the search systems do not learn which organizational setups 
are more successful than others. 

By investigating the effects of learning-based organizational 
dynamics, this paper goes a step beyond research studies that employ 
random-driven organizational changes. In particular, this paper studies 
the effects of endowing distributed search systems with some capabilities 
to learn about their organization’s performance and to adapt the 
organizational setup according to the search systems’ performance. 
This paper is an extended version of [12] which was presented at the 
13th International Conference on Distributed Computing and Artificial 
Intelligence (DCAI). The extensions predominantly relate to the 
dimensionality of the search problems under investigation, to the time 
horizon of simulations, and to a sensitivity analysis with respect to the 
number of search agents.

It appears to be of particular interest to investigate whether 
search systems which employ learning-based organizational change 
outperform systems which make use of random changes in their 
organizational setup or systems which do not change their setup changes 
at all. This study intends to provide findings on the relative potential 
benefits of learning-based organizational dynamics. Since, it is well 
known that the task environment (in terms of the task complexity) tends 
to affect the performance of search, this paper particularly controls 
for the complexity of the search problems by employing an agent-
based simulation model which is based on the framework of fitness 
landscapes [13], [14]. The next section introduces the key elements of 
the simulation model. Section III gives an overview of the performed 
simulation experiments. The results are presented in Section IV where, 
first, an in-depth analysis of some baseline scenarios of organizational 
change modes for different levels of complexity are provided. Second, 
a sensitivity analysis is presented which puts particular emphasis on 
the need for coordination within the search system where this need is 
considerably affected by the number of search agents who carry out 
sub-tasks. 

II.	 Outline of the Simulation Model

The study employs an agent-based simulation model which captures 
two intertwined adaptive processes: In (1) the short-term, search agents 
seek to find superior solutions for the search problem. The quality of a 
solution is measured on the basis of system’s overall performance level 
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achieved. We model search agents to operate on NK fitness landscapes 
[13], [14]. In (2) the mid-term, the search systems are allowed to adapt 
major features of their organizational setup. Changes are driven by 
reinforcement-learning, which is based on performance enhancements 
achieved. A schematic flow-chart of key features of the simulation 
model is displayed in Figure 1.

A.	 Short-Term Adaptive Search for Higher Levels of 
Performance

The study employs the framework of NK-fitness landscapes, which 
were originally introduced in the domain of evolutionary biology [13]. 
An advantage of NK fitness landscapes is that they easily allow for 
controlling the complexity of the underlying search problem [15]. 

1)	 Search Problem 
In each time step t of the observation period T, the search systems 

face an N-dimensional binary search problem, i.e., they seek for 

a superior configuration  (with , 
Ni ,...,1= ) out of a set of possible solutions, which is given by N2  

different binary vectors. Each of the two states  contributes 
with  to fitness )( tdV  of the search system or – in other words – to 
the performance achieved by the search system. According to the NK 
framework,  is randomly drawn from a uniform distribution with 

. 
The parameter K captures the complexity of the underlying search 

problem [15]: In particular, fitness contribution  might not only 
depend on the single choice  but also on a number of other choices 

where K indicates the number of  that affect  in addition 
to . In case of no interactions K is 0, and K equals 1−N  for the 
case of maximum interdependence. Hence, contribution  results 
from

	 (1)

with { } }{ Niiii K ,...,1,1,...,1,...1 +−⊂ .

The overall performance tV  achieved by the search system in period 
t is computed as the normalized sum of contributions : 
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2)	 Agents and their Choices 

The search for higher levels of performance tV  is collaboratively 
performed by M search agents. In particular, the N-dimensional search 
problem is partitioned into M disjoint partial problems, and each of 
these sub-problems is exclusively delegated to one search agent 

r, Mr ,...,1= . The partial search problems are of equal size with 

),...,1( Mr
M
NNr =∀= . From the perspective of search agent r, the 

search problem is segmented into a partial search vector rdt  which 
contains the choices which are under the search agent r’s primary 
control and into a partial vector res

t
,rd , which captures the residual 

choices that the other search agents rq ≠  are in charge of. However, 
with cross-segment interactions among the sub-problems, choices of 
agent r might affect the contribution of the other agents’ choices to 
overall performance, and vice versa.

In each time step t, a search agent seeks to identify the best 
configuration for the “own” choices rdt  assuming that the other agents 
do not alter their choices made in t-1. Each agent r randomly discovers 

two alternatives in addition to the status quo choice *
1

rd −t , where, as 
compared to the status quo, one alternative (named a1) differs in one 
and the other one (labelled a2) differs in two single choices dit. In 
consequence, in time step t, agent r has three options to choose from, 

i.e., keeping the status quo or switching to 1,a
t
rd  or 2,a

t
rd . Which 

of these options appears to be favorable from the search agent’s 
perspective depends on the agent’s “objective” r

tP . This objective is 
shaped by parameter rα  which defines the extent to which the residual 
part of the decision problem is considered in addition to the “own” 
partial search problem. The objective function can be formalized by 
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However, the agents’ ex ante evaluations of alternatives do not 
necessarily need to be perfect. In particular, agents might misjudge 
the options’ contributions to objective )( r

tdr
tP . This may not only be 

an unintentional shortcoming of, e.g., agents’ information processing 
capabilities but may also be intentionally induced: Some evidence 
suggests that imperfect information on the fitness (performance) of 
options could increase the effectiveness of search processes (e.g., [16], 
[17]). Previous research shows that false-positive evaluations of options 
increase the diversity of search. As a consequence, there is a chance to 
end situations of inertia induced by sticking to a local peak and to reach 
basins of attractions for higher levels of fitness. Hence, intentionally 
or not, our agents may eventually be endowed with slightly distorted 
information about the performance of options. Distortions are captured 
by adding error terms as exemplarily shown in Eq. (4):
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For the sake of simplicity, distortions are modeled as relative errors 
added to the true performance (for other functions see [16]). The error 

terms follow a Gaussian distribution );0( 2σN  with expected value 
0 and standard deviations ownr ,σ  and resr ,σ . Variances are assumed 
to be the equal for all search agents Mr ,...,1=  and stable over time 
(if not altered by self-adaptation as described subsequently); all error 
terms are assumed to be independent from each other. 

Apart from the search agents, the model captures a kind of “central 
agent” whose role is a twofold: (1) In the short-termed adaptive 
search, the central agent could – depending on the particular mode 
of coordination – intervene in the selection of choices. (2) In the 
mid-term, the central agent assesses performance enhancements and 
“learns” about successful organizational setups by reinforcement. The 
next section provides more details on the central agent’s roles.

B.	 Mid-Term Adaptation of the Organizational Setup based on 
Reinforcement Learning

The very core of this study is related to learning on the performance 
contributions of a search system’s organization and, eventually, altering 
the organizational setup accordingly. The following two subsections 
describe the modelled mode of reinforcement learning as well as 
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the dimensions of the organizational setup which may be subject to 
organizational change. 

1)	 Mode of Reinforcement Learning.
In each T*-th time step, the central agent faces an L-dimensional 

decision problem related to the L dimensions of the organizational setup 
which can be altered. In particular, the central agent chooses a setup 

( ))(),...,(1 tata L=tÖ  of alternatives ll Aa ∈  for all Ll ,...,1=  and 

with lA  giving the number of alternatives la  in set lA . 
The model employs a simple mode of reinforcement learning 

(for overviews see [18], [19]) based on statistical learning, i.e., a 
generalized form of the Bush-Mosteller model [20], [21]: In every T*-
th period, the propensities of choices are updated based on the stimuli 
resulting from the evaluation of the outcome (performance effects) 
achieved under the regime of prior choices of the organizational setup. 
The outcome ω  of configuration tÖ  is given by the maximal relative 
performance enhancement which is achieved within the last T* periods 
of the adaptive walk, i.e., 
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The evaluation of the outcome can be regarded positive (1) or 
negative (-1), where the assessment of ω depends on whether or not it, 
at least, equals an aspiration level v. Hence, the stimulus )(tτ  results as

	 (6)

Let ),( tap l  denote the probability of an alternative within 
dimension l of organizational setup to be chosen at time t (where

1),(0 ≤≤ tap l  and 1),( =∑
∈ Ll Aa

l tap ); )(tal  denotes the option out 
of set lA  which is implemented at time-step t. The probabilities of 
options ll Aa ∈  are updated based to the following rule, where l  
( 10 ≤≤ l ) reflects the reinforcement strength [21]:

	 (7)

After the probabilities are updated according to Eq. 7, the 
organizational setup tÖ  to be implemented from time steps 1+t  to 

*Tt +  is determined randomly based on the updated probabilities.

2)	 Organizational Setup.

The vector of the organizational setup Ö  is modelled to be three-
dimensional, i.e., 3=L . Within each dimension, three options are 

given (i.e., { }3,2,1  3 ∈∀= lAl ). These dimensions relate to (see also 
Table I):

1.	 The objective of the search agents as controlled by parameter rα  

in Eq. 3. For the sake of simplicity, rα  is modelled to be the same 

for all search agents Mr ,...,1= . In the following we skip index r.
2.	 The precisions of ex ante-evaluations made by search agents and 

by the central agent as given by ownr ,σ  and resr ,σ , and centσ , 
respectively. 

3.	 The mode of coordination as selected out of three alternatives: 
(a) “decentralized”: without intervention from the central agent 
or any coordination which other search agents, each search 
agent autonomously decides on the “own” partial choices rdt
; (b) “lateral veto”: the search agents inform each other about 
their preferences and are endowed with mutual veto power; (c) 
“centralized”: each search agent informs the central agent about 

the two most preferred options from *
1

rd −t , 1,a
t
rd  and 2,a

t
rd ; 

the central agent chooses that combination of preferences which 
promises the highest overall performance V.

III.	Simulation Experiments and Parameter Settings

In the simulation experiments, after a performance landscape is 

generated, the initial organizational setup (i.e., vector 0=tÖ ) of a 
search system is determined randomly with uniform probabilities 

)0,( =tap l  out of the options in each dimension l as introduced 
above and summarized in Table I. Next, the search systems are placed 
randomly in the performance landscape. Then, over an observation 
time T of 500 periods, the search systems are observed while searching 
for higher levels of performance. In each T*-th period, probabilities are 
updated and organizational configurations are (eventually) altered (cf. 
Sec. B). Fig. 1 displays the key events during a simulation experiment 
capturing learning-based adaptation of the organizational setup.

TABLE I
Parameter Settings

Parameter Values / Types
Observation period T = 500

Number of choices N = 12

Interaction structures block-diagonal (K = 2); 
full interdependent (K = 11) 

Number and scope of 
search agents

Baseline scenarios: 
M = 4, with d1 = (d1,...,d3), d2=(d4,…,d6), d3 = 

(d7,…,d9),  
d4 = (d10,…,d12) 

Sensitivity analysis: 
M = 2 with d1 = (d1,...,d6), d2=(d7,…,d12) 

M = 6 with d1 = (d1,...,d3) to d6=(d10,…,d12)

Number of 
organizational 

dimensions
L = 3

Dimension l=1: 
Agents’ objective α Î {0, 0.5, 1}

Dimension l=2: 
Precision of evaluation

(sr,own, sr,res, scent) Î {(0, 0, 0),  
(0.1, 0.15, 0.125),  

(0.05, 0.25, 0.125)}

Dimension l=3:  
Coordination mode

decentralized; lateral veto;  
centralized

Interval of change T* = 25 and  
for contrasting to “no change”: T* > T

Reinforcement 
strength l Î {0, 0.5}

Aspiration level v Î {0, 0.01}
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Fig. 1.  Schematic representation of one simulation run over T periods 
including potential changes of the search system’s organizational setup. 

In order to oppose search systems with learning capabilities (i.e., 
with l > 0) to non-learning systems employing organizational change, 
simulations for l = 0 are conducted. Moreover, search systems which 
do not alter their organization within the observation time T (i.e., with 
T* > T) are simulated.

In order to capture the complexity of the underlying search problem, 
simulations for two interaction structures are performed which, in a 
way, represent two extreme scenarios [22]: in the block-diagonal 
structure the overall search problem can be segmented into disjoint 
parts with maximal intense intra-sub-problem interactions but no 
cross-sub-problem interactions (K*). An example is given in Figure 2.a 

with K = 2 and K* = 0 where each of the four sub-problems is assigned 
to one search agent. In this setup, one agent’s decisions do not affect 
the performance contributions of the other agents’ choices.

The second case is characterized by full interdependence, i.e., all 
single options di affect the performance contributions of all other 
choices dj≠i and the search problem’s complexity is raised to its 
maximum, i.e., intensity of interactions K as well as the cross-sub-
problem interactions K* are maximal (see Figure 2.b for an example 
with K = 11 and K* = 9).

1 2 3 4 5 6 7 8 9 10 11 12
1 X X X - - - - - - - - -
2 X X X - - - - - - - - -
3 X X X - - - - - - - - -
4 - - - X X X - - - - - -
5 - - - X X X - - - - - -
6 - - - X X X - - - - - -
7 - - - - - - X X X - - -
8 - - - - - - X X X - - -
9 - - - - - - X X X - - -

10 - - - - - - - - - X X X
11 - - - - - - - - - X X X
12 - - - - - - - - - X X X

1 2 3 4 5 6 7 8 9 10 11 12
1 X X X X X X X X X X X X
2 X X X X X X X X X X X X
3 X X X X X X X X X X X X
4 X X X X X X X X X X X X
5 X X X X X X X X X X X X
6 X X X X X X X X X X X X
7 X X X X X X X X X X X X
8 X X X X X X X X X X X X
9 X X X X X X X X X X X X

10 X X X X X X X X X X X X
11 X X X X X X X X X X X X
12 X X X X X X X X X X X X
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X
-

Ag
en

t 1
A

ge
nt

 2
A

ge
nt

 3
A

ge
nt

 4

C
ho

ic
e 

d i
C

ho
ic

e 
d i

A
ge

nt
 1

A
ge

nt
 2

A
ge

nt
 3

A
ge

nt
 4

Choice i  affects performance contribution j
Choice i  does not affect performance 
contribution j

b.  Full interdependent Structure (K=11, K *=9)
Performance Contribution C j

Scope of primary control of search agent r

a. Block-diagonal structure (K=2, K *=0)
Performance Contribution C j

Fig. 2.  Interaction structures and assignment of choices to search agents for 
the a. block-diagonal and b. full interdependent structure. 

IV.	Results

The simulation experiments are conducted for two baseline 
scenarios of complexity (see Figures 2.a and 2.b) and for four modes 
of organizational adaption: (I) no change, (II) change without learning, 
(III) learning-based change with low aspiration level and with (IV) 
high aspiration level. These baseline scenarios are, then, modified in 
the number of search agents. In the modified scenarios, two or six 
search agents are employed instead of four. 

A.	 Baseline Scenarios
Table II displays condensed results of the simulated scenarios. 

The final performance achieved in the end of the observation period  
( 500=tV ) and the performance achieved on average in each of the 500 
periods ( [ ]500;0V ) may serve as indicators for the effectiveness of the 
search process. The same applies to the relative frequency of how often 
the global maximum is found in the final period. The ratio of alterations 
of d informs about the diversity of the short termed search processes, 
while the average number of alterations of organizational dimensions 
informs about the diversity of organizational setups that are implemented 
during adaptive walks and, eventually, modified within in the (mid-



International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 4, Nº4

- 92 -

termed) search for appropriate organizational setups. Figure 3 depicts 
the averaged adaptive walks for the different modes of change in the 
block-diagonal structure of interactions, and Figure 4 reports on the full 
interdependent structure correspondingly. In particular, Figures 3 and 4 
show the performance differences of the “change, no learning” mode 
and the two modes employing learning, against the “no change” mode.

TABLE II
Condensed Results of the Baseline Scenarios

Scenario of 
learning and 

change

Final 
Perform.

Vt=500  
a

Average 
Perform.

[ ]500;0V a

Frequ. 
glob.

max at 
t=500

Ratio of 
altered
configs.

of d

Average 
no. of 
altered 

organiz. 
dimens.
over T

Block diagonal interaction structure (K=5) b

I. No change 0.954 
±0.0042

0.9519 
±0.0035 36.08% 20.00% n/a

II. Change, no 
learning 

0.9599 
±0.0044

0.9582 
±0.001 45.40% 22.97% 38.2

III. Learning 
low asp.lvl

0.9696 
±0.0035

0.9609 
±0.0025 47.40% 19.85% 6.9

IV. Learning 
high asp.lvl

0.914 
±0.0055

0.9296 
±0.0022 17.76% 43.19% 20.0

Full interdependent interaction structure (K=11) b

I. No change 0.8372 
±0.0081

0.811 
±0.0075 4.52% 5.63% n/a

II. Change, no 
learning 

0.8843 
±0.0075

0.8421 
±0.0048 7.84% 10.24% 37.9

III. Learning 
low asp.lvl

0.8684 
±0.007

0.8317 
±0.0059 4.96% 8.74% 6.2

IV. Learning 
high asp.lvl

0.8669 
±0.0093

0.8261 
±0.0058 7.76% 15.98% 36.2

a Confidence intervals, at a confidence level of 99.9%, for final performance range 
between 0.002 and 0.005 and for average performance between 0.001 and 0.003.
b Scenarios: “no change”: T* > 500; “change, no learning”: λ = 0; v = 0.01; 
“learning, low aspiration level”: λ = 0.5; v = 0; “learning, high aspiration level”: 
λ = 0.5; v = 0.01. For further parameter settings see Table I.
Each data row shows the results of 2,500 adaptive walks: 10 walks on 250 distinct 
landscapes.

In the following, three aspects of the presented results are 
discussed in detail: (1) performance differences of scenarios in which 
the organizational setup is changed against scenarios in which the 
organizational setup is modelled to be constant, (2) the effects of 
learning-based adaptation compared to purely random adaptions of the 
organizational setup, (3) the intensity of organizational change (which 
is captured by the average number of altered dimensions.

Concerning the first aspect, Table II as well as Figures 3 and 4 indicate 
that – with one exception – performance levels of scenarios employing 
change persistently go beyond the level of performance achieved 
without change. This behavior can be observed after approximately 
40 periods. These results confirm findings of research which indicate 
that altering the organizational setup in the course of distributed search 
processes may be favorable [8], [10], [11]: It has been argued that 
this is driven by the increased diversity of search which reduces the 
peril of sticking to local peaks. This is broadly confirmed by the ratio 
of alterations of configurations d and the frequency of how often the 
global maximum is found in 500=t  (cf. Table II). 

However, results also suggest that learning by reinforcement with 
high aspiration levels is not universally beneficial. Apparently, the 
complexity of the search problem together with the aspiration level 
subtly affects the benefits of learning. In case of the block-diagonal 

structure, employing learning-based change with a high aspiration 
level leads to performance levels that are remarkably below the 
performances achieved without change throughout the adaptive walk 
from about time-step 75 to 500 and the final performance Vt=500 is about 
4 points of percentage below the “no change” case. An explanation why, 
in case of the block-diagonal interaction structure, a high aspiration 
level apparently induces such a rather poor performance, may be based 
in the specific selective effects induced in this scenario: 

With increasing aspiration level it becomes more unlikely that 
a positive stimulus )(tτ  is achieved under the regime of a certain 
organizational setup – even if the setup had brought some (lower than 
v) performance enhancements in the last T* periods. Hence, even 
potentially appropriate organizational setups are likely to receive low 
probabilities to be re-chosen for the next T* periods. In the block-
diagonal structure with its fairly low level of interactions (K = 2), it is 
rather likely that the global maximum is found [22]: of course, no further 
performance enhancement is possible in these cases and the aspiration 
level is not reached. Whenever the global maximum is found (with 
aspiration level v > 0) the organizational setup is likely to be modified. 
An altered organizational setup also induces a modified evaluation of the 
current configuration d [11]. As a result, a move away from the global 
maximum in the performance landscape becomes likely. 

Fig. 3.  Performance differences of adaptive search processes employing 
organizational change against search processes without alterations of the 
organizational setup in case of the block-diagonal interaction structure. Each 
curve represents the difference of means of the average of 2,500 adaptive 
walks, i.e., 250 distinct performance landscapes with 10 adaptive walks on 
each. For parameter settings see Table I. 

Fig. 4.  Performance differences of adaptive search processes employing 
organizational change against search processes without alterations of the 
organizational setup in case of the full interdependent interaction structure. 
Each curve represents the difference of means of the average of 2,500 adaptive 
walks, i.e., 250 distinct performance landscapes with 10 adaptive walks on 
each. For parameter settings see Table I. 
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The second aspect to be discussed in detail is related to the 
performance effects of learning-based adaptation compared to the 
purely random-driven alterations. The results suggest that learning-
based change is not universally more beneficial than purely random-
driven organizational change. Rather, it appears that the aspiration 
level v is of remarkable relevance: in both interaction structures, 
learning-based adaptation employing a high aspiration level leads to a 
level of final performance that is inferior to the performances achieved 
under purely random-driven change. Employing a low aspiration level 
performs best in the block-diagonal structure it leads to a medium 
performance in the case of high complexity.  

As argued above, a high aspiration level induces more organizational 
alterations which leads to more diversity of search, i.e., more alterations 
of d, as compared to the low aspiration level. For highly complex 
interaction structures, a particular peril is that the search processes may 
stick to a local optimum, and, hence, increasing diversity of search 
“per se” may be beneficial. This might explain the good performance 
of the “change, no learning” mode. However, a high aspiration level, 
in a way, “penalizes” particularly those search processes which have 
reached a good solution from which further improvements are hard to 
achieve: as argued above, the block-diagonal interaction structure is 
particularly prone to this effect; however, the rather low performance 
in the full-interdependent structure (Figure 4) might also be caused by 
this effect.

With the third aspect to be discussed more into detail the intensity 
of organizational change (right-most column in Table II), and, thus, 
the efficiency of the mode of change and learning comes into play. 
The average number of organizational dimensions in which alterations 
occur during the adaptive search may be regarded as an indicator for 
the effort (“costs”), if any, of organizational dynamics. 

Obviously, the context of the search organization is relevant for 
whether, or not, and, if so, in which shape costs of organizational 
change occur. For example, in case of a network of unmanned aerial 
vehicles, collaboratively serving a certain service area, the switch from 
one coordination mode to another might not cause any costs (apart from 
activating another of already available coordination mechanisms); 
however, in case of firm managers, collaboratively searching for better 
configurations of key performance drivers,  reorganizations are rather 
costly, including, for example, learning costs of new organizational 
procedures or the adjustment of incentive schemes. Hence, the average 
number of dimensions changed may be rather critical for the efficiency 
of inducing organizational dynamics of search. 

Results suggest that, in both interaction structures under investigation, 
learning with a low aspiration level yields good performance and a 
high level of efficiency as compared to the other scenarios: 

In case of the block-diagonal interaction structure the final 
performance achieved with a low aspiration level exceeds the 
performance reached via purely random-driven change by about 7 
points of percentage while the average number of organizational 
alterations is remarkably lower (i.e., 6.9 altered dimensions on 
average in case of learning with low aspiration level versus 38.2 in 
case of purely randomized change). If the complexity of the search 
problem is high the performance of the “change, no learning” 
scenario exceeds the performance of learning-based adaptation with 
low aspiration levels; however, this comes along with, on average, 
37.9 organizational alterations compared to 6.2 alterations in the 
latter case.

In sum, it appears that learning with low aspiration level may provide 
rather high performance levels combined with few organizational 
alterations. Thus, whenever organizational alterations do not come 
along without any cost, learning with low aspiration level appears to be 
particularly interesting with respect to the efficiency of search.

B.	 Sensitivity Analysis
In the sensitivity analysis, the baseline scenarios are modified with 

respect to the number of search agents: the simulations additionally 
are conducted for systems with two and with six search agents. In 
particular, the interactions among decisions remain unchanged, but 
the assignment of decisions is modified. Figures 5.a and 5.b show the 
assignment for the case of two agents and six agents, respectively, in 
the block-diagonal structure as compared to Figure 2.a. 

1 2 3 4 5 6 7 8 9 10 11 12
1 X X X - - - - - - - - -
2 X X X - - - - - - - - -
3 X X X - - - - - - - - -
4 - - - X X X - - - - - -
5 - - - X X X - - - - - -
6 - - - X X X - - - - - -
7 - - - - - - X X X - - -
8 - - - - - - X X X - - -
9 - - - - - - X X X - - -

10 - - - - - - - - - X X X
11 - - - - - - - - - X X X
12 - - - - - - - - - X X X

1 2 3 4 5 6 7 8 9 10 11 12
1 X X X - - - - - - - - -
2 X X X - - - - - - - - -
3 X X X - - - - - - - - -
4 - - - X X X - - - - - -
5 - - - X X X - - - - - -
6 - - - X X X - - - - - -
7 - - - - - - X X X - - -
8 - - - - - - X X X - - -
9 - - - - - - X X X - - -

10 - - - - - - - - - X X X
11 - - - - - - - - - X X X
12 - - - - - - - - - X X X

Notes: 
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Fig. 5.  Assignment of four independent sub-problems to a. two and b. six 
search agents. 

In the simulation model, with increasing (decreasing) the number 
of search agents the diversity of search is increased (decreased): 
in each time step, each search agent discovers two alternatives to 
the status quo of the own partial sub-problem (Section II.A) – one 
alternative where one bit is flipped and another with two bits flipped. 
Thus, in case of two search agents, at maximum four bits of the entire 
configuration d could be flipped in time step t; in contrast, with six 
agents at maximum 12 bits could be flipped. Thus, with increasing 
number of agents the need for coordination is increased too, and 
viceversa.

Figures 6 and 7 plot the final performance Vt=500 achieved in the 
block-diagonal and the full-interdependent interaction structure, 
respectively, with two, four and six search agents.  
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Fig. 6.  Sensitivity of final performance to number of search agents in the 
block-diagonal interaction structure. Each mark represents the average of 
2,500 adaptive walks, i.e., 250 distinct performance landscapes with 10 
adaptive walks on each. For parameter settings see Table I. 

Fig. 7.  Sensitivity of final performance to number of search agents in the full 
interdependent interaction structure. Each mark represents the average of 2,500 
adaptive walks, i.e., 250 distinct performance landscapes with 10 adaptive 
walks on each. For parameter settings see Table I. 

The results suggest that the “change, no learning” mode and 
learning with low aspiration level are least sensitive to the number of 
agents. In contrast, the final performance obtained by learning with 
high aspiration level varies considerably with the number of agents. 
However, the “no change” mode appears most sensitive to an increase 
in the number M of search agents compared to the modes employing 
organizational change.

With the transition from two to four agents, the final performance 
shows rather slight de- or increases – depending on the mode of change 
and the interaction structure. However, with the transition from four to 
six agents the final performance obtained decreases remarkably in both 
interaction structures.

An interesting question is what might cause these effects. A reason 
might be given by the relation between assignment of decisions to search 
agents and the interactions among agents’ decisions. For example, with 
six search agents in the block-diagonal structure (Figure 5.b), cross-
agent interactions among search agents’ choices occur whereas for 
two and four agents no cross-agent interactions show up (Figure 5.a.). 
Hence, in this interaction structure the need for coordination among 
agents’ choices ranges from no need at all (i.e., K* = 0 for M = 2 and 
M = 4) to some coordination need as captured by K* = 1 or K* = 2 (see 
Figure 5.b). 

V.	 Conclusion

The major finding of this study is that employing self-adaptation for 
the organizational setup of distributed search systems via reinforcement-

based learning potentially leads to high levels of performance and this, 
in particular, with a rather high level of efficiency, as given by the 
extent of reorganization. These findings are particularly interesting 
when reorganizing the search system causes marginal costs – may it be 
due to learning of new organizational procedures on the agents’ site or 
adjustments required in institutional arrangements.

However, the results also suggest that the complexity of the search 
problem together with the aspiration level considerably shapes the 
effects of reinforcement learning – which, at worst, may even be 
harmful if compared to refraining from any organizational alterations. 
These findings may sensitize the designer of a distributed search system 
to employing learning by reinforcement as the level of the aspired 
performance enhancements should not be overstretched in order to 
avoid “hyper-actively and ineffectively” alternating search systems. 
Moreover, the sensitivity analysis suggests that learning with high 
aspiration level is particularly sensitive to the need for coordination 
among search agents.

These findings emphasize the need for further research efforts. An 
obvious next step is to test the key idea of inducing learning-based 
organizational change in more practical settings than the one presented 
here. Though some preliminary results obtained for learning-based 
selection of the coordination mode in terms of the job scheduling 
policy employed by a swarm of unmanned aerial vehicles [23] provide 
some support for the ideas presented in this paper, further applications 
are definitely of interest. 

Moreover, further studies should perform in-depth analyses of the 
role of the aspiration level and other parameters like the interval between 
of organizational alterations or the learning strength which were fixed 
in the simulation experiments presented in this paper. Furthermore, the 
basic search problem captured in this study is rather unstructured in 
terms of randomized performance contributions (apart from the structure 
of interactions); hence, in further research studies learning-based 
organizational adjustments of the search system may turn out to be even 
more beneficial in case of more structured search problems.
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