
International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 3, Nº7

- 20 - DOI: 10.9781/ijimai.2016.373

Query Migration from Object Oriented World to
Semantic World

SOUSSI Nassima, BAHAJ Mohamed

Department of Mathematics & Computer Science, Faculty of Science and Technologies, Hassan 1st University, Settat, Morocco

Abstract — In the last decades, object-oriented approach was
able to take a large share of databases market aiming to design
and implement structured and reusable software through the
composition of independent elements in order to have programs
with a high performance. On the other hand, the mass of
information stored in the web is increasing day after day with
a vertiginous speed, exposing the currently web faced with the
problem of creating a bridge so as to facilitate access to data
between different applications and systems as well as to look
for relevant and exact information wished by users. In addition,
all existing approach of rewriting object oriented languages to
SPARQL language rely on models transformation process to
guarantee this mapping. All the previous raisons has prompted us
to write this paper in order to bridge an important gap between
these two heterogeneous worlds (object oriented and semantic web
world) by proposing the first provably semantics preserving OQL-
to-SPARQL translation algorithm for each element of OQL Query
(SELECT clause, FROM clause, FILTER constraint, implicit/
explicit join and union/intersection SELECT queries).

Keywords — OQL, SPARQL, Semantic Web, Object, OQL To
SPARQL.

I. InTRoducTIon

The Semantic Web [1] is an extension of the current web in which
information is given well-defined meaning, better enabling

computers and people to work in cooperation; it’s based on the
standards and protocols of the current web (http, URI and XML) and
its own standards: The Resource Description Framework RDF [3]
dedicated to describe data, the Web Ontology Language OWL [2] for
creating structured ontology and the query language SPARQL [4] for
querying data from RDF graphs.

Currently, the majority of information systems for companies
databases adopt the object-oriented approach regarded as the
best data organization paradigm providing the ability to represent
complex entities and implement structured software with very high
performance, which makes the development of methods and tools for
automatic mapping from object oriented world to semantic world a
very relevant need. These reasons motivated us to work on this topic so
as to elaborate a first conversion query algorithm of OQL to SPARQL
that translate each component of OQL SELECT query to its equivalent
in SPARQL language.

II. RelaTed woRks

Recently, several researches focus on the mapping of data, models,
concepts, and queries from the existing data source content to semantic
web world. The majority of these researches are interested much more
to the relational systems than others; several approaches have been

proposed about this mapping direction, such as: RETRO [6] that choose
not to physically transform the data but to derive a domain specific
relational schema from RDF data and its query mapping transforms
an SQL query over the schema into an equivalent SPARQL query
executable upon the RDF store. R2RML [7,8] a language for expressing
customized mappings from relational databases to RDF datasets
presented recently with a novel version which provides a user interface
to create and edit mappings interactively even for non-experts. D2RQ/
Update [5] is an extension of D2RQ [9] to enable executing SPARQL/
Update statements on the mapped data, and to facilitate the creation of
a read-write Semantic Web.

Regarding the object-oriented data source, the SPOON approach
(Sparql to Object Oriented eNgine) described in [11] propose an
automatic mapping between the object-oriented model (ODL) and the
correspondent one at the ontological level in order to build a SPARQL
endpoint. The paper [12] aims to address query rewriting by means of
model transformations. In fact, it allows querying RDF data sources via
an object oriented query which is automatically rewritten in SPARQL
in order to access RDF data, it also translate SPARQL queries into
object oriented queries so as to implement SPARQL endpoints for
object oriented applications.

These studies did not propose any query translation solution for
rewriting each element of Object Oriented queries into SPARQL
queries semantically equivalent but they rely on models transformation
process to guarantee this mapping.

III. QueRy language MeTaModel & exaMPles

In this section, we describe languages used by our translation
approach from object oriented world to semantic web world in order to
represent each language with its own metamodel developed from their
grammars [14] [15] : the Object Query Language (OQL) for object-
oriented databases and a query language for RDF data (SPARQL).

A. OQL Metamodel
The OQL is an object-oriented query language in the Object Data

Management Group standard named ODMG; this language provides
an easy access to an object databases. Like SQL, the SELECT query
which runs on relational tables works with the same syntax and
semantics on collections of ODMG objects, which leads to search for
an instance of an object rather than looking for a row of data. Several
implementations of this standard exist; we quote as examples: HQL
[16], JPQL [17], and others.

The metamodel schematized below is limited to SELECT Query in
its simple and compound form (Intersect and Union SELECT query).
The fig. 1 represents the OQL query of such a type that is composed
of five clauses: SelectFromClause, WhereClause, GroupByClause,
OrderByClause and HavingClause.

Regular Issue

- 21 -

Fig. 1. The OQL Query representation

The SelectFromClause representation is given in fig 2. This clause
is composed of an optional SelectClause (we can omit the SELECT
clause in some implementation of OQL language such as HQL) and
a mandatory FromClause. A SelectClause contains a PropertyList
composed of a list of values or objects resulting from the query; these
properties are described as a path that permits to browse the object
model. The FromClause allows selecting properties from the object
model. This clause is composed of a mandatory ClassReference and
an optional ClassJoined ; the ClassReference indicates the class name
ClassNameDeclaration or collection name CollectionNameDeclaration
of selected objects whereas the ClassJoined indicates the set of classes
which we want to join.

Fig. 2. Representation of the Select FROM Clause

The fig. 3 describes the WhereClause expression that represents the
constraint part of the query. It can be a binary expression (and, or) or
an operator expression (<,=<, >, >=,=) containing an attribute path and
a value.

Fig. 3. Clause Representation of the Where Clause

B. SPARQL Metamodel
The SPARQL is an RDF query language, that is, a semantic query

language for databases, able to retrieve and manipulate data stored
in Resource Description Framework (RDF) format [13]. The fig. 4
schematizes the SPARQL metamodel presented the different types for
queries. In this paper, we are only interested by SelectQuery.

Fig. 4. The different types of Query Operation in the SPARQL metamodel

The SelectQuery as presented in the fig. 5 is composed of the
SelectClause identifies the variables to appear in the results, and the
WhereClause consists, in its turn, of GroupGraphPattern represents
a set of GraphPattern identifying a various kinds of graph pattern:
(a) FilterPattern: used to filter a set of objects using a various
criteria and requirements. The filter expressions can be combined
through the logical operations so as to form more complex filter, (b)
TripleSameSubject: includes a subject and associated properties, (c)
UnionGraphPattern: union of patterns, (d) OptionalGraphPattern:
optional patterns.

Fig. 5. Representation of the Group Graph Pattern in the SPARQL metamodel

C. Examples
In the examples illustrated in Table I, we consider the two classes

quoted bellow that list the Person class having as attributes: matricule,
name, age, degree and addr which represents the declaration of
Address class in Person class as an attribute; the Address class having
as attributes: id, city and state. The OQL queries listed in this example
have the types: Simple query (SELECT FROM clause with/without
WHERE clause), implicit and explicit join, Union and intersection
SELECT queries.

Class Person{
 attribute string matricule;
 attribute string name;
 attribute integer age;
 attribute string degree;
 relationship Address addr;
}

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 3, Nº7

- 22 -

Class Address {
attribute integer id;
attribute string city;
attribute string state;
}

TABLE I
QUERIES EXAMPLES USING OQL AND SPARQL

Query
Type OQL SPARQL

Simple
Query

SELECT p.name, p.age
FROM Person p
WHERE p.age<30

SELECT ?name ?age
WHERE {
 ?who <Person#name> ?name;
 <Person#age> ?age.
 Filter (?age < 30)
}

Explicit
Join

SELECT p.name, a.city
FROM Person p JOIN
Address a
ON p.addr = a.id
WHERE a.state = “MA”

SELECT ?name ?city
WHERE {
 ?who <Person#name> ?name;
 <Person#addr> ?addr.
 ?addr <Address#city> ?city;
 <Address#state> ?state.
 Filter (?state = “MA”)
}

Implicit
Join

SELECT p.name, a.city
FROM Person p, Address
a WHERE a.state =
“MA”

Union
Query

SELECT p.name
FROM Person p
WHERE p.age<20
UNION
SELECT p.name
FROM Person p JOIN
Address a
ON p.addr = a.id
WHERE a.city = ”Nice”

SELECT ?name
WHERE
{ ?who <Person#name> ?name;
 <Person#age> ?age.
 Filter (?age < 20)
}
UNION
{ ?who <Person#name> ?name;
 <Person#addr > ?addr.
 ?addr <Person#city> ?city
 Filter (?city = “Nice”)
}

Intersect
Query

SELECT p.name
FROM Person p
WHERE p.age>26
INTERSECT
SELECT p.name
FROM Person p JOIN
Address a
ON p.addr = a.id
WHERE a.city = ”Paris”

SELECT ?name
WHERE
{
{ ?who <Person#name> ?name;
 <Person#age> ?age.
 Filter (?age > 26)
}
{ ?who <Person#name> ?name;
 <Person#addr> ?addr.
 ?addr <Address#city> ?city;
 Filter (?city = “Paris”)
}
}

Iv. QueRy MaPPIng algoRIThM

In this section, we will detail our main contribution by
describing all procedures used in our query mapping algorithm:
ConstructSparqlSelectClause, ConstructTriplePattern,
ConstructFilterExpression ConstructSparqlWhereClause,
MappingOQLtoSPARQL and Merge. The fig. 6 schematizes our
approach as follow:

Fig. 6. Representation schema of our mapping approach

A. ConstructSparqlSelectClause Subprocedure
The ConstructSparqlSelectClause subprocedure takes as input a

set of attributes from an OQL SELECT Attributes (OSA) in order to
glance through this set and extract the attributes name and add each one
to the SPARQL SELECT clause initially blank which is returned at the
end by this procedure.

Input : OSA
Output : A SPARQL SELECT Clause
Begin
select = “”
{A SPARQL SELECT Clause that is initially blank}
for each attribute attr ∈OSA do
 attrName = getAttrName(attri)
 select += “?” + attrName + “ ”
end for
return select
End Algorithm

B. ConstructTriplePattern Subprocedure
The ConstructTriplePattern subprocedure takes as input the OQL

SELECT Attributes, OSA, Class Reference, CR, Class Joined, CJ
and Where Clause Attribute, WCA so as to return at the end a set
of Triple Patten of SPARQL equivalent query. Firstly, the algorithm
stores the OSA in the set A (initially blank) dedicated to contain all
query attributes, then it verifies the existence of join in the query by
determining its type if it exists; In fact, the explicit join type is checked
if the CJ variable is not null, in this case, the algorithm extract the
join condition operand in order to add it to the set A, and next it also
extract the ClassReference included in the ClassJoined clause in order
to add them to the set CR dedicated to contain all Classes References
of the query. Similarly, the implicit join type is checked if the number
of elements of the set CR is strictly greater than 1, in this case, the
join condition operand is added to the set A. If the query contains a
where clause, its attribute is added also to the set A. Before adding
attributes to the set A, the algorithm checks firstly if these attributes do
not already exist in that list.

After the combination of all the query attributes in the set A and
Classes references in the set CR, it glances through the set A for each
Class Reference CRi in order to extract for each aj attribute its name
and the alias for its class; if the CRi alias equal to the alias of the class
attribute aj, then it formulate the triple pattern of equivalent SPARQL
query and adds it to the set TP and removing the attribute aj from the
list A so as not to reprocess it in the following iterations. The attributes

Regular Issue

- 23 -

that do not satisfy the above condition will be stored in a temporary list
so as to add them again to the set A and switch to the next reference
class and repeat the same process.

Input : OSA, CR, CJ, WCA
Output : A set of Triple Pattern
Begin
A = ø {Set of all query attributes initially blank}
Stack Atemp = EmptyStack
Boolean simpleJoin = False
A.add(OSA)
if (CJ != ø OR CR.size>1) then
 simpleJoin = True
 if (CJ != ø) then //Explicit Join
 JCAl = CJ.getJoinCond().loperand()
 CR.add(CJ.getCR())
 else if (CR.size>1) then //Implicit Join
 JCAl = CR1.getClassName().getExternalKey()
 end if
 if (A.ExistInList(JCAl) == False) then
 A.add(JCAl)
 end if
end if
if(WCA!=NULL AND A.ExistInList(WCA)=False) then
 A.add(WCA)
end if
for i ← 1 to CR.size do
 for j ← 1 to A.size do
 attrClassAlias = getClassAlias(aj)
 attrName = getAttrName(aj)
 if (CRi.getClassAlias() == attrClassAlias) then
 tp←{?si <CRi.getClassName()#attrName> ?attrName}
 if (simpleJoin==True AND
 tp.object == CRi.getClassName().getFK()) then
 ?si+1 = tp.object
 end if
 TP.add(tp)
 A.remove(aj)
 else
 Atemp.add(aj)
 end if
 end for
 while (Atemp.size>0) do
 A.add(Atemp.remove())
 end while
end for
return TP
End Algorithm

C. ConstructFilterExpression Subprocedure
The ConstructFilterExpression subprocedure takes as input an OQL

where condition, WC, so as to extract the left operand, operator and

right operand, and formulate at the end the FILTER clause expression
of the SPARQL equivalent query.

Input : An OQL where condition, WC
Output : A Filter Expression
Begin
 filterExp = “”{A Filter Expression that is initially blank}
 if (WC != NULL) then
 leftOp = WC.lOperand
 Op = WC.Operand
 rightOp = WC.rOperand
 attrName = getAttrName(leftOp)
 filterExp =“FILTER(”+ ?attrName +Op+ rightOp +“)”
 end if
return filterExp
End Algorithm

D. ConstructSparqlWhereClause Subprocedure
The ConstructSparqlWhereClause subprocedure takes as input

the set of triple pattern TP returned by the ConstructTriplePattern
Subprocedure and the Filter Expression FilterExp returned by the
ConstructFilterExpression Subprocedure. This algorithm glances
through the set of TP to concatenate the triple patterns in order to
formulate the SPARQL WHERE clause equivalent. In the case where
the two triple patterns have the same subject, the second one will be
reduced by removing its subject and adding a comma after the first
triple pattern.

Input : TP, FilterExp
Output : A SPARQL WHERE Clause
Begin
where = “” {A SPARQL Where Clause that is initially blank}
for i←1 to TP.size then
 if (i>1 AND TP[i].subject == TP[i-1].subject) then
 TP[i] ← {TP[i].predicate TP[i].object}
 where += “;” + TP[i]
 else
 where += TP[i]
 end if
end for
if (isEmpty(FilterExp) == False) then
 where += FilterExp
end if
return where
End Algorithm

E. MappingOQLtoSPARQL Procedure
The MappingOQLtoSPARQL is the main procedure of our algorithm;

it takes as input the OQL SELECT query, qin so as to return at the end
the SPARQL equivalent query, qout. A conversion tree of OQL query is
generated by using the parse function. If the query type is “SimpleQuery”,
the conversion tree generates SPARQL SELECT clause, FROM clause
contained classes references and WHERE clause if it exists, then the
set of triple patterns is constructed from the ConstructTriplePattern,
and the FILTER expression from ConstructFilterExpression qualifying
as inputs for the ConstructSparqlWhereClause generated the SPARQL

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 3, Nº7

- 24 -

WHERE clause. The SPARQL SELECT clause is generated from
ConstructSparqlSelectClause; the results of previous Subprocedures
are concatenated so as to formulate the SPARQL equivalent query. We
proceed with the same manner if the OQL query type is “JoinQuery”
except that the OQL conversion tree will generates the ClasseJoined in
addition to ClassReference in FROM clause. In cases where the type of
the OQL query is “UnionQuery” or “IntersectQuery”, the conversion
tree generates two OQL SELECT queries q1 and q2 that will be used in
the recursive procedure MappingOQLtoSPARQL so as to construct the
SPARQL SELECT query of each one and concatenate them in order to
have an equivalent SPARQL SELECT query.

Input : An OQL SELECT Query, qin

Output : A SPARQL Query, qout

Begin
qout = “” {A SPARQL query that is initially blank}
tree = parse(qin) {A parse tree obtained by parsing qin}
qin

SELECT = tree.getSelectClause();
qin

FROM_CR = tree.getClassReference()
qin

FROM_CJ = tree.getClassJoined()
qin

WHERE = tree.getWhereCond()
qout

SELECT = “SELECT” qout
WHERE = “WHERE {”

TP ← ø { The set of triple patterns is initially empty}
if (tree.type == SimpleQuery) then
 T P = ConstructTriplePattern(qin

SELECT, qin
FROM_CR, NULL,

qin
WHERE)

 FilterExp = ConstructFilterExpression(qin
WHERE)

 qout
WHERE += ConstructSparqlWhereClause(TP, FilterExp)

 qout
SELECT += ConstructSparqlSelectClause(qin

SELECT)
 qout = qout

SELECT + qout
WHERE +” }”

else if (tree.type == JoinQuery) then
T P = ConstructTriplePattern(qin

SELECT, qin
FROM_CR, qin

FROM_CJ,
qin

WHERE)
FilterExp = ConstructFilterExpression(qin

WHERE)
 qout

WHERE += ConstructSparqlWhereClause(TP, FilterExp)
 qout

SELECT += ConstructSparqlSelectClause(qin
SELECT)

 qout = qout
SELECT + qout

WHERE +” }”
else if (tree.type == UnionQuery) then
 q1 = tree.leftSubTree(), q2 = tree.rightSubTree()
 q1

out = MappingOQLtoSPARQL(q1)
 q2

out = MappingOQLtoSPARQL(q2)
 qout = Merge(q1

out, q2
out, “UNION”)

else if (tree.type == IntersectQuery) then
 q1 = tree.leftSubTree(), q2 = tree.rightSubTree()
 q1

out = MappingOQLtoSPARQL(q1)
 q2

out = MappingOQLtoSPARQL(q2),
 qout = Merge(q1

out, q2
out, “INTERSECT”)

end if
return qout

 End Algorithm

F. Merge Subprocedure
The Merge subprocedure takes as inputs two OQL subqueries and

the merge type in order to generate a significant and valid SPARQL
query. Firstly, it extracts the SELECT clauses from each subqueries and

encapsulate these in S1 and S2, secondly, it extracts and encapsulate
the triple patterns of each subqueries in TP1 and TP2. Finally, it
extracts and stores the FILTER expressions of each the subqueries
in F1 and F2. If the merge type is “UNION” then the qout’s SELECT
clause takes one of subqueries SELECT clause, and the qout’s WHERE
clause is formulated from the concatenation of the q1’s WHERE clause
returned by the ConstructSparqlWhereClause Subprocedure taking
as inputs TP1 and F1 as well as the keyword UNION and the q2’s
WHERE clause returned also by the ConstructSparqlWhereClause
Subprocedure taking as inputs TP2 and F2. We proceed with the same
manner if the SPARQL query type is “JoinQuery” except that we
remove the keyword Union.

Input: q1, q2, mergeType
Output: A SPARQL query qout
Begin
qout = “SELECT”
S1=q1.ExtractSelectClause();
S2=q2.ExtractSelectClause();
TP1= q1.ConstructTriplePatterns();
TP2= q2.ConstructTriplePatterns();
F1 = q1.ExtractFilter();
F2 = q2.ExtractFilter();
if (mergeType = “UNION”) then
 qout += ConstructSparqlSelectClause(S1)
 qout+=“WHERE{ {“ + ConstructSparqlWhereClause(TP1, F1)
+ “} UNION {” + ConstructSparqlWhereClause(TP2, F2) + “} }”
else if (mergeType = “INTERSECT”) then
 qout += ConstructSparqlSelectClause(S1)
 qout += “WHERE{ {“ + ConstructSparqlWhereClause(TP1,
F1) + “}{” + ConstructSparqlWhereClause(TP2, F2) + “} }”
end if
return qout
End Algorithm

v. conclusIon

In summary, the main contribution of this paper in the pertinent topic
of interoperability between object oriented world and relational world
is the elaboration of a query conversion algorithm of the OQL SELECT
queries to SPARQL equivalent queries by translating each element
of OQL query (SELECT clause, FROM clause, FILTER constraint,
implicit/explicit join and union/intersection SELECT queries) to its
equivalent in SPARQL language so as to bridge the gap between this
two world without a physical data transformation.

One obvious extension of our research is to reinforce our algorithm
by supporting more concepts, such as: subqueries, collections,
aggregation and composition.

RefeRences

[1] T. Berners-Lee, J. Hendler and O. Lassila, “The Semantic Web, Scientific
American”, Mai 2001.

[2] S. Bechhofer, “OWL: Web ontology language”. In Encyclopedia of
Database Systems (pp. 2008-2009). Springer US, 2009.

[3] World Wide Web Consortium. RDF 1.1 Concepts and Abstract Syntax.
2014.

[4] J. Pérez, M. Arenas & C. Gutierrez, “Semantics and complexity of
SPARQL ”. ACM Transactions on Database Systems (TODS), 34(3), 16,

Regular Issue

- 25 -

2009
[5] V. Eisenberg and Y. Kanza, “D2RQ/update: updating relational data

via virtual RDF”, In Proceedings of the 21st international conference
companion on World Wide Web (pp. 497-498), 2012.

[6] J. Rachapalli, V. Khadilkar, M. Kantarcioglu, and B. Thuraisingham,
“RETRO: A Framework for Semantics Preserving SQL-to-SPARQL
Translation”, The University of Texas at Dallas, 800 West Campbell Road,
Richardson, TX 75080-3021, USA, 2009.

[7] K. Sengupta, P. Haase, M. Schmidt, and P. Hitzler, “Editing R2RML
mappings made easy”, 2013.

[8] S. Das, S. Sundara, and R. Cyganiak, “R2RML: RDB to RDF Mapping
Language”. Working draft, W3C, 2011.

[9] C. Bizer, A. Seaborne, “D2RQ: treating non-RDF databases as virtual
RDF graphs”, In: International Semantic Web Conference ISWC (posters),
2004.

[10] S. Auer, S. Dietzold, J. Lehmann, S. Hellmann, and D. Aumueller, “Triplify-
-Light-Weight Linked Data Publication from Relational Databases”, In
Proceedings of the 18th International World Wide Web Conference, 2009.

[11] W. Corno, F. Corcoglioniti , I. Celino and E. Della Valle, “Exposing
Heterogeneous Data Sources as SPARQL Endpoints through an Object-
Oriented Abstraction”, In: Asian Semantic Web Conference (ASWC
2008), pp. 434–448, 2008.

[12] G. Hillairet, F. Bertrand, & J. Y. Lafaye, “Rewriting queries by means of
model transformations from SPARQL to OQL and vice-versa”, In Theory
and Practice of Model Transformations (pp. 116-131), Springer Berlin
Heidelberg, 2009.

[13] SPARQL. (2015, avril 27). Wikipedia. Retrieved from https://fr.wikipedia.
org/wiki/SPARQL. Last visited January 2016.

[14] OQL Grammar. (2015, September 23). Retrieved from https://wiki.
openitop.org/doku.php?id=2_2_0:oql:oql_grammar. Last visited January
2016.

[15] E. Prud’hommeaux, S. Harris, Garlik, and A. Seaborne. SPARQL 1.1
Query Language. (2013, 21 March) . Retrieved from http://www.w3.org/
TR/sparql11-query/#sparqlGrammar. Last visited december 2015.

[16] S. Guruzu, and G. Mak, “HQL and JPA Query Language”. Hibernate
Recipes: A Problem-Solution Approach, 155-166, 2010.

[17] J. Juneau, “The Query API and JPQL”. In Java EE 7 Recipes (pp. 447-
470). Apress, 2013.

N. SOUSSI was born in 1991, in Khouribga, Morocco.
She got her special higher studies degree in software
engineering from National School of Applied Sciences
in 2014. She is now a Phd student in the Department of
Mathematics and computer sciences, Faculty of Sciences
& Technology of Settat, Hassan 1st University, Settat,
Morocco. Her area of interest includes web ontologies and
semantic web.

M. BAHAJ is a full professor in the Department of
Mathematics and Computer Sciences from the University
Hassan 1st Faculty of Sciences & Technology Settat
Morocco. He is co-chairs of IC2INT, International
Conference on Software Engineering, Databases and Expert
Systems (SEDEXS’12) , NASCASE’11. He has published
over 80 peer-reviewed papers. His research interests are
intelligent systems, ontologies engineering, partial and

differential equations, numerical analysis and scientific computing. He is
Editor-in-Chief for Australasian Journal of Computer Science and associate
editor of Journal of Artificial Intelligence and Journal Software Engineering.

