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Abstract — Evolution of membrane potential and spiking 
activity for a single leaky integrate-and-fire (LIF) neuron in 
distributed delay framework (DDF) is investigated. DDF provides 
a mechanism to incorporate memory element in terms of delay 
(kernel) function into a single neuron models. This investigation 
includes LIF neuron model with two different kinds of delay kernel 
functions, namely, gamma distributed delay kernel function and 
hypo-exponential distributed delay kernel function. Evolution 
of membrane potential for considered models is studied in terms 
of stationary state probability distribution (SPD). Stationary 
state probability distribution of membrane potential (SPDV) 
for considered neuron models are found asymptotically similar 
which is Gaussian distributed. In order to investigate the effect 
of membrane potential delay, rate code scheme for neuronal 
information processing is applied. Firing rate and Fano-factor 
for considered neuron models are calculated and standard LIF 
model is used for comparative study. It is noticed that distributed 
delay increases the spiking activity of a neuron. Increase in 
spiking activity of neuron in DDF is larger for hypo-exponential   
distributed delay function than gamma distributed delay function. 
Moreover, in case of hypo-exponential delay function, a LIF neuron 
generates spikes with Fano-factor less than 1.

Keywords — Distributed Delay Framework, Fokker-Planck 
Equation, Gamma Distribution, Hypo-exponential Distribution, 
Stationary Probability Distribution, Spiking Activity.

I.	 Introduction

There are a number of neuron models depending on biophysical 
and electrical properties of a neuron suggested in literature [1–5]. 

Among these neuron models, Leaky integrate-and-fire (LIF) model has 
become a backbone for theoretical as well as experimental investigation 
of neuronal dynamics due to its simplicity and analytical solvable 
capability [5, 6, 7]. This model is an RC-circuit equivalent representation 
of a neuron with additional spiking constraint and is widely used for 
mathematical explanation of bio-physical mechanism and information 
processing of neurons [1, 2, 4, 8, 9]. Based on some specific properties, 
many variants of LIF model are suggested in literature [1, 5, 7, 8]. 
These neuron models explain neuronal dynamics adequately, but when 
we talk about memory, we have to rely on group of few neurons or 
neural networks. None of these single neuron models capture memory 
element. Recently, Karmeshu et. al. [10] have suggested a distributed 
delay framework for incorporating the effect of previous values of 
membrane potential (memory) on neuronal dynamics, in which, a 
kernel function is included in LIF model to capture the aggregate effect 
of previous values of membrane potential on its further evolution. It 
is a challenging problem to find an appropriate kernel function so that 
the resulting model can explain most of the variability in neuronal 
responses. To this end, Karmeshu et. al. [10] have investigated their 
proposed framework with exponential distributed delay kernel and 

noticed exponential inter-spike-interval (ISI) distribution, whereas 
Sharma and Karmeshu [11] have obtained transient bi-modality in ISI 
distribution for gamma distributed delay kernel. Choudhary et. al. [12] 
have studied LIF model in DDF with hypo-exponential distributed 
delay kernel and observed huge variability in spiking pattern of a LIF 
neuron as obtained in empirical data. These investigations [10, 11, 12] 
reflect the novelty and robustness of distributed delay framework for 
neuronal dynamics, but none of them suggests about the actual effect 
of distributed delay (memory) on membrane potential evolution and 
spiking activity of a neuron.

Ermentrout and Terman [2], Rudolph and Destexhe [13] have 
suggested methods for estimating the moments of excitatory and 
inhibitory conductances from stationary probability distribution of 
membrane potential (SPDV) for a neuron. Ruan and Filfil [14] have 
suggested about stability of steady state distribution of membrane 
potential for discrete delay case and calculated the critical values 
of discrete delay for stable steady state distribution of membrane 
potential. We are interested in investing the effect of memory element 
on evolution of membrane potential and spiking activity of a neuron in 
distributed delay framework [10]. To achieve the objectives, we have 
investigated the LIF model in DDF with two different memory kernel 
functions namely; (i) gamma distributed function (ii) hypo-exponential 
distributed function, and compared the findings with standard LIF 
neuron with stochastic input stimulus. SPDV for considered model is 
calculated in sub-threshold regime of a neuron, whereas, to notice the 
effect of memory kernel on neuronal information processing, firing 
rate of neuron and Fano-factor corresponding to spike-sequences is 
obtained.

The present article is divided in mainly five sections. After a brief 
discussion about literature survey and objective of article in Section 1, 
a massive discussion about DDF for a neuron is discussed in Section 2. 
This section also contains mathematical formulation of LIF model with 
gamma distributed kernel function and hypo-exponential distributed 
kernel function. Section 3 deals with SPDV of considered neuron 
models. Simulation based investigation for spiking activity of LIF 
neuron in DDF and their result interpretation is given in Section 4. 
Section 5 contains analysis of findings and conclusion.

II.	 Distribution Delay Framework of a Neuron

Generalized form for describing the rate of change of membrane 
potential reads [2, 8]

( , )dV f V t I
dt

= +
	 (1)

where I is applied input stimulus and ( , )f V t  is membrane 

potential-current relationship functions. Choices of ( , )f V t  result 
into different kind of neuron models. The simplest representation of 
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Eq. (1) is the LIF model which can be obtained by substitution of the 

Vβ−  for ( , )f V t  LIF model with stochastic input stimulus is given 
as: 

( ) ( )dV V t t
dt

β m ξ= − + +
	 (2)

where ( )V t  is membrane potential, β  is membrane decay constant, 

m  is mean input stimulus, ( )tξ  is delta correlated Gaussian white 

noise with intensity σ , i.e. ( ) 0tξ< >=  and 
2

( ) ( )
2i jt t σξ ξ< >= .

Karmeshu et. al. [10] assumed that the evolution of membrane 
potential not only depends on applied input stimulus but also on 
its previous values (memory) and proposed a distributed delay 
framework to investigate neuronal dynamics. Memory kernel function 

0
( ) ( )

t
K t V dτ τ τ−∫  

is substituted for function ( , )f V t  in Eq. (1) 

in DDF [10]. LIF model with distributed delay function ( )K t  takes 
the form:

0

( ) ( ) ( ) ( )
tdV t K t V t d t

dt
β τ τ m ξ= − − + +∫

	 (3)

Karmeshu et. al. [10], Sharma and Karmeshu [11] have investigated 
this DDF model in the presence gamma distributed delay kernel. 
Choudhary et. al. [12] have studied LIF model incorporating hypo-
exponential distributed delay kernel in DDF. Mathematical formulations 
of these studies [10–12] are described in following subsections.

A.	 LIF Model with Gamma Distributed Delay Function
Following Karmeshu et. al. [10], LIF model including gamma 

distributed delay reads as:

1 ( )

0

( ) ( ) ( )
!

t m m tdV t e V d t
dt m

η τη τβ τ τ m ξ
+ − −−

= − + +∫
	 (4)

where η  and m are delay and shape parameters, respectively. For 
0m = Eq. (4) results neuron model with weak delay, which also a 

termed as neuron model with exponential distributed delay function, 
whereas, for 1m ≥ Eq. (4) results neuron model with strong delay 
[10, 11]. Incorporation of memory kernel in LIF model results a 

non-Markovian membrane potential process { ( ); 0}V t t ≥ which 
can be transformed into Markovian process in extended space [10]. 

Substitution of 
1 ( )

0

( )( ) ( )
!

t m m t

m
t eU t V d

m

η τη τ τ τ
+ − −−

= ∫  into Eq. 
 
 
 (4) and further simplification results a system of coupled SDE

1

0
0

( ) ( )

( ) { ( ) ( )}

( ) { ( ) ( )}

m

i
i i

dV U t t
dt
dU t U t U t

dt
dU t U t V t

dt

ηβ m ξ

η

η η

−

= − + +

= − −

= − −
	 (5)

for {1,2,..., }i m∈ , with initial condition [ ( ) 0V t = and 

( ) 0 {0,1,2,..., }jU t j m= ∀ ∈  at 0]t = .

B.	 LIF with Hypo-Exponential Distributed Delay Function
Sum of synaptic excitatory and inhibitory input stimulus at spike-

generator-locus (SGL) in soma determines the spike generation in 
a neuron [15]. These excitatory and inhibitory input stimulus result 
excitatory and inhibitory membrane potential, respectively [16]. 
Choudhary et. al. [12] has applied hypo-exponential distributed 
kernel function to incorporate the SGL mechanism in DDF. Following 
Choudhary et. al.  [12], LIF model with hypo-exponential distributed 
delay function becomes

( ) ( )

0
( ) ( ) ( )E I

t t tE I

E I

dV e e V d t
dt

λ τ λ τβλ λ τ τ m ξ
λ λ

− − − −= − − + +
− ∫

	(6)

with initial condition ( )V t  at 0t = , where Eλ  
and Iλ  are arrival 

rate of excitatory membrane potential and inhibitory membrane potential. 

In extended space, substitution of ( )
1 0
( ) ( )E

t tU t e V dλ τ τ τ− −= ∫  and 

( )
2 0
( ) ( )I

t tU t e V dλ τ τ τ− −= ∫  into Eq. (6), model takes the form [12]

1 2

1
1

2
2

( ) ( )

( )

( )

E I

I E

E

I

dV U U t
dt
dU t U V

dt
dU t U V

dt

βλ λ m ξ
λ λ

λ

λ

= − − + +
−

= − +

= − +
	 (7)

with initial condition 1 2( ) ( ) ( ) 0V t U t U t= = = at 0t = .

III.	Stationary Probability Distribution of Membrane 
Potential (SPDV) 

SPDV is an interesting feature in theoretical studies due to the 
easier experimental verification than other neuro-physiological 
features [17, 18]. Neuron models in DDF, represented as in Eq. (5) 
and Eq. (7), are systems of coupled stochastic differential equations. 
Calculation of probability distribution of membrane potential requires 
corresponding Fokker-Planck equation. Fokker-Planck equation 
plays a vital role in investigation of stochastic formulation of a 
neuron [6, 19, 20]. Fokker-Planck equations are helpful in solving 
the first passage time problem, calculation of firing rate of neuron 
and in estimation of moments of stochastic conductance. Solution of 
Fokker-Planck equations depends on initial and boundary conditions 
in a great extent [20]. There are many boundary conditions, but two 
of them are more useful in neuronal model context, (i) absorbing 
boundary (ii) reflecting boundary [2]. When membrane potential of 
neuron reaches at boundary (threshold value), immediately a spike 

is generated with the condition ( , ) 1thp V t = , in former boundary 

case, whereas in later case, probability flux ( , )J V t remains equal 
to zero, i.e. membrane potential of neuron never reaches at its firing 
threshold. We consider the reflecting boundary conditions to calculate 
the stationary probability distribution of membrane potential in 
different cases given below.
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A.	 Neuronal Model Gamma Distributed Memory Kernel

Let 0 1( , , ,..., , )G
mp V U U U t  be the spatial probability distribution 

of membrane potential for LIF model with gamma distributed delay 
kernel. Fokker-Planck equation associated with Eq. (5) is

1
1

2 2

0 2
0

{ } ( )

( )
2

G m
G G

m i i
i i

G
G

p U p U U p
dt V U

pU V p
U V

ηβ m η

ση

−
=

∂ ∂ ∂
= − + −

∂ ∂

∂ ∂
+ − +

∂ ∂

∏

	 (8)

with boundary conditions:
 

0 1 0 0
0

( , , ,..., , | 0) ( ) ( ( ) ( ))
m

G
m i i

i

p V U U U t t t t u t U tδ δ
=

= = − −∏
 

and 

0 1 0 1( , , ,..., ,0) ( , , ,..., , | 0) 0G G
m mp V U U U Vp V U U U t t= = =

as V → ∞ .

Define a differential operator 
0

( ... )
mV U U

∂ ∂ ∂
∇ =

∂ ∂ ∂
as a row  

 
vector, and then Eq. (8) can be written as

( ( ( )) )
G

G T
G G

dp A B p
dt

= ∇ + ∇
	 (9)

where

1

1 0

0 ( 2) 1

( )
..................

( )
( )

m

m m

G

m

U
U U

A
U U
U V

ηβ m
η

η
η

−

+ ×

− 
 − 
 =
 

− 
 −   and 

2

( 2) ( 2)

0...0
2

0........0
...........
0........0

G

m m

B

σ

+ × +

 
 
 

=  
 
  
 

Therefore, probability current flux for gamma distributed kernel 
becomes

( ( ( )) )G G T
G GJ A p B p= ∇ + ∇ 	 (10)

For stationary probability distribution 0
Gp
t

∂
=

∂
, G G

Sp p=   and 
for reflecting boundaries, Eq. (10) gives

( ( )) 0G G T
G GA p B P+ ∇ = 	 (11)

Substituting the values of GA , GB  and using matrix calculation in 
Eq. (11), after simplification, we get

21 ( )
2

G
S

G
S

p V
p V

σ β m∂
= − −

∂ 	 (12)

Integration of Eq. (12) yields stationary probability distribution

2 2
2exp{ {( ) }}G

S Gp k Vβ m m
σ

= − − −
	 (13)

Where Gk  is normalization constant.

B.	 Neuronal Model Hypo-Exponential Distributed Memory 
Kernel

Let 1 2( , , , )pH V U U t  be the spatial probability distribution of 
membrane potential for LIF model with hypo-exponential distributed 
delay. Fokker-Planck equation associated with Eq. (7) becomes

1 2 1
1

2 2

2 2
2

{ ( ) } (

) ( )
2

H
H

E

H
H H

I

p U U p U
dt V U

pV p U V p
U V

β m η λ

ση λ

∂ ∂ ∂
= − − +

∂ ∂

∂ ∂
− + − +

∂ ∂ 	 (14)

with boundary conditions:

1 2 0 1 1 0( , , , | 0) ( ) ( ( ) ( ))Hp V U U t t t t U t U tδ δ= = − −

2 2 0( ( ) ( ))U t U tδ −  
and 

1 2 1 2( , , ,0) ( , , , | 0) 0H Hp V U U Vp V U U t t= = =  
as V → ∞ .

Define a differential operator 
1 2

( )
V U U
∂ ∂ ∂

∇ =
∂ ∂ ∂

as a row vector, 
 
and then Eq. (14) can be written as

( ( ( )) )
H

H T
H H

dp A B p
dt

= ∇ + ∇ 	 (15)

where 
1 2

1

2

( )
( )
( )

H E

I

U U
A U V

U V

β m
η λ
η λ

− − 
 = − 
 − 

 and 

2

0 0
2
0 0 0
0 0 0

BH

σ 
 
 

=  
 
  
 

.

Therefore, probability current flux becomes

( ( ( )) )H T
H HJ A B p= ∇ + ∇ 	 (16)

For stationary probability distribution 0
Hp
t

∂
=

∂
, H H

Sp p=   and 
for reflecting boundaries, Eq. (10) gives

( ( )) 0H H T
H HA p B p+ ∇ = 	 (17)

Substituting the values of HA , HB  and using matrix calculation in 
Eq. (17), after simplification, we get

21 ( )
2

H
S

H
S

p V
p V

σ β m∂
= − −

∂ 	  (18)

Integration of Eq. (18) yields stationary probability distribution

2 2
2exp{ {( ) }}H

S Hp k Vβ m m
σ

= − − −
	 (19)

Where Hk  is normalization constant.
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C.	 LIF Model

Let ( , )Lp V t  be the spatial probability distribution of membrane 
potential for LIF model. Following Frank [20] and Burkitt [6, 19], 
Fokker-Planck equation associated with Eq. (2) is

2 2

2{ }
2

L L
Lp pV p

dt V V
σβ m∂ ∂ ∂

= − +
∂ ∂ 	 (20)

with boundary conditions: 0( , | 0) ( )Lp V t t t tδ= = −  and 

( ) ( , | 0) 0L Lp V Vp V t t= = = asV → ∞ .

Probability current flux ( J ) associated with Eq. (20) becomes
2 2

2( )
2

L
L pJ V p

V
σβ m ∂

= − +
∂ 	 (21)

For stationary probability distribution 0
Lp
t

∂
=

∂
, L L

Sp p=  and  
 
for reflecting boundaries, Eq. (21) results

21 ( )
2

L
S

L
S

p V
p V

σ β m∂
= − −

∂ 	 (22)

Integration of Eq. (22) yields stationary probability distribution

2 2
2exp{ {( ) }}L

S Lp k Vβ m m
σ

= − − −
	 (23)

where Lk is normalization constant and can be calculated by using 
law of conservation of probabilities [19].

IV.	Spiking Activity of a Neuron in DDF

Spiking activity of a neuron exhibits a high level of variability [12, 
21, 22]. This variability in spiking activity is essential for encoding 
information in form of spikes sequences [1, 21, 23]. Rate code scheme 
and temporal code scheme are two important strategies used by a 
neuron to encode information into spikes [3, 23–29]. Spike-count and 
Fano-factor related to the spike sequences are two important statistical 
measures of variability for rate code scheme [22, 29, 30]. Spike-count 
is used to encode information whereas Fano-factor provides a measure 
of variability in spike sequence, which can be computed as fallow [22, 
29, 30].

Following Eden and Kramer [30], let spiking activity of a neuron is 

observed for T  time duration, and, if 1 2 3, , ,....t t t  be the spike time 

in observed spike sequence, divide time interval [0, ]T into K  sub-

interval of equal size ( )tδ  and count the number of spikes in each 

sub-interval. Let 1 2, ,..., Kn n n be the number of spike in subintervals, 
respectively. Then

Mean Spike Count: 
1

1 K

i
i

N n
K

−

=

= ∑ 	  (24)

Fano-factor for this spike-sequence can be computed as

Fano-factor: 

2

1

1

( )
( )

1

K

i
i

K

i
i

n N
KF t

K n
δ

−

=

=

−
 =  − 

∑

∑
	 (25)

Fano-factor for a homogeneous Poisson process is exactly 1 [29], 
whereas, experimental data has Fano-factor distant from 1 [4, 5, 17]. 
In order to examine the effect of membrane potential delay on spiking 
activity and information processing of a neuron, we assume the rate 
code scheme of neuronal encoding and investigating the spike-count 
and the Fano-factor associated with spike sequence for considered 
neuron models. We apply Euler-Maruyama scheme in Monte-Carlo 
based simulation method [31, 32].

Let ( ) ( ( )) ( ( )) ( )dX t Y X t Z X t dW t= +  be a stochastic 
differential equation, where X , Y and Z are state variables and 

( )dW t is the Wiener process. Using Euler-Maruyama approximation 

in time sequences 0 1{ 0, ,..., }nt t t t= < = , the considered SDE can 
be simulated as [32]

1 1 1 1( ) ( ) ( ( ))( ) ( ( ))i i i i i i i i iX t X t Y X t t t Z X t t t w+ + + += + − + − 	 (26)

where 1w , 2w , 3w ,… are independent normal variates and for fixed 

step size ( )h : it ih= , thus Eq. (26) takes the form

1( 1) ( ) ( ( )) ( ( )) iX i X i Y X i h Z X i hw ++ = + + 	 (27)

By applying above stated simulation strategy, we simulate neuron 
models given in Eqns. (2), (5) and (7). Eq. (5) is simulated for weak 
delay and strong delay, both, i.e. for 0m = and 1m = . Spike-count 
and Fano-factor of our interest during simulation based study for 
various combination of parameter values are illustrated in Figs. 1-4 
and in Figs. 5-7, respectively. In these Fig.s, legends SLIF, LIFG: 
m = 0, LIFG: m = 1 and LIFH are used which stand for simple LIF 
model, LIF model with gamma distributed delay having 0m = , LIF 
model with gamma distributed delay having 1m =  and LIF model 
with hypo-exponential distributed delay. Spike-count for neurons are 

calculated at fixed 0.1m = , 0.1σ =  and β  ranging from 0 to 0.25 
with the step size of 0.01, whereas, rest parameter values are given 

in Fig. caption. For 0β = , considered neuron models becomes pure 
integrate-and-fire model, thus initial values of spike-count in Figs. 1-4 
are same which is approximately about 100 spikes per second. This 

spiking activity of neurons decreases as β  increases, but, decrease 
in spiking activity in LIF models in DDF is smaller than simple LIF 
model due to presence of delay parameters. Critical value of delay 

parameters (i.e. 1η = , 1Eλ = and 1.01Iλ =  with input stimulus 
of small intensity) where all considered neuron models exhibit similar 

spiking activity is depicted in Fig. 1. When the value of η , Eλ  and 

β  is reduced, a neuron emits more spike as compared to simple LIF 
model due to dependency on past membrane potential values which 
works as memory element. LIFH neuron exhibits more spiking activity 
then other three neuron models due to the presence of delay in both 

excitatory parameter ( Eλ ) and inhibitory parameters ( Iλ ), which is 
well illustrated in Fig.s 2-4. 
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Fig. 1 Spike Count for 1η = , 1Eλ =  and 1.01Iλ = .

Fig. 2 Spike Count for 0.5η = , 0.5Eλ =  and 1.01Iλ = .

Fig. 3 Spike Count for 0.5η = , 1Eλ =  and 0.1Iλ = .

Fig. 4 Spike Count for 0.1η = , 0.1Eλ =  and 0.11Iλ = .

These observations suggest that the spiking activity of a neuron 
increases in presence of memory kernel functions, and in this context, 
hypo-exponential distributed kernel function is more robust than 

gamma distributed kernel function. Now, a pertinent question arises 
that among these considered models, which neuron model is capable 
to generate the greater variability in its spiking activity. To this end, 
we have computed the Fano-factor of spike sequences obtained from 
simulation of considered neuron models.

Fano-factor (also known as index of dispersion) is defined as the 
ratio of variance to the mean number of spike generated by a neuron 

in a fixed time period ( )tδ which can be computed in many repetition 
of simulation of model with same input stimulus [5]. We have applied 
100 times of repetition in our simulation based study for different 
combination of parameter values and corresponding results are 
illustrated in Figs. 5-7.

Fig. 5 Fano-factor for 0.1β = , 0.1m = , 0.15σ = , 1η = , 1Eλ =  

and 0.99Iλ = .

Fig. 6 Fano-factor for 0.25β = , 0.2m = , 0.05σ = , 1η = , 

1Eλ =  and 0.9Iλ = .

Fig. 7 Fano-factor for 0.25β = , 0.2m = , 0.05σ = , 0.5η = , 

0.5Eλ =  and 0.1Iλ = .

For critical parameter values where LIF model in DDF exhibits 
spiking activities similar simple LIF model, their Fano-factor also 
exhibits the similar behavior as illustrated in Fig. 5. It is shown in Fig. 
5 and 6 that Fano-factor for considered neuron models are closer to 1 
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for small time window, which is in a nice agreement with the Poisson 
hypothesis [5], whereas its value increases with respect to increase 
in time window. Increment in the Fano-factor is due to the long-term 
correlation in spiking activity [5], which is higher in LIF neuron with 
hypo-exponential distributed kernel function.

Various experimental studies have suggested that sensory systems 
exhibit the value of Fano-factor less than 1 [5]. We have noticed that 
when delay parameter values are smaller than critical values (as given 
in Fig. 1), LIF neuron with hypo-exponential kernel function is capable 
of generating spikes with less than 1 Fano-factor as shown in Fig. 7. 
Such kind of spiking in LIFH neuron is possible when difference 

between Eλ  and Iλ  is large.

V.	 Result Analysis and Conclusion

Unlike other bio-physical neuron models, analytically solvable 
capability of LIF neuron is higher due to its linear representation though 
it is distant from a real neuron in many bio-physical mechanisms. 
Non-linearity in LIF neuron model arises due to threshold constraint 
[7]. Spiking activity of visual sensory system of many insects, fly 
etc., where spiking-rate is higher, cannot be captured by standard LIF 
neuron. Memory element of a neuron is incorporated in LIF neuron 
by kernel function in DDF [10–12]. We have analyzed these updated 
LIF model and noticed that memory functions do not affect the SPDV. 
Analytical calculation for SPDV of considered neuron models in sub-
threshold regime are found asymptotically similar and exhibiting 
Gaussian-distribution, i.e. from Eqns. (13), (19) and (23), it is clear 

that whenV → ∞ , G H L
S S Sp p p� � . This finding suggests that 

the LIF neuron with such kind of delay kernel functions has no effect 
on its stationary state probability distribution of membrane potential. 
Therefore, delay kernel functions, which can be extended to form 
the membrane potential evolution process, as a Markovian process, 
will exhibit Gaussian distribution for membrane potential, in sub-
threshold regime and one can’t notice the effect of memory in SPDV 
of experimental data. Moreover, parameter estimation techniques 
which are applicable for LIF models (see [13]), can also be applied 
for considered models in distribution delay framework. A pioneering 
question in studies of such kind of stochastic problems is solve the 
associated first passage time (FPT) problem, i.e. to find the distribution 
of time interval, when the membrane potential of a neuron first time 
reaches to its threshold value. Analytical solution of FPT associated 
with the simple LIF neuron model is an unsolved problem, however 
in some special case, one can obtain the solution of simple LIF neuron 
[10, 11].  In addition to the unsolved FPT problem associated with 
simple LIF neuron, FPT problem associated with LIF neuron in DDF 
becomes the challenges in future.

Masas [33] has demonstrated that how the network of spiking 
neurons attains self origination and learning form noise.  DDF also 
provides a way capture the noise values in term of previous values of 
membrane potential. From simulation based study, it is notable that the 
spiking activity of a neuron increases in DDF due to the dependency 
on its previous values. The delay kernel function works as a memory 
function and membrane potential of a neuron attains threshold value in 
quicker time due to memory effect, i.e. previous values of membrane 
potential works as learning. Such kind of spiking activity is helpful 
to describe experimental and physiological data more accurately 
especially where higher firing rate is required. We have also noticed that 
hypo-exponential kernel function is more robust and reliable in term 
of spiking activity and neuronal information processing as compared 
with gamma distributed kernel function, but it is still a challenging 
problem to find a suitable kernel function which can replicate most of 
the experimental data in-vivo and in-vitro. 

Lim et. al. [34] has shown the implementation of the artificial neural 
network (ANN) at hardware level by applying neuristor-based leaky 
integrate-and-fire neuron model. LIF neuron model in DDF can be 
an alternate model for such kind of hardware level implementation of 
ANN due to the increase in spiking activity.
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