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  

Abstract — During the last decade, the general-purpose 

computing on graphics processing units Graphics  (GPGPU) has 

turned out to be a useful tool for speeding up many scientific 

calculations. Computer vision is known to be one of the fields with 

more penetration of these new techniques.   This paper explores 

the advantages of using GPGPU implementation to speedup a 

genetic algorithm used for stereo refinement.  The main 

contribution of this paper is analyzing which genetic operators 

take advantage of a parallel approach and the description of an 

efficient state- of-the-art implementation for each one. As a result, 

speed-ups close to x80 can be achieved, demonstrating to be the 

only way of achieving close to real-time performance. 
 

Keywords — Parallel processing, GPGPU, genetic algorithm, 

stereo. 

 

I. INTRODUCTION 

ECENTLY, custom GPU programming has become one 

of the most popular tools for increasing the efficiency of 

parallel algorithms thanks to the computational capacity of the 

Graphics Processing Unit (GPU) compared to serial CPU 

programs. 

Traditionally, GPUs appeared in the computer market as 

hardware products specialized on rendering tasks and, more 

specifically, for improving the gaming experience. Given that 

most of the rendering pipeline’s steps of were parallel, these 

products rapidly evolved to machines capable of efficiently 

running highly parallel algorithms. In the last decade, the 

flexibilization of the GPU hardware and tools has enabled the 

use of these parallel-processing units for general scientific 

purposes. 

Stereo analysis is a Computer Vision research area that has 

been widely studied in the literature. However, it remains an 

unsolved problem and many algorithms are still proposed 

every year. The aim of the stereo analysis is to obtain depth 

information from a couple of stereo images, simulating how 

the human’s can perceive the depth using just two eyes. 

Solving this problem is very computationally demanding, 

especially when dealing with high-resolution images. GPGPU 

techniques have been recently used for speeding up these tasks 

and great results have been reported in the literature. 

 
 

GPGPU primarily aims to improve the program’s 

performance. It has been demonstrated that using these 

techniques could result in a speed-up of up to x100, depending 

on the algorithms’ nature. This paper proposes to study the 

speed-up achieved by GPGPU programming applied to an 

evolutionary algorithm. A genetic algorithm for stereo 

refinement is implemented in both CPU and GPU and its 

performance analyzed and compared. 

Improving the accuracy and performance of stereo 

algorithms is crucial for many real applications. Robotics has 

been traditionally a research area that has used these 

techniques, but new fields are arising. The digitalization of the 

automotive sector is leading to the incorporation of new 

sensors such as high definition cameras to high-end cars. Fast 

stereo algorithms are needed to provide accurate information 

about the car’s environment. Other applications of stereo 

algorithms are biomedicine, virtual reality, automation or the 

entertainment industry. However, note that any optimization 

problem solved with evolutionary algorithms might benefit 

from the work herein proposed. 

The paper is structured as follows: Section II is a brief 

overview of the GPGPU implementations found in the 

literature, Section III explains the stereo refinement genetic 

algorithm implemented, Section IV describes the details about 

the GPGPU implementation, in Section V some results are 

presented and finally in Section VI some conclusions are 

drawn. 

II. GPGPU OVERVIEW 

GPGPU has been widely used in the literature by the 

computer vision community. Its main role has been to enable 

real-time performance on many demanding algorithms. 

First works on stereo GPU processing were proposed in 

[11]. SSD dissimilarity techniques, a multi-resolution 

approach and a very primitive GeForce4 were used to obtain 

performance equivalent to the fastest CPU commercial 

implementations available. Later, [3] proposed a multi-view 

plane- sweep-based stereo algorithm for handling correctly 

slanted surfaces applied to urban environments. Assuming a 

highly structured scene with buildings, they used a planar prior 

for estimating disparity maps. The algorithm was successfully 

implemented in an Nvidia GPU obtaining real-time frame 

rates. 
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In [6] a high-performance stereo-matching algorithm both 

fast and accurate is proposed. Using a parallel designed AD- 

census and scanline optimization implemented in CUDA in an 

NVIDIA GeForce GTX 480 they achieve near to real- time 

frame-rates. They report an impressive 140x speed up 

compared to the CPU implementation. Another GPU stereo 

matching algorithm using adaptive windows can be found in 

[13]. 

In [4] and [7] a real-time camera tracking and mapping 

using RGB-D cameras is proposed, obtaining quite impressive 

results. Their implementation relays heavily on the use of 

GPGPU, both for tracking and TSDF mapping. Depending on 

the voxel’s resolution, they achieve execution times from 10 to 

25ms. 

GPGPU has also been applied in other fields, such as in 

feature detection and tracking, as proposed in [9]. Their KLT 

GPU implementation achieves real-time 30Hz on 1024768 

resolution images, which is a 20x speed-up compared to their 

CPU implementation. A 10x improve is also reported for the 

SIFT [5] detector implemented in GPU. A CUDA 

implementation of the famous graph cuts algorithm [2, 14, 15] 

is presented in [10], obtaining a 12x performance 

enhancement. 

A similar system to the one herein proposed is presented in 

[8]. In this work, a genetic algorithm for stereo matching is 

also implemented in GPU. However, the genetic algorithms 

have quite different approaches, and their parallel 

implementation does not seam to provide any performance 

boost compared to the CPU one. This paper shows that, with 

the proper GPU implementation, a 50x speed-up can be 

achieved. 

III. GENETIC ALGORITHM FOR STEREO REFINEMENT 

The genetic algorithm for stereo refinement implemented in 

this paper is based on the work proposed in [1]. The 

implementation minimizes a fitness function that is related to a 

Markov Random Field (MRF) and is equivalent to minimizing 

a global energy function. Due to the flexibility of genetic 

algorithms, this function is able to include occlusion handling. 

This algorithm uses a guided search approach with new 

crossover and mutation operators adapted to the stereo 

refinement problem. Each operator will be explained briefly in 

this section. An example of the results that can be achieved 

using these techniques is shown in Figure 1. 

 

A.  Genome representation 

Each individual includes the whole disparity map estimate 

and the occlusion map for both left and right images. 

where g is the genome, gL and gR are the representation of the 

left and right disparity images respectively, XiL and XiR are 

the disparities estimated for pixel i on the left and right 

disparity images, N the total number of pixels in each image 

and Li the set of different disparity labels. 

Occlusion maps are defined as: 

where O(p) is the occlusion map and p is the pixel. 

 

B.  Initialization 

For the initialization process two different window-based 

algorithms with different window sizes, the adaptive support- 

weight approach [12] with random parameters and the census 

based with window-cost aggregation have been used. This 

variation aims to provide a wide range of initial solutions. 

 
 

Fig. 1 Disparity map examples 
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C.  Fitness function 

An energy function that considers discontinuities and 

occlusions is used for the fitness function: 

 

where g is a certain individual, gL is the left disparity image, Il 

and Ir stand for the left and right stereo pair, xi and yi are the 

image coordinates of pixel i, V{p,q} is a smoothing function 

and λs, γs and φs are constant parameters for every pixel. 

Before any fitness function evaluation, a occlusion manage- 

ment process is triggered for classifying pixels correctly before 

any energy evaluation. 

 

D.  Occlusion management 

The process of handling the occluded areas is a two-step 

operation: occlusion detection followed by an occlusion 

management. 

The following operations are defined for calculating the left 

occlusion map: 

being OL the left occlusion map, x(p) and y(p) the x and y 

coordinates of point p respectively and P the set of disparity 

image points. A similar expression can be deduced for the 

right occlusion map. This occlusion map identifies which areas 

of the image are classified as occluded regions. 

For the occlusion management, an iterative process based 

on neighboring disparities of the occluded pixels is applied. 

For the left image, each occluded pixel is assigned the 

disparity value of the most photo-consistent non-occluded 

neighbor from left to right and afterwards it is marked as non-

occluded. If no non-occluded neighbors exist, it maintains its 

occluded status for the next iteration. Special status have the 

occluded pixels whose x(p) coordinate is less than the number 

of disparities analyzed. In this case the iteration is made from 

right to left and bottom-up. The iteration is finished when no 

occluded pixels are left on the left occluded map. 

For the right image it is similarly done but vice versa (right 

to left for common pixels and left to right for pixels whose 

x(p) is at a distance of the number of disparities analyzed from 

the right image border). 

 

E.  Crossover 

The crossover is based on comparing parent’s blocks of 

different sizes and assign the best ones to the same son. This 

operator can be summarized in the following steps: 

1)  Parents are divided into blocks (random sizes) 

2)  The fitness function of each block is evaluated 

3)  Best block is selected to persist in the same child 

 

F.  Mutation 

Three different mutation operations may occur to each 

individual. Firstly, one possible mutation operation is to 

initialize again a group of pixels following the steps explained 

in Subsection III-B with a probability PMa. Secondly, a 

bilateral filter operation with a random window size with a 

probability PMb. Finally, a morphological operation such as 

erode or dilate may occur with a probability PMc. 

IV. ALGORITHM’S GPGPU IMPLEMENTATION 

After analyzing the performance of the serial version of the 

genetic algorithm, it is easy to conclude that the most 

computationally demanding functions are the genetic operators 

and not the genetic algorithm itself. This result is 

straightforward because each genome includes a lot of data 

and information inside (whole four images: two disparity maps 

and two occlusion maps). For example, each genome 

evaluation implies evaluating the energy function for each 

pixel and neighborhood individually. Besides, each genome 

operator is naturally parallel, which suggests that 

implementing these operators in CUDA will have a dramatic 

impact on the genetic algorithm performance. 

In Figure 2 is shown where is computed each genetic 

operation. The left side of Figure 2 represents data information 

is stored and which functions are implemented and executed in 

the CPU. The fitness values are stored in the CPU because 

they are needed for the selection operator in order to decide 

which individuals of the actual population will survive to the 

next one. The right side of the diagram represents which 

information is stored and which functions are evaluated in the 

 
 

Fig. 2: Assignment of genetic operators to GPU and CPU 

 

  
 

 

 



Special Issue on Digital Economy 

 

-72- 

 

GPU. All the genomes are stored in the GPU in order to enable 

fast access to the data from the functions evaluated in the 

device. The only memory transaction between the CPU and 

GPU needed is the copy of the fitness value of each individual 

from device to host and is represented by the big blue arrow 

from the fitness evaluation function icon to the fitness value 

memory in the CPU. Remember that this device-host and vice- 

versa transactions are very costly and must be minimized for 

achieving the best performance. 

The genetic algorithm has been implemented in the CPU 

using the GAlib library. For the image processing and al- 

location it has been used the OpenCV library, specifically the 

GPU module, which facilitates the memory allocation and 

transaction and has quite a lot processing algorithms built-in in 

the GPU already. Finally, evaluation, crossover and mutation 

operators have been implemented in CUDA in several kernels. 

The next sections describe in detail the strategy used for 

implementing efficiently each operator in CUDA language. 

1) CUDA evaluation kernel 

Although the title may suggest that the evaluation of a 

genome is carried out just by one kernel, the reality is that it is 

a process composed by three steps. The first two are solved 

using a single kernel each while the third has to be solved by 

two kernels. The first two steps could be executed in parallel 

by two different CUDA streams but the last have to be 

executed after the firsts have finished. This parallel capability 

has not been implemented and all four kernels have been 

programmed to run in the same stream. 

The first step in the evaluation process is the data term 

evaluation of the energy function. The result is one value for 

each pixel and its calculation is independent from the values of 

the neighboring pixels. Thus, the relation is one to one and its 

parallel implementation is very efficient and straightforward. 

This type of operation is also called MAP, and it has been 

implemented using one thread per pixel in the disparity image. 

A simple diagram of MAP is shown in Figure 3. 

The data term only depends on the values of the left and 

right stereo image and on the disparity image evaluated. Left 

and right stereo images have been allocated in the device as 

2D textures, which are very efficient for interpolation. Note 

that in this case, using shared memory does not make much 

sense because the number of memory accesses needed per 

thread would not bee minimized. The result is saved in a 

floating-point structure of the same size as the original image, 

and here will be referred as memData. 

The second step is the evaluation of the smoothing term. If 

one thread per pixel is used, it requires to access to its own 

disparity value and the neighbouring disparities. This 

operation can be considered a type of Stencil operation, in 

which many reads are needed as input while only one write is 

performed. An illustrative example is shown in Figure 4. 

In order to maximize the performance, shared memory is 

used for first loading all the disparities in a block and then 

using that shared memory in all the threads of the same block. 

Remember that the access to shared memory is much faster 

than the access to global memory. Each thread is related to 

each pixel in the disparity image and it is in charge of 

evaluating the smoothing function that relates itself with the 

right and bottom neighbors. As happened in the data kernel, 

the result is saved into a floating point vector with the same 

size of the disparity image and here will be called 

memSmooth. 

The third and last step is composed of two kernels, one 

executed after the other. It is in charge of performing the 

summation over all pixels of the memData and memSmooth 

structures calculated in the two first steps. This type of 

summation is an operation also known as Reduce. Although at 

first glance this operation might seem difficult to parallelize, 

actually it is fairly simple. Figure 5 shows the two-step 

reduction implemented. Besides, this step sums memData and 

memSmooth individually for each pixel and saving it in 

memTotal in order to facilitate the crossover task explained in 

subsection IV-2. 

For enhancing the performance of the Reduce operation, the 

data has been divided in groups of 1024 addends, each being 

processed by a CUDA block. All the data in each group is 

loaded in shared memory to improve its read and write speed. 

The first kernel performs the summation over each group, 

obtaining one result per group. Finally, the last kernel 

performs the last summation over all the results of the previous 

kernel, and obtains the final value for the fitness function. 

Finally, an asynchronous memory copy is performed from 

device to host to copy the final fitness value calculated for that 

genome. This operation is recommended to be asynchronous 

because the memory copy can be performed at the same time 

 
Fig. 3: Parallel MAP operation 

 
 

 
Fig. 4: Parallel STENCIL operation 

 
 

 
Fig. 5: Reduction operation in two kernels  
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as other kernels are executed in other streams, instead of 

waiting until the memory copy has finished. 

Note that in spite of running all the evaluation kernels in the 

same stream, different individuals are able to run their 

evaluation in different streams, which enables copying 

memory from device to host at the same time as other kernels 

and a higher level of parallel exploitation. 

The evaluation process is performed over the left and right 

disparity map, but for the right one, it is not necessary to per- 

form the final Reduction and memory copy. This optimization 

can be achieved because de fitness function of a genome is just 

the fitness function of its left disparity image. 

2) CUDA crossover kernel 

As explained in Subsection III-E, the crossover operation 

consists of three steps: 

• Divide the two disparity maps into blocks. In this case, the 

number of pixel of each block will not be greater than 1024. 

• Sum up the memTotal for each pixel inside the blocks, 

compare them by pairs (one for each parent) and keep the 

block with the best fitness function. 

• Copy the best block to the children. 

The limit of 1024 pixels per block is related to the 

maximum number of threads per CUDA block available by the 

GPU. All the pixels in a block must be part of the same CUDA 

block be- cause the summation can be performed using shared 

memory, which is much more efficient than global memory. 

Therefore, the CPU realizes the first step, and the following 

two are done by the GPU, the first one as a Reduction 

operation very similar to the one in subsection IV-1 and the 

second one as a very simple copy operation as a MAP. 

3) CUDA occlusion handling kernel 

Occlusion handling encompasses two different tasks: 

occlusion estimation and occlusion management. The 

occlusion estimation is calculated through an image warping, 

where each pixel of the other disparity image is displaced a 

number of pixels equal to its disparity level. Pixels left without 

any assignation are considered to be occluded pixels. Thus, 

each pixel operation is independent from the rest, but several 

threads can output their result to the same piece of memory. 

This operation is also known as Scatter and can be solved 

using, for example, atomic operations. In our case it is not 

necessary because the function aims only to output a boolean 

value, more precisely a zero to indicate that the pixel is not 

occluded. 

The second task is the occlusion management, where the 

main objective is to re-estimate the disparity value for the 

pixels that where labelled as occluded. For this parallel 

implementation the horizontal fast occlusion filling algorithm 

explained in Subsection III-D was used. Given that a 

horizontal search for the closest non-occluded pixel has to be 

performed, the occlusion information was loaded in shared 

memory, being each block responsible for each independent 

scan-line. Each thread is in charge of estimating the new depth 

for each occluded pixel. Figure 8 shows the per-thread 

operations and the memory accesses incurred. 

4) CUDA mutation kernel 

The mutation kernel comprises three different operations: 

bilateral filtering, erosion and dilation. These morphological 

operations are already efficiently implemented in the OpenCV 

library using CUDA. A problem that may rise using a third 

party library is the performance penalty incurred while parsing 

from the data-types used in your application to the data-types 

used in the library and vice- versa. However, in the 

implementation herein proposed, the data types are compatible 

with those from OpenCV, so this transformation is trivial. 

Thus, this library has been used for this purpose. 

V. RESULTS 

In this section the parallel capabilities of the genetic 

algorithm are discussed. Both the serial implementation and 

the parallel one using CUDA are compared. Given the 

stochastic nature of the algorithm and the various types of 

mutations that are likely to happen, the algorithm was run for 

different images during five hundred generations and an 

average per individual and generations was calculated. The 

Middlebury dataset will be used for comparison, as it is a 

standard and well-known test-bed. 

For the tests, an Intel i7-2600 at 3.4 GHz CPU and an 

Nvidia GeForce GTX 770 were used. As operating system, 

Ubuntu Linux 14.04LTS was used given the CUDA 

performance improvement compared to Windows. The 

measuring tool used was the Nvidia Visual Profiler, obtaining 

valuable data such as timing, occupancy, optimizations, et. A 

capture of the profiler is shown in Figure 7. 

The parameters used in the experiments carried out along 

this section are shown in Table I and Table II. 

A comparison between the performances of the GPGPU 

versus the CPU implementation for four Middlebury’s 

common test images is shown in Table III. 

 
 

Fig. 6: Horizontal fast occlusion filling implementation example 

  
 

 
Fig. 7: Nvidia Visual Profiler tool 
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The first column of Table III shows the mean total time 

spent for the CPU implementation for one genome. Note that 

not all genetic operations always occur in each genome and, 

therefore, these results are obtained dividing the total time 

spent by the algorithm by the number of genomes and 

generations. The increment in the CPU execution time from 

Tsukuba to Cones is explained due to the increment in the size 

of the test images. 

The second row shows the same measure, but using now the 

GPU implementation. It is shown that parallelization of the 

genetic algorithm provides a great performance improvement 

compared with the serial one. The speed-up comparison 

between the two algorithms is shown in the third column. Note 

the increment in the performance improvement when the 

images get bigger, suggesting that with more pixels the GPU 

performs more efficiently. However, both CPU and GPU 

implementation still depend highly on the number of pixels in 

the image analyzed. 

In order to study the impact of each genetic operation, Table 

IV shows in detail how the time is divided for each genome. It 

shows that evaluating the genome is the most demanding 

operation. Given that it is an operation that has to be run 

always in every gnome and that it is quite complex (energy 

function composed by several complex terms), this result is 

comprehensible. In comparison, the other operation that is run 

always and has a lot less impact in the total time is the 

occlusion handling. The percentage of the impact is shown in 

Figure 8. 

As a result, it can be said that adding the occlusion handling 

to the algorithm implies a 17% impact on the performance. 

This result does not account for the impact of the occlusion 

variable in the evaluation operator, which here will be 

considered negligible. 

Maybe the result that was unexpected was the efficiency of 

the crossover function. However, although being a demanding 

operation, a lot of information from the evaluation process 

could be reused, leading to an efficient implementation. Bear 

in mind that the crossover it is run with a probability of Pcross, 

so this fact also has an impact on this measure. The same 

occurs with the mutation operation, that it is has a low impact 

due to it is rarely run. 

Finally, a CPU entry in this table might seem strange at first. 

This time is attributed to the tasks of launching the CUDA 

kernels and managing the genetic algorithm itself, not the 

operators. As shown in Figure 2, this includes the selection 

operation, sorting, etc. 

The measures presented in Table IV were calculated 

aggregating the occurrences of all the operations, but they do 

not occur in the same proportion. Therefore, those metrics do 

not represent the true performance penalty of each operation. 

In Table V the performance of each individual operator is 

shown. 

These measures are the mean time spent value for each 

operation individually. It can be seen that, although the 

mutation operation has little impact on the total time spent on 

the algorithm, individually, it is by far the most demanding 

one. This is explained by the fact that a low mutation 

probability was set. Incrementing the mutation probability 

would have a great impact in the algorithm’s performance. The 

second row of Table V shows statistically how many times 

each operation is called for each genome. 

Finally, a more in-depth analysis of the mutation operation 
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is shown in Table VI. 

The three different operations were configured to be 

triggered with the same probability, and this is represented in 

the second row of the table. It is shown that the three 

algorithms perform very similarly. 

As a conclusion, it can be stated that approximately a 80x 

speedup can be achieved using a parallel implementation of 

the algorithm used on sufficiently big images. 

VI. CONCLUSIONS 

In this paper, a parallel GPGPU implementation of a genetic 

algorithm has been proposed. These evolutionary algorithms 

are very flexible and fit nicely in a parallel architecture given 

that the operators act independently on each individual 

genome. This quality suggests that parallelizing the main 

genetic operators would have a great impact in the algorithm’s 

performance. 

The most time-demanding genetic operators considered to 

be run in GPGPU were the fitness evaluation, the crossover 

and the mutation. However, the selection and the maintenance 

of the genetic algorithm itself was decided to be kept in the 

CPU. The main reason was that these tasks are negligible 

compared to the other operators; this assumption was 

supported by the results presented. Each operator was 

analyzed and a specific parallel implementation was proposed 

for each one. 

A genetic stereo refinement algorithm with occlusion 

handling was selected for analysis. Using the standard 

Middlebury’s stereo test-set, a comparison between a CPU and 

a GPGPU implementation was shown. As a conclusion, a great 

performance improvement can be achieved using GPGPU 

computation: a x80 speed-up has been achieved for some 

images. An analysis of the time spent by each operation and 

the impact of modifying the genetic parameters has been 

discussed. As a result, the most demanding operation was the 

fitness evaluation. This is reasonable due to the complexity of 

the energy function used for testing. However, considering 

individual function performance, the mutation operations are 

the most expensive, so an increment in the mutation 

probability would have a noticeable impact on the 

performance. 

Evolutionary algorithms are generally not designed for real- 

time applications. Although a great performance improvement 

has been obtained, real-time performance is still not achievable 

for these applications. However, the GPGPU implementation 

improved the algorithm’s performance from minutes to 

seconds order of magnitude. 

In order to continue with this line of research, in future 

works, it would be interesting to try different genetic 

algorithm’s formulations such as migrating or overlapping 

populations.  These approaches might help avoiding local 

minima during the optimization. In [1] was demonstrated that 

this algorithm is very sensible to the fitness function. 

Therefore, trying different and new energy functions is likely 

to enhance its accuracy. Finally, for improving the algorithm’s 

performance, trying double core GPGPUs and different 

platforms such as OpenCL is suggested.  
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