
International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº 2

-69-



Abstract — During the last decade, the general-purpose

computing on graphics processing units Graphics (GPGPU) has

turned out to be a useful tool for speeding up many scientific

calculations. Computer vision is known to be one of the fields with

more penetration of these new techniques. This paper explores

the advantages of using GPGPU implementation to speedup a

genetic algorithm used for stereo refinement. The main

contribution of this paper is analyzing which genetic operators

take advantage of a parallel approach and the description of an

efficient state- of-the-art implementation for each one. As a result,

speed-ups close to x80 can be achieved, demonstrating to be the

only way of achieving close to real-time performance.

Keywords — Parallel processing, GPGPU, genetic algorithm,

stereo.

I. INTRODUCTION

ECENTLY, custom GPU programming has become one

of the most popular tools for increasing the efficiency of

parallel algorithms thanks to the computational capacity of the

Graphics Processing Unit (GPU) compared to serial CPU

programs.

Traditionally, GPUs appeared in the computer market as

hardware products specialized on rendering tasks and, more

specifically, for improving the gaming experience. Given that

most of the rendering pipeline’s steps of were parallel, these

products rapidly evolved to machines capable of efficiently

running highly parallel algorithms. In the last decade, the

flexibilization of the GPU hardware and tools has enabled the

use of these parallel-processing units for general scientific

purposes.

Stereo analysis is a Computer Vision research area that has

been widely studied in the literature. However, it remains an

unsolved problem and many algorithms are still proposed

every year. The aim of the stereo analysis is to obtain depth

information from a couple of stereo images, simulating how

the human’s can perceive the depth using just two eyes.

Solving this problem is very computationally demanding,

especially when dealing with high-resolution images. GPGPU

techniques have been recently used for speeding up these tasks

and great results have been reported in the literature.

GPGPU primarily aims to improve the program’s

performance. It has been demonstrated that using these

techniques could result in a speed-up of up to x100, depending

on the algorithms’ nature. This paper proposes to study the

speed-up achieved by GPGPU programming applied to an

evolutionary algorithm. A genetic algorithm for stereo

refinement is implemented in both CPU and GPU and its

performance analyzed and compared.

Improving the accuracy and performance of stereo

algorithms is crucial for many real applications. Robotics has

been traditionally a research area that has used these

techniques, but new fields are arising. The digitalization of the

automotive sector is leading to the incorporation of new

sensors such as high definition cameras to high-end cars. Fast

stereo algorithms are needed to provide accurate information

about the car’s environment. Other applications of stereo

algorithms are biomedicine, virtual reality, automation or the

entertainment industry. However, note that any optimization

problem solved with evolutionary algorithms might benefit

from the work herein proposed.

The paper is structured as follows: Section II is a brief

overview of the GPGPU implementations found in the

literature, Section III explains the stereo refinement genetic

algorithm implemented, Section IV describes the details about

the GPGPU implementation, in Section V some results are

presented and finally in Section VI some conclusions are

drawn.

II. GPGPU OVERVIEW

GPGPU has been widely used in the literature by the

computer vision community. Its main role has been to enable

real-time performance on many demanding algorithms.

First works on stereo GPU processing were proposed in

[11]. SSD dissimilarity techniques, a multi-resolution

approach and a very primitive GeForce4 were used to obtain

performance equivalent to the fastest CPU commercial

implementations available. Later, [3] proposed a multi-view

plane- sweep-based stereo algorithm for handling correctly

slanted surfaces applied to urban environments. Assuming a

highly structured scene with buildings, they used a planar prior

for estimating disparity maps. The algorithm was successfully

implemented in an Nvidia GPU obtaining real-time frame

rates.

GPGPU Implementation of a Genetic

Algorithm for Stereo Refinement

Álvaro Arranz, Manuel Alvar

Zed Worldwide

R

DOI: 10.9781/ijimai.2015.329

Special Issue on Digital Economy

-70-

In [6] a high-performance stereo-matching algorithm both

fast and accurate is proposed. Using a parallel designed AD-

census and scanline optimization implemented in CUDA in an

NVIDIA GeForce GTX 480 they achieve near to real- time

frame-rates. They report an impressive 140x speed up

compared to the CPU implementation. Another GPU stereo

matching algorithm using adaptive windows can be found in

[13].

In [4] and [7] a real-time camera tracking and mapping

using RGB-D cameras is proposed, obtaining quite impressive

results. Their implementation relays heavily on the use of

GPGPU, both for tracking and TSDF mapping. Depending on

the voxel’s resolution, they achieve execution times from 10 to

25ms.

GPGPU has also been applied in other fields, such as in

feature detection and tracking, as proposed in [9]. Their KLT

GPU implementation achieves real-time 30Hz on 1024768

resolution images, which is a 20x speed-up compared to their

CPU implementation. A 10x improve is also reported for the

SIFT [5] detector implemented in GPU. A CUDA

implementation of the famous graph cuts algorithm [2, 14, 15]

is presented in [10], obtaining a 12x performance

enhancement.

A similar system to the one herein proposed is presented in

[8]. In this work, a genetic algorithm for stereo matching is

also implemented in GPU. However, the genetic algorithms

have quite different approaches, and their parallel

implementation does not seam to provide any performance

boost compared to the CPU one. This paper shows that, with

the proper GPU implementation, a 50x speed-up can be

achieved.

III. GENETIC ALGORITHM FOR STEREO REFINEMENT

The genetic algorithm for stereo refinement implemented in

this paper is based on the work proposed in [1]. The

implementation minimizes a fitness function that is related to a

Markov Random Field (MRF) and is equivalent to minimizing

a global energy function. Due to the flexibility of genetic

algorithms, this function is able to include occlusion handling.

This algorithm uses a guided search approach with new

crossover and mutation operators adapted to the stereo

refinement problem. Each operator will be explained briefly in

this section. An example of the results that can be achieved

using these techniques is shown in Figure 1.

A. Genome representation

Each individual includes the whole disparity map estimate

and the occlusion map for both left and right images.

where g is the genome, gL and gR are the representation of the

left and right disparity images respectively, XiL and XiR are

the disparities estimated for pixel i on the left and right

disparity images, N the total number of pixels in each image

and Li the set of different disparity labels.

Occlusion maps are defined as:

where O(p) is the occlusion map and p is the pixel.

B. Initialization

For the initialization process two different window-based

algorithms with different window sizes, the adaptive support-

weight approach [12] with random parameters and the census

based with window-cost aggregation have been used. This

variation aims to provide a wide range of initial solutions.

Fig. 1 Disparity map examples

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº 2

-71-

C. Fitness function

An energy function that considers discontinuities and

occlusions is used for the fitness function:

where g is a certain individual, gL is the left disparity image, Il

and Ir stand for the left and right stereo pair, xi and yi are the

image coordinates of pixel i, V{p,q} is a smoothing function

and λs, γs and φs are constant parameters for every pixel.

Before any fitness function evaluation, a occlusion manage-

ment process is triggered for classifying pixels correctly before

any energy evaluation.

D. Occlusion management

The process of handling the occluded areas is a two-step

operation: occlusion detection followed by an occlusion

management.

The following operations are defined for calculating the left

occlusion map:

being OL the left occlusion map, x(p) and y(p) the x and y

coordinates of point p respectively and P the set of disparity

image points. A similar expression can be deduced for the

right occlusion map. This occlusion map identifies which areas

of the image are classified as occluded regions.

For the occlusion management, an iterative process based

on neighboring disparities of the occluded pixels is applied.

For the left image, each occluded pixel is assigned the

disparity value of the most photo-consistent non-occluded

neighbor from left to right and afterwards it is marked as non-

occluded. If no non-occluded neighbors exist, it maintains its

occluded status for the next iteration. Special status have the

occluded pixels whose x(p) coordinate is less than the number

of disparities analyzed. In this case the iteration is made from

right to left and bottom-up. The iteration is finished when no

occluded pixels are left on the left occluded map.

For the right image it is similarly done but vice versa (right

to left for common pixels and left to right for pixels whose

x(p) is at a distance of the number of disparities analyzed from

the right image border).

E. Crossover

The crossover is based on comparing parent’s blocks of

different sizes and assign the best ones to the same son. This

operator can be summarized in the following steps:

1) Parents are divided into blocks (random sizes)

2) The fitness function of each block is evaluated

3) Best block is selected to persist in the same child

F. Mutation

Three different mutation operations may occur to each

individual. Firstly, one possible mutation operation is to

initialize again a group of pixels following the steps explained

in Subsection III-B with a probability PMa. Secondly, a

bilateral filter operation with a random window size with a

probability PMb. Finally, a morphological operation such as

erode or dilate may occur with a probability PMc.

IV. ALGORITHM’S GPGPU IMPLEMENTATION

After analyzing the performance of the serial version of the

genetic algorithm, it is easy to conclude that the most

computationally demanding functions are the genetic operators

and not the genetic algorithm itself. This result is

straightforward because each genome includes a lot of data

and information inside (whole four images: two disparity maps

and two occlusion maps). For example, each genome

evaluation implies evaluating the energy function for each

pixel and neighborhood individually. Besides, each genome

operator is naturally parallel, which suggests that

implementing these operators in CUDA will have a dramatic

impact on the genetic algorithm performance.

In Figure 2 is shown where is computed each genetic

operation. The left side of Figure 2 represents data information

is stored and which functions are implemented and executed in

the CPU. The fitness values are stored in the CPU because

they are needed for the selection operator in order to decide

which individuals of the actual population will survive to the

next one. The right side of the diagram represents which

information is stored and which functions are evaluated in the

Fig. 2: Assignment of genetic operators to GPU and CPU

Special Issue on Digital Economy

-72-

GPU. All the genomes are stored in the GPU in order to enable

fast access to the data from the functions evaluated in the

device. The only memory transaction between the CPU and

GPU needed is the copy of the fitness value of each individual

from device to host and is represented by the big blue arrow

from the fitness evaluation function icon to the fitness value

memory in the CPU. Remember that this device-host and vice-

versa transactions are very costly and must be minimized for

achieving the best performance.

The genetic algorithm has been implemented in the CPU

using the GAlib library. For the image processing and al-

location it has been used the OpenCV library, specifically the

GPU module, which facilitates the memory allocation and

transaction and has quite a lot processing algorithms built-in in

the GPU already. Finally, evaluation, crossover and mutation

operators have been implemented in CUDA in several kernels.

The next sections describe in detail the strategy used for

implementing efficiently each operator in CUDA language.

1) CUDA evaluation kernel

Although the title may suggest that the evaluation of a

genome is carried out just by one kernel, the reality is that it is

a process composed by three steps. The first two are solved

using a single kernel each while the third has to be solved by

two kernels. The first two steps could be executed in parallel

by two different CUDA streams but the last have to be

executed after the firsts have finished. This parallel capability

has not been implemented and all four kernels have been

programmed to run in the same stream.

The first step in the evaluation process is the data term

evaluation of the energy function. The result is one value for

each pixel and its calculation is independent from the values of

the neighboring pixels. Thus, the relation is one to one and its

parallel implementation is very efficient and straightforward.

This type of operation is also called MAP, and it has been

implemented using one thread per pixel in the disparity image.

A simple diagram of MAP is shown in Figure 3.

The data term only depends on the values of the left and

right stereo image and on the disparity image evaluated. Left

and right stereo images have been allocated in the device as

2D textures, which are very efficient for interpolation. Note

that in this case, using shared memory does not make much

sense because the number of memory accesses needed per

thread would not bee minimized. The result is saved in a

floating-point structure of the same size as the original image,

and here will be referred as memData.

The second step is the evaluation of the smoothing term. If

one thread per pixel is used, it requires to access to its own

disparity value and the neighbouring disparities. This

operation can be considered a type of Stencil operation, in

which many reads are needed as input while only one write is

performed. An illustrative example is shown in Figure 4.

In order to maximize the performance, shared memory is

used for first loading all the disparities in a block and then

using that shared memory in all the threads of the same block.

Remember that the access to shared memory is much faster

than the access to global memory. Each thread is related to

each pixel in the disparity image and it is in charge of

evaluating the smoothing function that relates itself with the

right and bottom neighbors. As happened in the data kernel,

the result is saved into a floating point vector with the same

size of the disparity image and here will be called

memSmooth.

The third and last step is composed of two kernels, one

executed after the other. It is in charge of performing the

summation over all pixels of the memData and memSmooth

structures calculated in the two first steps. This type of

summation is an operation also known as Reduce. Although at

first glance this operation might seem difficult to parallelize,

actually it is fairly simple. Figure 5 shows the two-step

reduction implemented. Besides, this step sums memData and

memSmooth individually for each pixel and saving it in

memTotal in order to facilitate the crossover task explained in

subsection IV-2.

For enhancing the performance of the Reduce operation, the

data has been divided in groups of 1024 addends, each being

processed by a CUDA block. All the data in each group is

loaded in shared memory to improve its read and write speed.

The first kernel performs the summation over each group,

obtaining one result per group. Finally, the last kernel

performs the last summation over all the results of the previous

kernel, and obtains the final value for the fitness function.

Finally, an asynchronous memory copy is performed from

device to host to copy the final fitness value calculated for that

genome. This operation is recommended to be asynchronous

because the memory copy can be performed at the same time

Fig. 3: Parallel MAP operation

Fig. 4: Parallel STENCIL operation

Fig. 5: Reduction operation in two kernels

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº 2

-73-

as other kernels are executed in other streams, instead of

waiting until the memory copy has finished.

Note that in spite of running all the evaluation kernels in the

same stream, different individuals are able to run their

evaluation in different streams, which enables copying

memory from device to host at the same time as other kernels

and a higher level of parallel exploitation.

The evaluation process is performed over the left and right

disparity map, but for the right one, it is not necessary to per-

form the final Reduction and memory copy. This optimization

can be achieved because de fitness function of a genome is just

the fitness function of its left disparity image.

2) CUDA crossover kernel

As explained in Subsection III-E, the crossover operation

consists of three steps:

• Divide the two disparity maps into blocks. In this case, the

number of pixel of each block will not be greater than 1024.

• Sum up the memTotal for each pixel inside the blocks,

compare them by pairs (one for each parent) and keep the

block with the best fitness function.

• Copy the best block to the children.

The limit of 1024 pixels per block is related to the

maximum number of threads per CUDA block available by the

GPU. All the pixels in a block must be part of the same CUDA

block be- cause the summation can be performed using shared

memory, which is much more efficient than global memory.

Therefore, the CPU realizes the first step, and the following

two are done by the GPU, the first one as a Reduction

operation very similar to the one in subsection IV-1 and the

second one as a very simple copy operation as a MAP.

3) CUDA occlusion handling kernel

Occlusion handling encompasses two different tasks:

occlusion estimation and occlusion management. The

occlusion estimation is calculated through an image warping,

where each pixel of the other disparity image is displaced a

number of pixels equal to its disparity level. Pixels left without

any assignation are considered to be occluded pixels. Thus,

each pixel operation is independent from the rest, but several

threads can output their result to the same piece of memory.

This operation is also known as Scatter and can be solved

using, for example, atomic operations. In our case it is not

necessary because the function aims only to output a boolean

value, more precisely a zero to indicate that the pixel is not

occluded.

The second task is the occlusion management, where the

main objective is to re-estimate the disparity value for the

pixels that where labelled as occluded. For this parallel

implementation the horizontal fast occlusion filling algorithm

explained in Subsection III-D was used. Given that a

horizontal search for the closest non-occluded pixel has to be

performed, the occlusion information was loaded in shared

memory, being each block responsible for each independent

scan-line. Each thread is in charge of estimating the new depth

for each occluded pixel. Figure 8 shows the per-thread

operations and the memory accesses incurred.

4) CUDA mutation kernel

The mutation kernel comprises three different operations:

bilateral filtering, erosion and dilation. These morphological

operations are already efficiently implemented in the OpenCV

library using CUDA. A problem that may rise using a third

party library is the performance penalty incurred while parsing

from the data-types used in your application to the data-types

used in the library and vice- versa. However, in the

implementation herein proposed, the data types are compatible

with those from OpenCV, so this transformation is trivial.

Thus, this library has been used for this purpose.

V. RESULTS

In this section the parallel capabilities of the genetic

algorithm are discussed. Both the serial implementation and

the parallel one using CUDA are compared. Given the

stochastic nature of the algorithm and the various types of

mutations that are likely to happen, the algorithm was run for

different images during five hundred generations and an

average per individual and generations was calculated. The

Middlebury dataset will be used for comparison, as it is a

standard and well-known test-bed.

For the tests, an Intel i7-2600 at 3.4 GHz CPU and an

Nvidia GeForce GTX 770 were used. As operating system,

Ubuntu Linux 14.04LTS was used given the CUDA

performance improvement compared to Windows. The

measuring tool used was the Nvidia Visual Profiler, obtaining

valuable data such as timing, occupancy, optimizations, et. A

capture of the profiler is shown in Figure 7.

The parameters used in the experiments carried out along

this section are shown in Table I and Table II.

A comparison between the performances of the GPGPU

versus the CPU implementation for four Middlebury’s

common test images is shown in Table III.

Fig. 6: Horizontal fast occlusion filling implementation example

Fig. 7: Nvidia Visual Profiler tool

Special Issue on Digital Economy

-74-

The first column of Table III shows the mean total time

spent for the CPU implementation for one genome. Note that

not all genetic operations always occur in each genome and,

therefore, these results are obtained dividing the total time

spent by the algorithm by the number of genomes and

generations. The increment in the CPU execution time from

Tsukuba to Cones is explained due to the increment in the size

of the test images.

The second row shows the same measure, but using now the

GPU implementation. It is shown that parallelization of the

genetic algorithm provides a great performance improvement

compared with the serial one. The speed-up comparison

between the two algorithms is shown in the third column. Note

the increment in the performance improvement when the

images get bigger, suggesting that with more pixels the GPU

performs more efficiently. However, both CPU and GPU

implementation still depend highly on the number of pixels in

the image analyzed.

In order to study the impact of each genetic operation, Table

IV shows in detail how the time is divided for each genome. It

shows that evaluating the genome is the most demanding

operation. Given that it is an operation that has to be run

always in every gnome and that it is quite complex (energy

function composed by several complex terms), this result is

comprehensible. In comparison, the other operation that is run

always and has a lot less impact in the total time is the

occlusion handling. The percentage of the impact is shown in

Figure 8.

As a result, it can be said that adding the occlusion handling

to the algorithm implies a 17% impact on the performance.

This result does not account for the impact of the occlusion

variable in the evaluation operator, which here will be

considered negligible.

Maybe the result that was unexpected was the efficiency of

the crossover function. However, although being a demanding

operation, a lot of information from the evaluation process

could be reused, leading to an efficient implementation. Bear

in mind that the crossover it is run with a probability of Pcross,

so this fact also has an impact on this measure. The same

occurs with the mutation operation, that it is has a low impact

due to it is rarely run.

Finally, a CPU entry in this table might seem strange at first.

This time is attributed to the tasks of launching the CUDA

kernels and managing the genetic algorithm itself, not the

operators. As shown in Figure 2, this includes the selection

operation, sorting, etc.

The measures presented in Table IV were calculated

aggregating the occurrences of all the operations, but they do

not occur in the same proportion. Therefore, those metrics do

not represent the true performance penalty of each operation.

In Table V the performance of each individual operator is

shown.

These measures are the mean time spent value for each

operation individually. It can be seen that, although the

mutation operation has little impact on the total time spent on

the algorithm, individually, it is by far the most demanding

one. This is explained by the fact that a low mutation

probability was set. Incrementing the mutation probability

would have a great impact in the algorithm’s performance. The

second row of Table V shows statistically how many times

each operation is called for each genome.

Finally, a more in-depth analysis of the mutation operation

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº 2

-75-

is shown in Table VI.

The three different operations were configured to be

triggered with the same probability, and this is represented in

the second row of the table. It is shown that the three

algorithms perform very similarly.

As a conclusion, it can be stated that approximately a 80x

speedup can be achieved using a parallel implementation of

the algorithm used on sufficiently big images.

VI. CONCLUSIONS

In this paper, a parallel GPGPU implementation of a genetic

algorithm has been proposed. These evolutionary algorithms

are very flexible and fit nicely in a parallel architecture given

that the operators act independently on each individual

genome. This quality suggests that parallelizing the main

genetic operators would have a great impact in the algorithm’s

performance.

The most time-demanding genetic operators considered to

be run in GPGPU were the fitness evaluation, the crossover

and the mutation. However, the selection and the maintenance

of the genetic algorithm itself was decided to be kept in the

CPU. The main reason was that these tasks are negligible

compared to the other operators; this assumption was

supported by the results presented. Each operator was

analyzed and a specific parallel implementation was proposed

for each one.

A genetic stereo refinement algorithm with occlusion

handling was selected for analysis. Using the standard

Middlebury’s stereo test-set, a comparison between a CPU and

a GPGPU implementation was shown. As a conclusion, a great

performance improvement can be achieved using GPGPU

computation: a x80 speed-up has been achieved for some

images. An analysis of the time spent by each operation and

the impact of modifying the genetic parameters has been

discussed. As a result, the most demanding operation was the

fitness evaluation. This is reasonable due to the complexity of

the energy function used for testing. However, considering

individual function performance, the mutation operations are

the most expensive, so an increment in the mutation

probability would have a noticeable impact on the

performance.

Evolutionary algorithms are generally not designed for real-

time applications. Although a great performance improvement

has been obtained, real-time performance is still not achievable

for these applications. However, the GPGPU implementation

improved the algorithm’s performance from minutes to

seconds order of magnitude.

In order to continue with this line of research, in future

works, it would be interesting to try different genetic

algorithm’s formulations such as migrating or overlapping

populations. These approaches might help avoiding local

minima during the optimization. In [1] was demonstrated that

this algorithm is very sensible to the fitness function.

Therefore, trying different and new energy functions is likely

to enhance its accuracy. Finally, for improving the algorithm’s

performance, trying double core GPGPUs and different

platforms such as OpenCL is suggested.

REFERENCES

[1] A. Arranz, M. Alvar, J. Boal, A. S. Miralles, and A. de la Escalera.

Genetic algorithm for stereo correspondence with a novel fitness

function and occlusion handling. In VISAPP (2)’13, pages 294–299,

2013  

[2] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy mini-

mization via graph cuts. IEEE Transactions On Pattern Analysis And

Machine Intelligence, 23(11):1222–1239, 2001.  

[3] D. Gallup, J. M. Frahm, P. Mordohai, Q. X. Yang, and M. Pollefeys.

Real-time plane-sweeping stereo with multiple sweeping directions.

2007 IEEE Conference on Computer Vision and Pattern Recognition,

Vols 1-8, pages 2110–2117, 2007.  

[4] S. Izadi, R. A. Newcombe, D. Kim, O. Hilliges, D. Molyneaux, S. Hodges,

P. Kohli, J. Shotton, A. J. Davison, and A. Fitzgibbon. KinectFusion:

real-time dynamic 3D surface reconstruction and interac- tion. In ACM

SIGGRAPH 2011 Talks, SIGGRAPH ’11, page 23:123:1, New York,

NY, USA, 2011. ACM.  

[5] D. G. Lowe. Distinctive image features from scale-invariant keypoints.

Int.J.Comput.Vision, 60(2):91–110, 2004.  

[6] X. Mei, X. Sun, M. Zhou, S. Jiao, H. Wang, and X. Zhang. On building

an accurate stereo matching system on graphics hardware. In Computer

Vision Workshops (ICCV Workshops), 2011 IEEE International

Confer- ence on, pages 467 –474, nov. 2011.  

[7] R. A. Newcombe, A. J. Davison, S. Izadi, P. Kohli, O. Hilliges, J.

Shotton, D. Molyneaux, S. Hodges, D. Kim, and A. Fitzgibbon.

KinectFusion: real-time dense surface mapping and tracking. In Mixed

and Augmented Reality (ISMAR), 2011 10th IEEE International Sympo-

sium on, pages 127–136, 2011.  

[8] D.-H. Nie, K.-P. Han, and H.-S. Lee. Stereo matching algorithm using

population-based incremental learning on gpu. In Intelligent Systems

and Applications, 2009. ISA 2009. International Workshop on, pages

1–4, 2009.  

[9] S. Sinha, J.-M. Frahm, M. Pollefeys, and Y. Genc. Feature tracking and

matching in video using programmable graphics hardware. Machine

Vision and Applications, 2007.  

[10] V. Vineet and P. J. Narayanan. Cuda cuts: Fast graph cuts on the gpu.

In Computer Vision and Pattern Recognition Workshops, 2008.

CVPRW ’08. IEEE Computer Society Conference on, pages 1–8, 2008.

[11] R. Yang and M. Pollefeys. Multi-resolution real-time stereo on com-

modity graphics hardware, 2003.  

[12] K. J. Yoon and I. S. Kweon. Adaptive support-weight approach for

correspondence search. Ieee Transactions On Pattern Analysis And

Machine Intelligence, 28(4):650–656, Apr 2006.  

[13] Y. Zhao and G. Taubin. Real-time stereo on gpgpu using progressive

multi-resolution adaptive windows. pages 420–432, 2011.
[14] Seoane, P., M. Gestal, and J. Dorado, "Approach for solving multimodal

problems using Genetic Algorithms with Grouped into Species

optimized with Predator-Prey", International Journal of Interactive

Multimedia and Artificial Intelligence, vol. 1, no. 5, pp. 6-13, 06/2012

Fig. 8: Portion of time spent by each operation for Tsukuba

Special Issue on Digital Economy

-76-

[15] Mey Rodríguez, M., and E. P. Gayoso, "EvoWild: a demosimulator

about wild life", International Journal of Interactive Multimedia and

Artificial Intelligence, vol. 1, issue Experimental Simulations, no. 1, pp.

25-30, 12/2008

Alvaro Arranz was born in Madrid in 1984. He

obtained his Industrial Engineering degree,

majoring in electronic engineering, from

Universidad Pontificia Comillas-ICAI in 2007.

Currently he is finishing his PhD on Computer

Vision and working as a researcher and developer

at Bitmonlab in Zed Worldwide. His research

interests include Computer Vision, Robotics,

Intelligent Systems and Human-Computer

interaction.

Manuel Alvar was born in Málaga (Spain) in

1984. He obtained his Industrial Engineering

degree, from Universidad Pontificia Comillas-

ICAI; and the Engineering degree from the École

Centrale de Paris (France) in 2007. His areas of

interest are: Smartgrids, Mobile Autonomous

Robots, Unmanned Helicopters, Computer Vision,

Automatic Monitoring, Web Tools Development.

