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  Abstract — A computer application designed to generalize linear 

elements in a vector formatted cartographic set by means of two 

of the most contrasted line generalization algorithms, Douglas-

Peucker simplification and Bézier curves based smoothing, is 

presented in this paper. Regarding codification, the simultaneous 

treatment of different lineal geometry entity classes and the 

conservation of their original topological relationships among 

them are considered. It is recommended in processes that produce 

small scale reductions (in a 1:2 relationship or similar). The 

application allows changing the characteristic parameters of the 

referred algorithms and proposes a report of the results obtained 

after every transformation. That way it supplies an additional 

facility as a trial tool to choose the parameters that give the best 

results in every process.   

 
Keywords — Geographic information system, linear features, 

map generalization, simplification, smoothing, topological 

relationships. 

 

I. INTRODUCTION 

artography is a graphic expression mean whose main 

function consists in transmitting information (geographic, 

in this case) and in helping to understand it. In order to 

achieve this double aim, the map has to maintain the 

equilibrium between the clarity of the information, its richness, 

and the exactitude in its localization. So the cartographer 

affronts two fundamental questions: on the one hand the 

affluence of information presented by the geographic reality 

obliges to select the elements to be represented; on the other 

hand, its dimensions impose a reduction to make them 

comprehensible, which implies a greater accumulation of 

adjacent elements, a growing complexity in forms, and, in 

general, a loss of clarity [1]. These two issues selection and 

reduction require a set of transformations that preserve the 

rigor of the results. The whole of these transformations 

conforms the so called cartographic generalization process 

[2], that intervenes in a decisive way in the basic (from direct 

observations) and derived (from the latter through scale 

reduction) cartographic production. In short, generalization is 

a natural process and it is necessary when building a map [1], 

so that both concepts are intimately related [3]. 

The cartographic generalization process must ensure the 

following essential requirements: 

1. Achievement of a suitable positional exactitude. 

2. Implementation of a treatment of the set of different entity 

classes that preserves their mutual topological relationships. 

3. Allowance for the study of the goodness of the obtained 

results.  

 

The numerous efforts dedicated to the research of the 

automation of the process, all of them based in geographical 

information systems technology (GIS), have permitted to 

dispose today of specific commercial programs of 

generalization («Radius Clarity» of the British firm 1Spatial; 

«CTP», of the Institute of Cartography and Geomatics of 

Leibniz University in Hannover, Germany) and generalization 

modules or tools in existing GIS programs. In general, these 

solutions propose methodologies for the application of 

different algorithms of generalization and present the 

following characteristics: 

 They establish a semiautomatic process of generalization 

using a set of automatic operations that must be 

completed afterwards with a manual treatment. 

 They are oriented to the generalization of geometry 

elements or concrete characteristics: contour lines, 

communication routes, built-up areas, etc. 

 They treat geographic information in an independent way, 

without considering it in its whole and within the 

geographic context in which it finds itself. Therefore they 

do not keep topological relationships (intersections, 

inclusions, etc.) among the different entity classes, even 

among the elements of the same class. All in all the 

resulting set losses geometric consistency, global sense 

and, in many cases, harmony with respect to the original. 

 They do not produce reports of the obtained results, 

which makes difficult the analysis of its goodness. 

These  characteristics allow the conclusion that, regarding 

the three already mentioned essential requirements of the 

generalization process, every available solutions assure the 

first one, some of them take into account partially the second 

one, and none of them the third one, which suggests the 

elaboration of a specific computer application to achieve them. 

On the other hand, most of the mentioned algorithms are 

meant to achieve the generalization of linear elements in 

vector format, because the entities that make up a map are 

represented mainly through lines and polygons, and these are 

limited by lines [4]. According to Thapa [5] they are 

approximately the 80% of the elements in a cartographic 

representation. In order to generalize these elements, one of 

the solutions that provide best results consists of simplifying its 

geometry (elimination of points) and smoothing afterwards the 

obtained result. Among the line simplification algorithms, the 

Douglas-Peucker algorithm [6] is the best considered for 

small scale reductions [7]-[8]. Concerning smoothing 

algorithms, also called «curvature filtering», the ones based on 

Bézier curves make one of the most commended alternatives 

[9]-[10].  
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As a contribution to these researches, in this paper a 

computer application is presented, which allows to:  

 Generalize linear elements in vector format so as to 

obtain small scale reductions (in the 1:2 relationship or 

similar) by applying the Douglas-Peucker algorithm and 

the one based on Bézier curves and preserving their 

mutual topological relationships. 

 Change characteristic parameters of mentioned 

algorithms.  

 Present a report over each one of the applied 

transformations: number of obtained axes, number initial 

and final points and processing time. 

 

II. DOUGLAS-PEUCKER ALGORITHM 

The Douglas-Peucker algorithm implemented in this 

application is the second of the line simplification methods 

presented in 1973 by the Canadian teachers David H. Douglas 

(Ottawa) and Thomas K. Peucker (Simon Fraser University, 

British Columbia) [6]. Besides it is used in most current GIS 

commercial tools that include generalization tools (ArcInfo from 

ESRI, GeoMedia Professional from Intergraph or Bentley 

MicroStation GeoGraphics).  

It is based on the treatment as a whole of all the points that 

compose the geometry of each line. That is the reason why the 

line simplification algorithms are included under the so called 

the «global» ones [11].  

The fundament of the algorithm consists of selecting in the 

original line specific points that are called critical or anchor 

points which will build the generalized line. In order to select 

them, a tolerance factor de tolerance T > 0 is established 

beforehand. It is called simply tolerance and is expressed in 

length units. The process can be resumed in the following steps 

(see example in figure 1) [1]: 

1. Tolerance is set to T > 0. 

2. A first segment AZ between initial node A and final one Z 

on the line is traced. 

3. The distances di of the vertices to segment AZ are 

calculated. If no distance is greater than the tolerance   

(di < T), the process ends and the generalized line will be 

composed by points A and Z. On the contrary, if vertex 

B is more distant from AZ (dimáx = dB), it will be 

selected as a critical point and two new segments AB y 

BZ will be generated. 

4. The distances d'i of the rest of the intermediate vertices to 

segments AB and BZ are calculated and the selection 

procedure from the previous step is applied. 

5. This criterion is repeated recursively in the two parts in 

which the segments are divided after every selection, as 

far as the division possibilities of the segments are 

exhausted. 

6. Finally, a generalized line is obtained from the selected 

points in each step. 

If the lines are closed, the first and last points do not define 

a line because A and Z coincide for their having the same 

coordinates, the maximum distance to initial segment is 

replaced by the greatest distance to these points. Nevertheless, 

in this case it is controversial to select as critical point a point 

of the curve just for having been digitalized in the first or in 

the last place. 

 

 
 

Fig. 1.  Example of the application of de Douglas-Peucker algorithm [1]. 

 

Some authors designate as additive this type of 

simplification algorithms, while the so called subtractive ones 

remove successively several points in each step [11]. 

Apart from the simplicity provided by the algorithm, both in 

its codification and in the simplification process that it sets out, 

one of its main advantages consists in allowing the positional 

control of the generalized line with respect to the original one, 

because the tolerance T determines the greatest displacement 

between them. 

On the other hand, the increase of T affects the obtained 

result in the following aspects (table I): 
 

Table I. Consequences of the increase of the value of t. 
 

Aspect Variation 

Points of the resultant line Diminishes 

Processing time Diminishes 

Smoothing Diminishes 

Topological conflicts Increases 

Adaptations to the original line  Diminishes 
 

That is why, it becomes necessary to evaluate the obtained 

results to achieve in each process the tolerance that would 

provide equilibrated results in the mentioned aspects. 

III. BÉZIER CURVES 

In the cartographic generalization process, smoothing 

algorithms are used to improve the esthetic appearance of a 

line, reducing the angularities which were produced with 

simplification algorithms. In general, they act shifting the 

points on the original line to other positions, so they are able to 

reduce or eliminate these angularities respecting the 

characteristic tendencies of the line. According to the applied 

procedures, these algorithms can be classified in three groups 

[12]: spatial convolution (arithmetic mean, average through 
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shifting [11], Gaussian filtering [13], Boyle [14]), frequency 

domain (Fourier series, wavelets) and mathematical 

approximations. Due to the interest of our study, we will 

center in the third group. Its fundament consists in obtaining 

an approximation to the original line by adjusting with respect 

to it some of the plane curves defined by polynomial equations 

of degree greater than one (circumferences, parables, cubic 

arcs, etc.). One of the most used methods is the one based on 

the splines [15], which are curves defined by segments by 

means of polynomials. Bézier curves make up the base for the 

best known and most used smoothing algorithms too.   

The theoretical fundaments of the Bézier curves were 

developed by the French engineer Pierre Bézier (1910-1999) 

during the 60s of last century [16]. These fundaments will be 

briefly referred next [17]. 

In the context of linear algebra, the approach to the 

mentioned adjustment is the following: given a function y = f 

(x) whose value is known in n + 1 points (P0, P1,... , Pn), and its 

value is approximated in an another arbitrary point P. To 

achieve that, a polynomial of degree less than n which would 

adopt the known values f (xi) for i = 0, 1, ..., n is used. This is 

the so called classic polynomial adjustment or polynomial 

interpolation problem
1
. There exist solutions of global 

adjustment (Lagrange formula, Newton formula) which 

consider all known data, and solutions of segment adjustment 

(splines), which interpolate a curve between every two given 

points. 

In the field of graphic design, the parametric equations are 

the most used for representing curves, due, among other 

reasons, to the convenience of make independent the definition 

of the curve from the used coordinate system. In the same 

trend, the adjustment problems usually are solved beginning 

from the parametric equations. Centering in our problem and 

considering in the plane the surface we are interested in 

the n + 1 points of known coordinates (x0, y0), (x1, y1), ..., (xn, 

yn), the obtained curve after the adjustment (global or by 

segments), expressed in parametric form, will have this form: 
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where  n
P t adjusts the values (ti, xi) and  n

Q t adjusts in (ti, xi), 

being ti = i/n, with i = 0 , 1, ..., n.  

This adjustment presents, among others, the inconvenient of 

not allowing the control of the form of the curve the user is 

designing. In order to avoid this conflict, one of the most used 

resources is the Bézier curves, based on the Bernstein 

polynomials.  

The Bernstein polynomials of degree n, called 
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expression:  
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with i = 0, 1,… , n. 

 
1 Besides this one there exist other adjustment problems (Taylor, 

Hermite, etc.) that will not be treated here because they will take far 

away from the pretentions of this article. 

So, for example, the Bernstein polynomials of degree 3 are: 
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In figure 2 its graphic representation can be seen, with t  [0, 1]. 

A Bézier curve associated to n + 1 points of the plane (P0, 

P1,... , Pn) is the denomination of the curve defined for t  [0, 

1] whose parametric equations adopt the following expression: 
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being  ,i n
B t  the Bernstein polynomials of degree n. 
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Figure 2. Bernstein polynomials of degree 3. 

The points P0, P1,... , Pn that determine a Bézier curve are 

called control points and, as it can be deduced from expression 

4, its order is fundamental: its tracing passes only through  

initial P0  and final Pn points, while the rest mark its «tendency» 

without forming part of it (figure 3). Graphically, this means 

that the Bézier curve associated to the precedent n + 1 points 

supposes a smoothed polygonal line formed by these ones. 

Therefore, in the context of cartographic generalization 

different smoothing algorithms have appeared which use 

mathematical approximations based on the Bézier curves. 

On the other side, as it has been signaled above, the 

parameter t that intervenes in the parametric equations that 

define a Bézier curve adopts a value included in the [0, 1] 

interval, so that each value of t provides a point of the curve. 

That way, when the number of parameter values the curve will 

become smoother. 



International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 1, Nº 3. 

-63- 

 

 

 

(a) P0 = (1, 5), P1 = (2, 2), 

              P2 = (4, 1) y P3 = (5, 3). 

(b) P0 = (1, 5), P1 = (2, 2), 

              P2 = (5, 4) y P3 = (4, 1). 

 

Figura 3. Curvas de Bézier. 
 

As a consequence, in order to use Bézier curves as smoothing 

algorithm, it is necessary to establish previously the number of 

values that the mentioned parameter should adopt, considering the 

following criteria: 

 The original curve can be smoothed out keeping its 

tendency starting form a number of values of t equal to 

the number of points of the curve, which will constitute 

the control points of the resulting Bézier curves. 

 The layout of the Bézier curves improves, if well 

distributed values of t inside the indicated interval are 

chosen. In table II some examples are included. 
 

Table II. Appropriate values of parameter t in function 

of the number of control points. 
 

Number of 

control points 
Values of t 

3 0 0,50 1   

4 0 0,33 0,66 1  

5 0 0,25 0,50 0,75 1 
 

 The more the number of values of t are, the more the 

smoothing effect improves. From now on, k will be the 

number of values of t added to the number of points of 

the curve (control points). This growth supposes an 

increment of points of the final curve and a more 

laborious calculation process. These issues oblige to 

evaluate the obtained results to attain an equilibrium 

solution among the added number of values, the 

processing time and the aesthetics of the resulting 

smoothing (figure 4 and table III). 
 

 

     
 

(a) Original line (4 points). (b) Smoothed line  

(k = 0  4 points). 
 

     
 

(c) Smoothed line 

(k = 2  6 points). 

(d) Smoothed line 

(k = 10  14 points). 
 

Figure 4. Bézier Curves. 

 

 

 

Table III. Appropriate values of parameter t with different  

values of k (n = 3  4 control points). 
 

k Values of t 

0 0 0,33 0,66 1           

2 0 0,20 0,40 0,60 0,80 1         

10 0 0,08 0,15 0,23 0,31 0,38 0,46 0,54 0,62 0,69 0,77 0,85 0,92 1 
 

At last, the number of control points should be reduced for two 

main reasons: 

1. In the algebraic expression of the Bernstein  

polynomials (equation 2), on which the Bézier curves are 

based, each one of the parametric equations x(t) and y(t) 

includes n + 1 combinatorial numbers that are calculated by 

means of factorials, being n the number of control points. 

The calculation capacity of the computer systems limits the 

number of possible factorials and, in definitive, the number 

of control points. 

2. In this sense, the conditions of obtaining a resulting line 

adapted as much as possible to the tracing of the original 

becomes more restrictive. When the number of control 

points increases, the mean distances between both of them 

rise up to inacceptable values. 

For that reason the criterion of using the so called cubic 

Bézier curves with four control points was adopted. 

IV. GENERAL CHARACTERISTICS OF THE PROGRAM 

Next the general characteristics of the application will be 

presented, as it will detailed afterwards [18]: 

 It is a command of the GIS application GeoMedia 

Professional (Intergraph), valid for the last versions (6.0 y 

6.1). 

 The Visual Basic .Net language has been used for its 

codification, with the development environment 

Microsoft Visual Studio 2005. Although there exist 

subsequent versions of that environment (2008 y 2010), 

the programming of the command require the 

employment of the complement GeoMedia Command 

Wizard which at the moment can only be used on 2005 

version. 

 It codes the Douglas-Peucker algorithm and the one based 

on the Bézier curves aforementioned, allowing the 

variation of the characteristic tolerance of the first one 

and the number of points added in the second one. 

 It admits vector files in .mdb format, which is specific of 

GeoMedia, generated with the data base manager system 

Access. They are relational databases (DB) that store the 

geographic information in tables, so that on each table the 

elements belonging to the same entity class or to several 

ones of the same themes are recorded. In a table, each 

recorded or row corresponds to an element of the class, 

whose attributes and coordinates are stored in the 

different fields or columns that constitute the record. 

 It offers the possibility of applying the former algorithms 

in an independent or successive order (first, Douglas-

Peucker; next, Bézier curves). 
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 It permits the treatment as a whole of several entity 

classes (tables), when they are linear, keeping the 

topologic relationships among them. 

 It presents a report on the screen after processing each 

file and it allows saving in a text file the obtained results. 

V. INFORMATION PROCESSING 

Once the program is installed and the access from the 

application is created, the command gets activated when 

establishing any connection in read-write mode to a DB ( .mdb 

file). It consists of a main dialogue window with four 

functionality areas (figure 5): 
 

 
 

Fig. 5.  Main dialogue window of the generalization command. 
 

1. Table management (in the DB of the established 

connections). 

2. Douglas-Peucker. 

3. Bézier. 

4. Douglas-Peucker + Bézier. 

Two bars centered on the inferior part show the progression 

in the application of each process: «Progreso Tabla» shows 

progress of the treatment of each table individually; «Progreso 

Total» shows the progress of the whole process. 

The «Gestión de tablas» area presents the options that are 

next described: 

 «Agregar Tablas». It shows another dialogue window 

with the established connections. When deploying them, 

the tables with the elements of linear geometry that form 

each connected database come up. The selected tables 

(figure 6a) are visualized in the main panel after clicking 

the «Seleccionar» button (figure 6b). 

 «Eliminar Tabla». It permits to delete one by one any of 

the tables selected before. 

 

 
 

 (a) Selection.            (b) Visualization in the main dialogue window. 
 

Fig. 6.  Selection tables from different DB. 
 

 «Guardar ejes». It builds a topology among the elements 

of the selected tables and it saves the coordinates of the 

resulting axes in a text file (.txt) (figure 7). 

 «Limpar TODO». It deletes all the selected tables and the 

results appear on the windows after any the algorithms is 

applied. 
 

 
 

Fig. 7.  Building of the topology: resulting axes are shown. 
 

The «Douglas-Peucker» area allows the application of 

this algorithm independently. Once the tables are selected 

in the previous area, it includes the following options: 

 «Tolerancia T». It permits to select the tolerance in 

meters. 

 «Simplificación». It implements the following  successive 

operations: 

5. It records the time at which the process. 

6. It loads the selected tolerance. 

7. It starts the progression bars. 

8. It builds up the topology among the elements of the 

selected tables by cross comparing the tables with one 

another and with themselves. That way the nodes that 

make up the crosses among elements are obtained and 

their position remains the same as it should. Every 

two consecutive nodes constitute an axis. 

9. With each one of the axes, 

a) It counts the number of points. 

b) It applies the algorithm with the selected tolerance, 

checking before two questions: 

1. Whether the initial and final nodes 

coincide (it is a closed line). In this case, it 

dispenses with the final node, it applies the 

algorithm to the rest of the points and finally 

it adds the final node to the resulting line. 

2. Whether it has less than three points, in 

which case it is not applied and the axis 

remains invariable. 

c) It counts the number of points of the final axis. 

As it was indicated, the resulting lines keep the initial and 

final points of the original lines, so that it is guaranteed to 

conserve the position of the extreme nodes of each axis. 

10. After the generalization of every axis, it combines 

them to rebuild the geometry of each final line. 

11. It saves this geometry by modifying the tables that 

contain now the new elements. 

12. It records the final instant of the process. 

13. It calculates the deleted the points, the reduction in 

the number of points and the processing time, and it 

presents the results in the respective text panels of the 

main dialogue window. Besides it adds the number of 

treated points, obtained by gathering the points of 

each axis (5a) (figure 8a). 
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14. Finally, by means of a dialogue window with the  

«SÍ» and «NO» command buttons, propose to store 

the results in a text file: 

d) The «SÍ» option permits to save in a file the 

information about the carried out process and to 

terminate the process (figure 8b). 

e) With the «NO» option the process exits. 
 

 
 

(a) Report in the main dialogue window. 
 

 
 

(b) The file as shown. 
 

Fig. 8.  Results from the application of the Douglas-Peucker algorithm (T = 5 m). 
 

As regards the «Bézier» area it permits the independent 

application of the algorithm based on the Bézier curves. Once 

selected the tables previously in the «Gestión de tablas » area, 

it includes the following options: 

 «Puntos añadidos por eje k». It allows the input of the 

number of points to add by resulting axis, which it has 

been called k. 

 «Suavizado». It runs successively the following  

operations: 

1. It records the time at which the process starts. 

2. It loads the added points input by axis. 

3. It starts the progress bars. 

4. It builds up the topology among the elements of the 

selected tables with the same procedure as in the 

previous case. 

5. With each axis: 

f) It counts the number of points. 

6. It divides it in segments of four points. 

7. It calculates the parametric equations of the resulting 

Bézier curves considering as control points the four 

points that make up each segment. 

8. It calculates the points of the Bézier curve associated to 

the four pints of the segment assigning different values to 

the parameter t. If the value of the «Puntos añadidos por 

eje» windows is not modified (by default, k = 0), t adopts 

four values in the [0, 1] interval, so that with t = 0 and t = 

1 initial and final points will be the same, respectively, 

and the rest of the values are symmetrically distributed in 

that interval. If a k > 0 value is introduced, the program 

assigns 4 + k different values for t, which are distributed 

the criterion above. 

The resulting curves keep the same initial and final 

points of the original lines, according with what has 

been discussed above. Therefore, the initial topology 

keeps the same. 

9. As in the previous case, after the generalization of every 

axis, it combines them, rebuilding the geometry of each 

resulting line and modifying the tables that contain the 

new elements. 

10. It records the finalization time of the process. 

11. It calculates the processing time and the total number 

of added points (k times the number of points 

obtained in the topologic construction). It presents the 

results in the respective text boxes of the main 

dialogue window (figure 9). 

12. Besides, once finalized the process, the program 

proposes to save the results in a text file following the 

above mentioned procedure. 

1.  

  
 

Fig. 9.  Application of the algorithm based on the Bézier curves (k = 1). 

Report in the main dialogue window. 
 

As regards the «Douglas-Peucker + Bézier» area, it permits 

the successive application of both algorithms. Once previously 

selected the tables in the «Gestión de tablas» area and 

introduced the values of «Tolerancia T» and the number of 

«Puntos añadidos por eje k» in the «Douglas-Peucker» and 

«Bézier» areas, respectively, the «Simplificación y suavizado» 

option carries out the following sequence of operations: 

 

1. It records the start time of the process. 

2. It loads the added points by axis. 

3. It loads the selected tolerance. 

4. It starts the process bars. 

5. It builds up the topology with the same procedure as in 

the above cases. 

6. With each axis: 

g) It applies the Douglas-Peucker algorithm, following 

independently the process. 

h) It applies the algorithm based on the Bézier curves, 

conforming to the independent process. 

7. As in the former cases, it combines the transformed axis 

rebuilding the geometry of every resulting line and 

modifying the tables that contain the new elements. 

8. Likewise, it presents the option of saving the results in a 

text file (figure 10). 
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Fig. 10.  Douglas-Peucker Algorhitm (T = 5 m) based on Bezier curves (k = 2). 

Report on the main dialog box. 

 

VI. CONCLUSIONS 

The described computer application, recommended in 

processes that suppose small scale reductions (in a 1:2 

relationship or similar), offers two main capacities: 

1. The generalization of the linear elements of a 

cartographic set in vector format. In order to attain 

this, the application codes the Douglas-Peucker 

simplification algorithm and the smoothing one 

based on the Bézier curves, considering the 

simultaneous treatment of different geometry entity 

classes and preserving the original topological 

relationships among them. 

2. The analysis of the obtained results after the 

transformation made by the previous process, by 

means of the trial with different parameters and the 

contrast of the results. In order to get that, the 

application permits to change the characteristic 

parameters of the concerned algorithms and it offers 

a report of the results after each process: treated, 

deleted, added or final points, in every case, as well 

as the processing time. 
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