
- 1 -

Please cite this article as:
F. Jurado, F. D. Rodriguez, E. Chavarriaga, L. Rojas. Blending Language Models and Domain-Specific Languages in Computer Science Education. A Case
Study on API RESTFul, International Journal of Interactive Multimedia and Artificial Intelligence, (2025), http://dx.doi.org/10.9781/ijimai.2025.09.005

Keywords

Case Study, Computer
Science Education,
Domain-Specific
Languages, Language
Models, Student
Assessment.

Abstract

Since Computer Science students are used to applying both General Purpose Programming Languages (GPPLs)
and Domain-Specific Languages (DSLs), Generative Artificial Intelligence based on Language Models (LMs)
can help them on automatic tasks, allowing them to focus on more creative tasks and higher skills. However,
the teaching and evaluation of technical tasks in Computer Science can be inefficient and prone to errors.
Thus, the main objective of this article is to explore the performance of LMs compared to that of undergraduate
Computer Science students in a specific case study: designing and implementing RESTful APIs DSLs. This
research aims to determine if LMs can enhance the efficiency and accuracy of these processes. Our case study
involved 39 students and 5 different LMs that must use the two DSLs we also designed for their task assignment.
To evaluate performance, we applied uniform criteria to student and LMs-generated solutions, enabling a
comparative analysis of accuracy and effectiveness. With a case study comparing performance between
students and LMs, this article contributes to checking to what extent LMs are able to carry out software
development tasks involving the use of new DSLs specially designed for highly specific settings in a similar
way as well-qualified Computer Science students are able to. The results underscore the importance of well-
defined DSLs and effective prompting processes for optimal LM performance. Specifically, LMs demonstrated
high variability in task execution, with two GPT-based LMs achieving similar grades to those scored by the
best of the students for every task, obtaining 0.78 and 0.92 on a normalized scale [0, 1], with 0.23 and 0.14
Standard Deviation for ChatGPT-4 and ChatGPT-4o respectively. After the experience, we can conclude that a
well-defined DSL and a proper prompting process, providing the LM with metadata, persistent prompts, and a
good knowledge base, are crucial for good LM performance. When LMs receive the right prompts, both large
and small LMs can achieve excellent results depending on the task.

DOI: 10.9781/ijimai.2025.09.005

Blending Language Models and Domain-Specific
Languages in Computer Science Education. A Case
Study on API RESTFul
Francisco Jurado1, Francy D. Rodríguez2, Enrique Chavarriaga3, Luis Rojas4

1 Department of Computer Engineering, Universidad Autónoma de Madrid, Madrid (Spain)
2 Computer Engineering Department, Universidad Politécnica de Madrid, Madrid (Spain)
3 UGround Global S.L., Madrid (Spain)
4 Facultad de Ingeniería, Universidad San Sebastián, Santiago (Chile)

* Corresponding author: francisco.jurado@uam.es (F. Jurado), francydiomar.rodriguez@upm.es (F. D. Rodriguez),
echavarriaga@uground.com (E. Chavarriaga), luis.rojasp@uss.cl (L. Rojas).

Received 19 September 2024 | Accepted 4 May 2025 | Early Access 29 September 2025

I.	 Introduction

Since the irruption of Generative Artificial Intelligence (GenAI) and
particularly the emergence of IA-powered chat-bots that serve as

front-ends to trained Language Models (LMs), either Large Language
Models (LLMs) or Short Language Models (SLMs) —the scaled-down
versions—, there is a kind of sprint race in the adoption, adaptation
and analysis of the weaknesses, threats, strengths and opportunities
that these technologies can offer in educational contexts. To estimate a

benchmark of its performance, there are reports and research on how
well these LLMs pass well-known examinations [1], [2], [3], generate
quality texts [4], [5], create content educational, improve the students
engagement, or personalize learning experiences [6].

It is remarkable that, with the achievements in the field of LMs,
there is a great opportunity to automatize the assessment and feedback
of text-based responses in educational environments, enhancing the
efficiency and effectiveness of the learning process [7]. Nevertheless,

- 2 -

International Journal of Interactive Multimedia and Artificial Intelligence

not all educational contexts have been explored. There is still work to
do, and one of these contexts is Computer Science, where, to the best
of our knowledge, there are very few research works. Students in this
discipline used to work with end users’ specifications taken in Natural
Language (NL), which they must formalise in the corresponding
Domain-Specific Language (DSL) and use other DSLs (such as SQL,
HTML, CSS, etc.) and General Purpose Programming Languages
(GPPL) that follow contexts-free grammars, to implement and deploy
the solution to the problem.

Therefore, due to its nature with the use of NL and context-free
grammar, Computer Science is an ideal scenario where to apply
LMs. Not in vain, there are several LMs specifically fine-tuned for
programming [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18],
but little research works to test the performance of LMs on easing the
tasks of both, teachers and students [19], [20], [21].

Thus, because Computer Science students are familiar with the use
of GPPL and DSLs to design specific solutions, the assumption made in
this article is that the use of LMs to generate solutions based on such
GPPL and DSLs, should allow students to better focus on formalizing
the description of requirements in natural language, thus focusing
on more relevant tasks, leaving the automatic ones to the LMs, and
providing better results for the solutions. But before getting there, it
will be necessary to see to what extent the performance of the LMs is
equivalent to that of the learners. Therefore, to gather initial results for
future work in this direction, we conducted a case study on the design
and implementation of Representational State Transfer (RESTful) APIs
by undergraduate Computer Science students.

In this sense, the research questions set for this article were stated
as follows:

•	 RQ1. Is it possible to use current LMs together with DSLs for
assignments that involve the design and implementation of
RESTful APIs?

•	 RQ2. How do LMs perform against real students for assignments
on designing and implementing RESTful APIs using DSLs?

To answer these research questions, the methodology used to
evaluate the performance of the LMs can be summarized as follows:
1) two DSLs were designed to be used for Computer Science
undergraduate students to perform assignments; 2) then, a group
of students was taken to perform the assignment and, in turn, the
corresponding LMs were prompted; 3) both, the students’ proposed
solutions and the LMs output, were collected and scored by the
teachers of the subject; 4) finally, the scores from all students as well
as LMs were compared as if LMs was just another student.

The study carried out, allows us to state that the use of DSLs and
LMs in Computer Science education presents a significant opportunity
to improve efficiency and accuracy in teaching and evaluating
technical tasks. The results indicate that, although LMs are valuable
tools, specific prompting is required to maximize their potential.

As a consequence, the main contribution of this article is the
comparative analysis carried out on the performance of various real
students against different LMs, contrasting different versions of them,
large and small ones, and general purpose versus specially tailored for
programming, all this, specifying a complex prompting that includes
metadata, persistent Prompts and knowledge corpus.

Accordingly, the rest of the article is structured as follows: section
II shows some related works; section III details the methodology
developed to answer the research question; section IV withdraws the
obtained results; then, section V answers the research question and
provides a discussion on the obtained results; and finally, section VI
summarizes the concluding remarks and spot some future works.

II.	 Related Works

The following subsections will review recent studies on how LMs
have been applied in education across various disciplines, focusing on
Computer Science education and code generation.

A.	LMs in Education
In their technical report, OpenIA [1] shows the results they obtained

when GPT-4 tries to pass exams of different disciplines. However,
out of the box of this report, we can find limited research works on
how LMs perform in specific disciplines, and even less in Computer
Sciences related fields.

As an illustration, within the scope of medical education, Gilson
et al. [2] evaluated the performance of ChatGPT for the 1st and 2nd
steps of the United States Medical Licensing Examination (USMLE),
a three-step examination required for medical licensure in the United
States. They concluded that, for medical question answering, ChatGPT
achieves the equivalent of a passing score for a third-year medical
student, and highlight the ChatGPT’s capacity to provide logic and
informational context across the majority of answers. Thus, the
authors see the potential applications of ChatGPT as an interactive
medical education tool to support learning. Similarly, in the context
of law education, Katz et al. [3] analysed how GPT-4 performs the
Uniform Bar Exam, a standardized examination that aspiring lawyers
must pass to be admitted to the bar and become licensed to practice
law in a specific jurisdiction in the United States. These authors find
GPT-4 being graded in the same way as a human scores above the
passing threshold for all components of the test.

The work performed by Parra et al. [22], tried to understand the
strengths and weaknesses of ChatGPT 3.5, Bing Chat, and Bard in the
field of Geometry. To this end, they analyzed their ability to provide
correct solutions, and categorize the errors found in the described
reasoning processes. In terms of the correctness of the obtained
solutions, LMs had what the authors qualified as a disappointing
performance. The responses given by the different LLMs contained
several types of errors, which the authors categorize as construction,
conceptual, and contradiction.

Nevertheless, the teachers’ concerns go beyond whether LMs pass
the exams. Thus, for instance, since LMs can generate original text,
one question that many teachers wonder about is whether LMs can
be used by students to assist them in their academic tasks, i.e. to use
them as learning tools. Thus, focusing on the application of ChatGPT
in engineering higher education Bernabei et al.[4] investigate whether
students can generate high-quality university essays with the
assistance of LMs, whether existing LM detection systems can identify
LMs and how students perceive the usefulness of LMs in their learning
process. As a result, the authors suggest avoiding banning LMs.

Likewise, supporting students in assignments regarding writing
skills, Liu et al. [5] conducted a qualitative study examining whether
LMs can facilitate students’ multimodal writing process for learning
English as a foreign language. In their experiment, students from the
control group developed a PPT presentation while being assisted with
generated texts and images. The authors concluded that students were
able to focus on text production and generate high-quality texts.

Rather than assisting students in the assignment development
process, other authors seek to provide feedback on the students’
submissions. In this regard, for those tasks specially designed to
improve writing skills in secondary students, Meyer et al. [23] propose
the use of LMs to generate automated evidence-based feedback for the
students’ text revision. Thus, they conducted a study comparing the
effectiveness of the feedback produced by GPT-3.5-turbo to English as
a foreign language students’ essays, compared to no feedback at all. The
results they obtained indicate that LM-generated feedback increased

- 3 -

Article in Press

revision performance and task motivation. In their study, Meyer et
al. [23] assessed the improvement in the revision using automated
essay scoring by training an algorithm using a Support Vector
Machine. Similarly, Rigaud et al.[24] analyzed the performance on the
feedback of ChatGPT in Linear Algebra problems. In their analysis,
they examined and evaluated the feedback provided to engineering
students in their solutions, both from teachers and ChatGPT. The
results revealed potentialities and challenges in improving feedback
on graduate-level mathematical problems, identifying deficiencies in
reasoning, proofs, and model construction, among other areas.

Besides that, LMs can also be used for the automatic scoring task,
and in this regard, it is remarkable the work performed by Mizumoto
et al. [25] explored the potential use of GPT-3 text-davinci-003 LM
in automated essay scoring for non-native speakers of English. They
concluded that students, teachers and researchers can obtain valuable
insights by mastering effective strategies exploiting GPT in their work,
because it can significantly improve their language skills.

For their part, Latif et al. [26] argue that the direct use of pre-trained
GPT-3.5 is not enough for automatic scoring, and that contextual
information is necessary for accurate scoring. As a consequence, in
their study, they fine-tuned GPT-3.5 using data from six assessment
tasks for student-written responses in science education. The results
showed that when trained on in-domain training corpora, GPT-3.5
demonstrated a remarkable performance in automatic scoring accuracy.

In their study, Urban et al. [27] explored the impact of ChatGPT on
university students’ performance in complex creative problem-solving
tasks. The results showed that, although ChatGPT did not increase
task interest, students who used ChatGPT had significantly higher
self-efficacy in task resolution and produced higher quality, more
elaborate, and original solutions. Also, the students found the task
easier and required less mental effort.

The above clearly shows that there is a need to further explore
the goodness, strengths and threats that Generative AI brings to
different educational contexts, specific subjects and particular skills.
Particularly, the goal of this article is on the competencies and skills
that relate to Computer Science to understand their specific impact on
this educational area. Thus, the next subsection will delve into how
these LMs are being used to support both students and teachers in
this field.

B.	LMs in Computer Science Education
Focusing on Computer Science Education, Prather et al. [19]

conducted a study on how novice students interact with Github
Copilot [14] during their learning progress in an introductory
Programming course (CS1) assignments. In their study, most of the
students considered that Copilot could enhance their coding speed,
although they expressed apprehensions regarding comprehending the
auto-generated code, and becoming dependent on such tools. Also, the
study reveals two interaction patterns: on the one hand, some students
guide Copilot by leveraging its auto-generated code towards a
solution rather than starting from scratch and incorporating Copilot’s
recommendations; on the other hand, some students go through some
of Copilot’s inaccurate suggestions, moving from one to the next and
consequently becoming lost.

Likewise, Haindl et al. [20] explained the students’ experience
using ChatGPT in an undergraduate Programming course. The
information gathered using anonymous surveys about the use from
the students, shows that students feel confidence using ChatGPT to
support them with learning programming concepts, but not for the
implementation tasks. Some students refrained from using the tool
due to concerns about insufficient development of programming
skills, the risk of receiving incorrect code, or scepticism regarding
its benefits. Also, the authors offer guidelines to enhance the use of

LMs in education like design of engaging student-centred projects,
guidance on prompt engineering, and strategies for assessing the
accuracy of generated responses.

Moving towards later courses, Kozov et al. [21] use LMs that
generate images and code in their workshops with students in the
subjects of Analysis of Software Requirements and Specifications, and
Artificial Intelligence. The results showed a positive and motivational
impact during and after the workshops. Although the authors do
not provide results in other subjects, they spot some uses of LMs in
subjects like Introduction to Programming or Computer Graphics.

Despite the above-mentioned research, so far, we can see evidence
that there is still a lot of work to assess the performance of LMs in
educational contexts, both assisting students and teachers in the
teaching-learning process, where it is necessary to create good
practices and guidelines for both roles and in the tasks of automatic
guidance and assessment, where, at present, train and fine-tuning of
LMs seems to be necessary. However, these fine-tuning processes often
require time, computing resources and training corpus. Therefore,
as previously stated in Section I, this research work asks whether
existing LMs be used in combination with DSLs for these tasks, and for
this purpose, we analyse the performance of LMs in Computer Science
tasks that use DSLs.

As seen, research in Computer Science education indicates that
LMs can be valuable tools, but they also present challenges. Next, we
will explore how some of these LMs are being specifically applied for
the particular task of code generation.

C.	LMs for Code Generation
As far as we know, the use of DSL together with AI techniques

and Natural Language Processing (NLP) in code generation contexts
is something worth noting. Thus, before the irruption of LMs, there
were interesting approaches that attempted to generate DSL code
from descriptions written in natural language (NL). Particularly, Desai
et al. [28] propose a framework for building program synthesizers that
can interpret NL inputs and generate expressions in a designated DSL.
The framework takes as input a DSL definition and training data of
NL/DSL pairs, and thus, it constructs a synthesizer that prioritizes the
outputs of a keyword-programming-based translation.

Similarly, also without using an LM-based approach but
instead using techniques from NLP, Kolthoff et al. [29] proposed
a methodology for prototyping a Graphical User Interface (GUI) by
processing requirements described in NL, and translating them into a
DSL describing the GUI and its navigational schema. Then, with the
generated DSL, the corresponding target platform prototypes can be
generated. Also, the users’ feedback about the GUI proposal can be
provided in NL to fine-tune the generated prototypes.

Only two years ago, Kolahdouz-Rahimi et al. [30] conducted a
review on existing studies on NLP and Machine Learning (ML) for
Requirement Formalisation. Their study found that heuristic NLP
techniques are the most frequently used for this specific problem and
that classical ML techniques are more prevalent rather than Deep
Learning. However, at that moment, there was not even any mention
of LMs in this regard.

The best-suited approaches relied on DSL as a mechanism close to
NL to facilitate the specification and development of solutions by end-
users. Thus, for instance, Vernotte et al. [31] present a DSL to prevent
air traffic control cyberattacks by allowing air traffic control experts
to design tests where attackers modify, block, or emit fake messages to
dupe controllers and surveillance systems. Their work demonstrates
the design capabilities and a productivity gain. For their part, the
works performed by Chavarriaga et al. [32], [33], [34] show several
approaches that allow specifying custom DSL for both textual and

- 4 -

International Journal of Interactive Multimedia and Artificial Intelligence

visual, facilitating end-users the specification of solutions in a way
closer to the domain, and automatically generate JavaScript code that
implement those solutions with high quality.

Once the LMs were raised, interesting research proposals emerged.
Thus, in a blended way between DSL and NLP, Singh et al. [35]
used LMs with an approach that has demonstrated state-of-the-art
success rates with the use of program-like specifications to prompt
LMs to generate the code of plans for situated robots, with specific
recommendations on instruction structure and generation constraints.

The review conducted by Wang et al. [36] on code generation
with LMs, concluded that, due to the powerful code understanding
and writing ability LMs provide, they can be applied in software
engineering tasks to boost the productivity of developers. However,
the work also pointed out that the evaluation of the quality of the
generated code receives less attention from researchers. In this last
regard, for evaluating the code generation ability of LMs, Yeo et al.
[37] propose a framework and a new metric to measure the accuracy
according to the pass rate of test cases.

Going on to other tasks of the software development process, Schafer
et al. [38] present an approach for software testing where the LMs are
provided with prompts that include the signature and implementation
of a function under test, and then, the tool generates the JavaScript
unit tests. Their evaluation concluded that the effectiveness of the
approach is influenced by the size and training set of the LM, but does
not depend on the specific LM itself. Regarding databases, Zhou et al.
[39] propose a framework that includes automatic prompt generation,
as well as LMs fine-tuning, designing and pretraining specifically for
database management. Their preliminary results indicate that the
framework performs relatively well in tasks such as query rewriting
and index adjustment.

As can be seen so far, in the software engineering domain, some
researchers have theorised about the potential of Generative AI
technologies and LMs, as well as their main scenarios, and an example
of it is the work presented by Sauvola et al. [40]. However, the fact
is that the potential of what can be achieved can only be discerned
through a few early research efforts within the last two years.

So far, code generation using LMs has opened new possibilities in
software development, but it also raises questions about performance.
In the next subsection, we will discuss the metrics and techniques used
to measure the effectiveness of these LMs in programming tasks.

D.	Measuring the LMs Performance
Analyzing and comparing the performance of each LM against

human students in programming tasks may involve several techniques
and measures [41, 42]. Hence, to benchmark the performance of LMs,
we can measure text similarity, coherence, relevance, and precision. In
the following, we will describe some of the most common strategies.

The first approach is to measure Similarity, that is, to score how
similar the content of two texts is. There are several metrics to evaluate
Similarity. Thus, the Bilingual Evaluation Understudy (BLEU) [43] is
a commonly used metric for benchmarking the quality of automatic
translations, but it can also be applied to compare texts in the same
language. It calculates similarity based on the match of n-grams
(sequences of n words). Based in the BLEU metric but code oriented,
CodeBLEU [44] is built upon the n-gram matching strength of BLEU,
and further integrates code syntax using abstract syntax trees and code
semantics via data-flow, resulting in a more robust approach. Likewise
to BLEU, the Recall-Oriented Understudy for Gisting Evaluation
(ROUGE) [45] focuses on evaluating the quality of summaries, and
therefore, it can be useful for comparing short answers or summaries.

Another simple approach is the Cosine similarity, which measures
the similarity between two text vectors, transforming each text into

a vector in a high-dimensional space like Term frequency – Inverse
document frequency (Tf-idf), and then, the similarity is the cosine
of the angle between these vectors. For its part, Jaccard similarity
measures similarity based on the set of unique words present in
both texts, which is helpful for more general text comparisons. With
results near Jaccard similarity, MinHash technique [46] is usually
helpful for plagiarism detection tasks in text documents. However, its
applicability can extend to code snippets, enabling the identification
of similarities in code fragments. Analogous, the Wagner-Fischer
algorithm is a dynamic programming algorithm that measures the
Levenshtein distance between two strings of characters. This distance
calculates how similar the two strings are, based on the number of
deletions, insertions and substitutions needed to transform one string
into the other. This algorithm would be useful for strings comparing,
i.e., in our case, code fragments.

For medium to long texts, another relevant benchmark is Coherence
to evaluate the ability of LMs to maintain a line of thought in the
responses, that is, to score how well the ideas within a text connect. To
analyze the Coherence, we can use NLP techniques that help analyse
the structure and fluency of the text, like identifying the topics and
checking thematic and logical coherence.

To determine the significance of the generated text, Relevance
assesses the capability of LMs to address the question’s topic. To
measure Relevance, we can use Human Evaluation to rate it based
on their knowledge, or Information Search tools to verify if the text
provides relevant and up-to-date information on the topic. Likewise,
Precision evaluates the accuracy and correctness of the information
provided by LMs in terms of meeting the acceptance criteria. It refers
to how correctly the details in the text are. To measure Precision,
Human Evaluation and even Fact-Checking are used to verify the
statements made in the text.

Each of these metrics and techniques has advantages and
limitations, and the choice of tools and methods will depend on the
specific context of the study and the objectives of the evaluation.

As final remarks, along with this and previous subsection, after
analyzing the applications and evaluations of LMs in education,
particularly in Computer Science, and for the specific task of code
generation, it is evident that these technologies have a significant
and evolving impact that can be measured with specific metrics.
Consequently, the next section will detail the case study performed.

III.	Methodology

This section will provide details on how we have compared the
performance between students and LMs, to check to what extent LMs
can carry out coding tasks involving the use of new DSLs specially
designed for highly specific settings.

A.	Experimental Process Definition
This study adopts an exploratory case study approach, which is

suitable for examining the performance of LMs and undergraduate
Computer Science students in a controlled educational environment.
Rather than aiming for broad generalization, this exploratory design
focuses on gaining initial insights into how LMs compare to students
when working with DSLs and RESTful APIs, providing a foundation
for future, more extensive studies.

To evaluate the LMs to answer the defined research questions, we
defined and organized the experimental process in this way:

1.	 Two DSLs were created to specify RESTful APIs within a
structured programming environment, designed to be used
both by undergraduate Computer Science students and LMs in
performing their assignments (subsection III.B).

- 5 -

Article in Press

2.	 An assignment was designed to evaluate participants’ abilities in
using these DSLs, incorporating tasks with varying complexities
to ensure a balanced assessment (subsection III.C).

3.	 A group of 39 undergraduate Computer Science students was
selected for the experiment, ensuring a homogeneous skill set and
sufficient expertise to engage with the tasks (subsection III.D).

4.	 A diverse range of existing LMs was studied and carefully selected
to ensure broad representation, covering both general-purpose
and programming-specific capabilities (subsection III.F).

5.	 Evaluation scenarios were defined to ensure consistency between
students and LMs. These included uniform task assignment,
structured prompt engineering, and validation of outputs using a
standardized rubric (subsection III.G).

6.	 The selected LMs were configured with tailored prompts and
contextual metadata to simulate real-world scenarios and maximize
their performance in the experimental setup (subsection III.H).

7.	 Both the solutions provided by students and the outputs generated
by LMs were collected and assessed by the course instructors
using predefined evaluation metrics. Grades were assigned and
analyzed to compare performance across both groups, with results
summarized and analyzed in Section IV.

The next subsections will cover all the details about how the
experimental process was performed.

B.	Environment Used for the Assignments
This section describes RestRho, a RESTful API server based on

JSON-DSL designed and implemented using RhoArchitecture [33]. By
engaging with this example, students can gain hands-on experience
in working with JSON-DSL and RESTful API development. For short,
a DSL is a specialized programming language tailored to a specific
application domain, offering a concise and efficient way to express
domain-specific rules and algorithms. Unlike GPPLs, DSLs are
optimized for particular tasks, enhancing productivity and precision
in software development [47], [48], [49].

Within this context, RhoArchitecture provides a framework for
building and executing JSON-based DSLs (JSON-DSLs). This framework
includes the Rho Programming Model (RhoModel), which integrates
JSON-DSL specification, JavaScript classes for grammar functionality,
JavaScript and Web Components, the Handlebars Template Engine,
and data source connections (JSON, XML, Text) [33], [34]. The Rho
JSON-DSL Evaluation Engine (RhoEngine) is a JavaScript component
that runs JSON-DSL programs, evaluates grammar symbols, and
supports connections, template usage, component interactions,
security policies, and good programming practices.

The Web Integrated Development Environment for Rho (WebIDERho)
uses RhoModel and RhoEngine, allowing project definition for server
and client-side, class diagram visualization, automatic documentation
generation, and deployment of NodeJS applications.

Before deploying the DSLs (DBRestRho and SQLRho) in the
experiment, we conducted an internal evaluation phase. This included:
(i) defining the DSL grammar and syntax rules based on RESTful API
design principles; (ii) reviewing the DSL specifications with two
domain experts; and (iii) testing the DSLs with sample queries and
templates to ensure their correctness, clarity, and ease of use. These
steps helped validate that the DSLs were well-prepared and robust for
the study.

1.	RestRho: API RESTful Server Based on JSON-DSL
RestRho aims to create JSON-DSLs within the RhoArchitecture

framework, facilitating the specification, implementation, and
deployment of RESTful APIs. These APIs are designed to enable
efficient and scalable web application interactions using standard
HTTP/HTTPS verbs such as GET, POST, PUT, and DELETE [50],
[51], [52]. RestRho serves as a JavaScript component to define and
dynamically deploy these HTTP requests on a RESTful NodeJS server,
known as ServerRestRho [52], [53]. The server and its requests are
implemented using Express, a fast and minimalist web framework for
Node.js [50], [54].

Also, RestRho facilitates resource access through two RhoLanguages:

1.	 DBRestRho is the JSON-DSL in charge of (i) defining the list of
HTTP requests and associating a template with a SQL statement
to each operation; (ii) executing SQLRho programs; and (iii)
helping to create prompts based on the information from a
database, its tables, and its operations, so that it eases the task
of creating the knowledge corpus necessary for prompting the
LLMs. The definition of the DBRestRho Grammar can be found
in Appendix A.

2.	 SQLRho is the JSON-DSL that allows configuring DB connections
(MariaDB or MySQL) and defines a set of operations on existing
tables based on the list of requests defined in DBRestRho. There are
two kinds of operation associated with a table: (i) basic operations
at record level (Insert, Update, Delete, and Select), and at table level
(Where and SelectAll); and, (ii) custom operations, which support
configuration, and the application of transformation and output
templates to the results. The definition of the SQLRho Grammar
can be found in Appendix B.

2.	A Sample of the Use of RestRho
The purpose of this section is to create an illustrative example to

show how to write DBRestRho and SQLRho code and run them on
ServerRestRho. This same example was the one used as a reference
when prompted the LMs. Fig. 1 shows the Sample RestRho database
model as called SampleRestRho, which is made up of four tables: user
(with the login information), person (an isolated table with some
attributes to store information about specific persons), and position and
employee (two joined tables to manage a one-to-many relationship).

Fig. 1. Database Diagram for Sample RestRho. The database has four tables: two with non-related data (user and person), and two with a one-to-many
relationship (position and employee).

- 6 -

International Journal of Interactive Multimedia and Artificial Intelligence

For its part, Fig. 2 shows the program DBRestRho “rho.json”1 (on
the left), denoted by PrgDBRest. In that part of the figure, we can
see the “Databases” attribute with a list of the database the JSON-
DSL code is using, in this case, the “sample.mariadb.json”2. We can
also observe how the program defines the functionalities (Insert,
Update, Delete), that can be applied to those “Databases”. Looking the
“Update” definition, we can see the HTTP method it uses (“put”), the
path templated that specifies the REST endpoint, the SQL template
statement to perform, as well as other default values and parameters.

Fig. 2 also shows SQLRho program (on the right, and connected to
the database SampleRestRho), denoted by PrgSQL. This code contains
database specific information, like the database name, the tables
information (with the attributes they has, the operations that can be
performed on each one, etc.). Using the information contained in the
specific SQLRho code, the DBRestRho templates fills the endpoint and
SQL templates (at the bottom of the figure). With this two DSLs, the

1 https://www.devrho.com/restrho/rho.json
2 https://www.devrho.com/restrho/sample.mariadb.json

students work in an example that isolates REST-API definition from
the database definition, but must link all together.

In addition, in PrgSQL the register table is user. Also, the figure
shows how the HTTP Path request is generated, as well as the SQL
sentence of the Update operation (for table “person”). For the Path,
RestRho dynamically creates the PUT request as follows: (i) the Host
and Port where ServerRestRho is deployed, the URL Path taken from
the PrgSQL program name, concatenated with the name of the table
person, the Resource primary key of table person, e.i., the record id=30,
and the Query String fields defined in the table: NAME, SURNAME,
AGE and SEX. We can also see the SQL statement, the table name
(“person”), the values of each field (those that come in the Query
String), and the primary key (“id” field).

For its part, Fig. 3 details a custom SelectPillTemplate operation in
the program PrgSQL for the “person” table, which is the way to specify
an HTML template to visualize information provided by the REST.
Particularly, Fig. 3(a) details the specification of SelectBasicAction
definition in the program PrgDBRest using DBRestRho JSON-DSL

Fig. 2. DBRestRho and SQLRho example programs, and how a HTTP path request (REST endpoint) and SQL statement are created.

Fig. 3. Example of DBRestRho and SQLRho to create an operation and link it to a specific template to render the result in the browser.

- 7 -

Article in Press

in the way explained in the previous paragraph. However, this code
shows the Handlebars templates that will be used to render and
display the information in the browser. In particular, the code shows
two templates, namely: “user.table” and “persol.pill” (at the top of Fig.
3(a). As an example, the “person.pill” defines that, to render the table
“person”, the template “pills.html” must be used (at the top of Fig. 3(b)).
The “pill.html” template is based on the Bootstrap framework v.5.33,
and what we see in the code is how it goes through all the records and
for each one, it creates a coloured Pill according to the age range, and
an icon if male or female. The result when executed by RhoEngine and
rendered in the browser is displayed in Fig. 3(c).

The running example of Sample RestRho is shown in Fig. 4 and
available at http://www.devrho.com/restrho/sam ple.html. That figure
shows an example of the CRUD administration of the “person” table,
the list of people in Pills, and the graph of percentages of men and
women. Also included in the example is Login, the “person” table
where the list of users is shown, and the ’employee’ table that shows
the “employees” in the form of Cards.

C.	Assignment Description
Table I offers an in-depth description of the tasks assigned to

participants. These assignments are meticulously formulated based
on the Employees Sample Database from MariaDB, which is freely
accessible and serves as a solid practical basis for the experimental
tasks. The goal of these tasks is to design and effectively implement
a RESTful API server using the previously described JSON-DSL. Each
of these tasks is assigned a unique identification code and is described
with clarity and brevity in the “Tasks” column of the table.

To ensure a balanced evaluation across different skill levels and task
types, the tasks were divided into categories, such as configuration,
operations, and usage, representing a range of complexities from simple
setup tasks to advanced operations requiring template creation and
data visualization. Table I includes a “Task Complexity” column, which
quantifies the relative difficulty of each task based on its design and

3 https://getbootstrap.com/

expected effort. These complexity values were normalized to ensure
their sum equals 1, offering a clear view of the progression in difficulty.

The tasks are systematically arranged under relevant main activities,
which provides further insights into the specific purposes or applications
of each task within the experimental setup. This arrangement ensures
a logical flow from foundational tasks to more advanced challenges,
facilitating both learning and assessment. Additionally, the tasks
were intentionally designed with increasing complexity to evaluate
participants’ performance at different levels of expertise.

By including a quantifiable measure of task complexity and
aligning tasks with specific types and activities, we aimed to balance
the experimental design and ensure fair evaluation of both students
and LMs. Each task falls into specific types, such as configuration,
operations, and usage, offering a clear classification that underscores
the functional nature and requirements of the tasks. This structured
presentation not only enhances the comprehension of the tasks’ goals
and methodologies but also assists in evaluating their impact and
relevance to the overall experimental goals.

D.	Selecting the Students
The subjects involved in this case study were students enrolled

in a Software Project Management course during their final year of
the Computer Engineering program. This specific course was chosen
because it aligns with the experiment’s requirements: according to
the curriculum, these students had already mastered essential skills in
database management, web application development, and RESTful API
design. Thus, no additional initial assessments were necessary. The
relatively homogeneous skill set of these 39 students, while not large
enough for broad generalization, is appropriate for an exploratory
case study aiming to derive preliminary insights.

To ensure the ethics of the research, all participants provided their
written informed consent, voluntarily agreeing to participate in the
study. In total, 39 students participated, all of whom were voluntarily
selected from the aforementioned course, ensuring a representative
sample of students with the requisite background. These students had

Fig. 4. Example of how a Handlebar template is finally rendered in the browser.

- 8 -

International Journal of Interactive Multimedia and Artificial Intelligence

an average age of 23.5 years, with age variations ranging from 22 to
29 years and a standard deviation of 1.8 years, noting that 90% of the
participants were male.

Their technical skills were consistent with the expected outcomes of
their training. They had developed skills in programming in multiple
programming languages, which allowed them to effectively address
complex software problems. Additionally, they possessed practical
knowledge in the design and management of databases, an essential
competence for the efficient handling of large volumes of data. They
also had experience in web application development, which included
both front-end and back-end, preparing them to face the challenges of
creating comprehensive web solutions.

E.	 Rubric Metrics
To ensure rigorous assessment of both LMs and student

performance, specific metrics and criteria were applied to evaluate
task success. The metrics used include:

1.	 Correctness: The extent to which the solutions meet the task
requirements. For SQLRho tasks, this involved syntactically correct
SQL queries that returned the expected results. For DBRestRho
tasks, this required correctly implemented RESTful endpoints that
adhered to the specified API schema.

2.	 Completeness: Whether all components of the task were addressed
(e.g., handling all fields in a database table or completing all CRUD
operations).

3.	 Execution Success: The ability of the solution to run without
errors (e.g., SQL queries executing successfully or APIs passing
validation checks).

4.	 Error Analysis: The number and type of errors (e.g., syntactic
errors in SQL queries or missing endpoints in API configurations).

Additionally, the criteria for determining task success were as follows:

•	 For SQLRho tasks: Success was defined as writing queries that
retrieved accurate and complete data as specified in the task
description. Queries were tested against a predefined dataset to
ensure validity.

TABLE I. Comprehensive Summary and Categorization of Tasks in the RestRho Experimental Framework

ID Tasks Task
Complexity (*) Task Type Main

Activity

1A Setting up a file to launch an SQLRho program. 0.0750
TT1. Configure the SQLRho program

with the employees database

MA1.
SQLRho
program

1B1
Query the current number of employees in each department,sorted
alphabetically by department name.

0.0450

TT2. Operations on table ‘departments’

1B2 List all managers who have worked in a department in chronological order. 0.0450

1B3
List the current managers of each department, sorted by last name and first
name.

0.0450

1B4 List the current employees in a department, including their current age. 0.0450

1B5
Query the current number of men and women in each department, sorted
by the number of employees in descending order.

0.0450

1B6
Query the current minimum, maximum, and average salaries y department,
sorted by average in ascending order.

0.0600

1C1 Query the current number of men and women in the company. 0.0600

TT3. Operations on table ‘employees’

1C2 Query the titles that an employee has held in chronological order. 0.0300

1C3
Query the departments where an employee has worked in chronological
order.

0.0450

1C4
Query the current number of men and women in the Company within the
following age brackets [0-17, 18-40, 40-65, 65+].

0.0450

1C5 Query an employee´s salary history in chronological order. 0.0450

2A
Create an HTML template for managing CRUD operations on he
“departments” table.

0.0600

TT4. Usage of Handlebars templates
MA2.

Company
Website

2B
Create an HTML template for managing CRUD operations on he table of
employees who are department managers.

0.0444

2C
Use “SelectManagersDepto (T4)” with its fields to create a emplate for cards
of current managers in each department.

0.0889

2D
Use “SelectEmployeesListDepto (T5)” with its fields to créate template for
pills of current employees in a department.

0.0889

2E
Create a diagram to display the current number of men and women in the
company.

0.0889

2F
Create a diagram to display the current number of employees in each
department.

0.0444

(*) The values in the Task Complexity column are normalized such that their sum equals 1.

- 9 -

Article in Press

•	 For DBRestRho tasks: Success was defined as implementing
endpoints that followed the JSON-DSL requirements and passed a
series of automated integration tests.

Human evaluation was conducted using a standardized rubric that
included predefined solutions for all tasks. Evaluators compared the
solutions provided by participants against these expected answers to
assess correctness, completeness, and adherence to task requirements.
This rubric ensured consistency and objectivity in evaluating both
LMs and students.

These metrics and criteria provided a comprehensive framework
to compare the performance of LMs and students across all tasks,
ensuring fairness and reproducibility.

F.	 Outline of Language Models
Before conducting the case study, it is necessary to decide which

LMs to use among all available. To better follow this section, Fig. 5
summarizes some of the LMs programmers can use to assist their
work. In the figure, we can see three big clusters: general purpose,
fine-tuned for coding, and those that can be integrated as plugins or
are an IDE themselves.

In the first instance, we can find generalist LMs. These LMs are
designed to understand and generate human-like text across a wide
range of topics. Among them, the most widely used and well-known is
ChatGPT [55] and those based on it, like Microsoft Copilot [56] (also
known as Bing Chat). For its part, Perplexity [57] supposes another
good approach conceived as a chat-like search engine. Although
it works with several LLMs, Perplexity has a LM called Sonar [58].
Llama [59], the LM developed by Meta, Claude [60] and Mistral [61],
are other great examples of generalist LLMs.

In addition to the LLMs, it is worth noting the good results obtained
from the SLMs, like Phi3 [62] and Orca2 [63] developed by Microsoft,
or Gemma [64] developed by Google and based on Gemini [65].

Specifically for programming, Phind [8] offers tailored support for
coding tasks. Phind has a web interface, but it is also available as a

plugin for popular Integrated Development Environments (IDEs) like
Visual Studio Code, enhancing developers’ workflow. Code Llama
[9], a variant based on Llama, focuses on assisting programmers with
code-related queries and tasks. Deepmind AlphaCode [10], Code-
Bert [11], and Tabnine [12] are other specialized LLMs tailored for
programming contexts.

Furthermore, we can find more IDE plugins designed to improve
programmers’ capabilities using LM. Thus, for instance, Cursor is an
IDE that uses LM to enhance code navigation and code-editing [13].
Similarly, Copilot [14] is a well-known plugin built on top of Codex
[15], a GPT LLM fine-tuned on GitHub code repositories, that provides
intelligent code suggestions and completions. CodeWhisperer[16],
which is the approach developed by Amazon, Code4Me [17] and
FauxPilot [18], are other examples of plugins aiming to improve
coding workflows and boost productivity.

To enable interfacing with the different LMs, standard tools
are emerging to interact with them and to allow using them in the
research and development processes. Among these tools, we can
highlight Ollama4, LM-Studio5 or Jan6, three front-ends to search, load,
and interact with LMs in an easy to use way.

For our case study, we selected a set of seven different LMs
aiming to cover a broad spectrum of capabilities. Among them,
we included three GPT-based LLMs, three nonGPT-based LLMs,
one programming-focused LLMs, and one SLM. This selection
allowed us to analyze the performance across general-purpose and
programming-specific LMs, as well as LLMs and SLMs approaches,
ensuring that the chosen LMs were relevant to the experiment’s
objectives and diverse enough to provide meaningful insights into
their capabilities and limitations. The details on the chosen LMs will
be provided in Subsection III.H.

4 https://ollama.com
5 https://lmstudio.ai/
6 https://jan.ai/

Generative IA
General
Purpose
LLMs

GPT

ChatGPT

Microso�
Copilot

Llama
Claude

Mistral

Sonar

Perplexity

for Coding
Specific

LLMs

Phind

Code
Llama

Code-Bert
Deepmind
AlphaCode

Tabnine

IDEs and
plugins

Cursor

Githb
Copilot

Code
Whisperer

Code4Me

FauxPilot

General
Purpose
SLMs

Phi-3

Orca2

Gemma

Fig. 5. Mind map with some of the most well-known LLMs and SLMs that students and teachers can use for programming assignments. On the left hand, the
general purpose LLMs; on the right hand, those LLMs fine-tuned for programmingspecific purposes; at the bottom, some general purpose SLMs.

- 10 -

International Journal of Interactive Multimedia and Artificial Intelligence

G.	Evaluation Issues for LMs
To ensure a fair and comprehensive evaluation of the LMs, the next

issues were addressed:

•	 Uniform Task Assignment: All LMs were presented with the
same set of tasks outlined in Table I, ensuring consistency with
the assignments given to students. These tasks included both
basic (e.g., SQLRho configuration) and advanced operations (e.g.,
template-based queries).

•	 Prompt Engineering: Each LM received structured prompts
created with a standard template that included metadata, task
descriptions, and expected behaviors. This approach was designed
to simulate a consistent and controlled interaction framework for
all LMs.

•	 Diverse Model Capabilities: The selected LMs included both
general-purpose and programming-specific LMs. Each LM was
evaluated under its optimal configuration (e.g., GPT-4 with
temperature 0.1 and enabled browsing).

•	 Output Validation: LM outputs were collected and evaluated using
a standardized rubric (see subsection III.E), ensuring uniformity in
how task success was assessed across all scenarios.

H.	LMs Selection and Setting-Up
For our exploratory analysis, we selected a set of LMs covering a

wide range of possible configurations, from LLMs and SLMs, generative
LMs based and not based on GPT, and generalist and specially trained
for programming tasks. The LMs set selected were:

•	 GPT-4, GPT-4o7, and Microsoft Copilot pro8 as three GPT-
based LLMs. For these LMs, the temperature parameter was set to
0.1, and both, the internet browsing and code interpreter functions
were enabled. Microsoft Copilot Pro, which lacks a code interpreter
function, was configured with only the internet browsing function
activated and operated in GPT-Balanced mode.

•	 Perplexity9 as front-end for the Sonar LLM. For this LM, we used
the default configuration.

•	 LLama3 version with 7 billions of tokens and Q4_K_M
quantification10 loaded in LM-Studio.

•	 Phi3 as a SLM, with 3 billion of tokens and Q4_K_M quantification11
loaded in LM-Studio.

•	 Phind as a code-specific LLM, for which we selected the instant
version through the available Visual Studio Code plugin12.

After the LMs selection, Prompt engineering was applied to the
LMs, so we asked the them to solve the same assignment presented to
the students (see Table I). Specifically, they were required to provide
an explanation of RestRho and its JSON-DSL, DBRestRho and
SQLRho, with the same examples used to train the students (one of
these examples is detailed in Subsection III.B.2). It is worth noting that
DBRestRho has the capability to generate structured information (see
the “Prompts” tag in Appendix A). Accordingly, the prompts include
the metadata and persistent prompts (subsection III.H.1), as well as the
knowledge corpus (subsections III.H.2, III.H.3 and III.H.4). The prompt
outline was as follows:

7 https://chatgpt.com
8 https://copilot.microsoft.com/
9 https://perplexity.ai
10 https://huggingface.co/lmstudio-community/Meta-Llama-3-8B-Instruct-GGUF
11 https://huggingface.co/microsoft/Phi-3-mini-4k-instruct-gguf
12 https://marketplace.visualstudio.com/items?itemName=phind.phind

RestRho APIRESTful

Description

{Description prompts goes here}

Instruction

{Restrictions prompts goes here}{Clarifications prompts goes here}
{Purposes prompts goes}

{Guidelines prompts goes here}

{Personalization prompts goes here}

The RestRho Languages

{The description of the languages goes here}

Sample DBRestRho

An example of DBRestRho (program JSON) is shown between the ```

↪ characters:
``` {The whole text with the DBRestRho program goes here} ```

## Sample SQLRho

An example of SQLRho (program JSON) is shown between the ̀ `` characters:  
``` {The whole text with the SQLRho program goes here} ```

Database named **sample**

Template Definition

A Handlebars 'template' is a kind of HTML skeleton that includes

↪ placeholders and logic blocks, allowing specific data and logic to be
↪ directly injected into the web page. The following Handlebars
↪ templates are defined:
1. Template: **user.table**

``` {The whole text with the template goes here} ```

2. Template: **person.table**

``` {The whole text with the template goes here} ```

3. Template: **person.edit**

``` {The whole text with the template goes here} ```

4. Template: **person.pills**

``` {The whole text with the template goes here} ```

5. Template: **person.piesex**

``` {The whole text with the template goes here} ```

6. Template: **employee.cards**

``` {The whole text with the template goes here} ```

Table Definition

In the **sample** database, the tables are defined with SQL statements:

{The SQL statements go here}

After applying the same prompt to each LM, we prompted them for
each assignment task in the same order as posed to the students. This
process ended up with the creation of the file we called “prompt.txt”13
which serves as a structured input to ensure the LMs could interpret
and address the tasks correctly.

The methodology behind the construction of this prompt is
thoroughly explained in the subsequent subsections, which will detail
the text with the metadata used to contextualize the tasks, the domain-
specific knowledge included to enhance the LMs’ understanding, and
the structured database-related information provided for accuracy.
Later, with this prompt in place, the selected LMs were instructed to
perform the same tasks previously presented to the students.

1.	Metadata and Persistent Prompts
In addition to specific knowledge, it is necessary to provide

additional documentation that is key for guiding, contextualizing and
optimizing the use of the LM: description, specific purpose, restrictions,
guidelines, clarifications, personalization, and conversation starters.
This information is also commonly referred to as Corpus Metadata.

13 https://www.devrho.com/restrho/prompt.txt

- 11 -

Article in Press

Therefore, the first step is to provide a general description, which
we defined as follows:

RestRho includes JSON-DSLs DBRestRho and SQLRho to deploy a RESTful API

↪ server, supporting HTTP methods like GET, POST, PUT, DELETE. It
↪ transforms JSON and uses Handlebars to separate logic from design in
↪ web content.

Restrictions define the LM’s limitations, such as prohibited topics,
technical limitations, or content guidelines. In our case:

The model must focus on technical accuracy and clarity, ensuring that its

↪ guidance is directly applicable to the SQLRho and DBRestRho languages.
↪ It should avoid giving advice on unrelated technologies or straying
↪ off topic. It must also avoid executing or suggesting any harmful
↪ code.

Clarifications can include possible assumptions that the LM can make
if the information is missing and the expected behaviour of the LM in
specific situations, such as explaining the technical solution or when to
ask the user for more details. In our case, the clarifications were:

The model should lean towards providing a response based on the expected

↪ behavior of SQLRho and DBRestRho, filling in missing details with
↪ assumptions that are standard practice for SQLRho and DBRestRho
↪ implementations.

Another key aspect is to clearly indicate the LM’s purpose:

The model is designed to be a software engineer with expertise in using

↪ the RestRho specification and its JSON-DSL (domain-specific language
↪ with JSON grammar): DBRestRho and SQLRho. Its main function is to help
↪ users understand, implement, and troubleshoot issues related
↪ RestRho, providing information, code examples, and explanations
↪ tailored to this technology, especially in generating JSON code.

To also establish guidelines that the LM must follow when
interacting with users, the following guidelines have been defined:

When interacting with users, the model should ask clarifying questions to

↪ understand the specific context or problem the user is facing with
↪ SQLRho and DBRestRho. It should aim to provide concise yet
↪ comprehensive responses that are immediately useful for the user's
↪ inquiry.

Regarding personalization, it refers to interaction preferences that
can include adjusting the level of formality, the technical complexity
of the responses, or the communication style. For our corpus, the
following has been defined:

The model should maintain a professional tone, akin to a highly

↪ knowledgeable software engineer, but also be approachable and willing
↪ to explain complex concepts in simpler terms when needed.

2.	RestRho Knowledge Corpus
The RestRho knowledge corpus included the following: a

description of RestRho, and a summary of its JSON-DSLs: SQLRho
and DBRestRho. Next, the programs PrgDBRest (code DBRestRho) and
PrgSQL (code SQLRho) are added, defined and explained in Section
III.B.2. Each program is delimited by the triple quotation mark “```”.

3.	DB Sample Knowledge Corpus
The DB Sample knowledge corpus provides a structured set of texts

to train LMs. Its purpose is to facilitate learning how to program in
SQLRho. The first part of the corpus involves setting up the available
tables by defining CREATE TABLE statements. The second part
establishes the rules for defining an operation on a table. Finally, for
each table, a list of operations is set up, including, for each operation,
the equivalence between an SQL statement and an SQLRho statement
(in JSON-format).

The DBRestRho includes the creation of Prompts based on the
information from a database, its tables, operations, and templates, to
construct structured SQLRho program text. A prompt is built using a
Handlebar template.

To dynamically build the RestRho knowledge corpus, in the
program PrgDBRest the “Sample” entry is set to Prompts, which uses
the “sample.han”14 template. To illustrate this template, the following
segment allows you to write the list of operations for a table:

Table '{{this.Name}}'

For the table **{{this.Name}}** there is the following list of JSON

↪ operations:
 {{#each this.Operations}}

 {{this.Index}}. Name: '{{this.Name}}'

 - Sentence SQL: {{{this.SQL}}}

 - Sentence SQLRho: {{{this.Body}}}

{{/each}}

The result for the operation in Fig. 3 is shown below:

Name: 'SelectPillTemplate'

 - Sentence SQL: SELECT NAME,SURNAME,AGE,SEX FROM person ORDER BY
 ↪ SURNAME asc
 - Sentence SQLRho: {"Definition": "SelectAction", "Action": "pills",
 ↪ "Clauses":{"Fields": "NAME,SURNAME,AGE,SEX", "OrderBy": "SURNAME
 ↪ asc"}, "Transform":{"Type": "Map", "Field": "Rows"}, "Template":
 ↪ "person.pills", "Table": "person"}

4.	DB Employees Knowledge Corpus
To initiate the LLMs evaluation assignment, it is necessary

to establish the DB Employees knowledge corpus. This involves
providing the LM with information about the available tables in the DB
Employees (departments, employees, salaries, titles, dept_manager, and
dept_emp), that is, the same database definition given to the students.

To create this corpus, the program PrgDBRest sets the “Employees”
entry in Prompts, where the “employees.han”15 template was used.
Initially, the available tables were configured by defining CREATE
TABLE statements. Subsequently, metadata and persistent prompts
were added to commence the evaluation of the LLMs.

IV.	Results

To measure the LMs performance in our case study, we used Human
Evaluation to rate it based on their knowledge to verify if the solution
that LMs and student provides are relevant (see Section II.D).

Thus, to assess the performance of participants and LMs in the
case study, we relied on both quantitative and qualitative measures.
Using a standardized rubric (described in Section III.E), human
evaluators assessed task success based on correctness, completeness,

14 https://www.devrho.com/restrho/sample.han
15 https://www.devrho.com/restrho/employees.han

- 12 -

International Journal of Interactive Multimedia and Artificial Intelligence

and adherence to task requirements. This ensured consistency and
objectivity in the evaluation process. Furthermore, the alignment of
results with the research questions was verified by analyzing trends and
insights presented in Table II and Table III. This approach demonstrated
the feasibility and limitations of using LMs alongside DSLs for complex
assignments, offering valuable insights for future work.

Consequently, Table II presents the grades normalized in per cent
per one (from 0 to 1) obtained by the participants of the experiment.
The table shows two different groups, namely: students (P1 to P39)
and the selected LMs (both LLMs and SLM). The results are organised
in columns corresponding to the 18 tasks (see Table I) that the

participants performed. In addition, columns are included showing
the average task success (Avg.), and the standard deviation (SD). For
its part, Table III provides the average and standard deviation for each
task, presenting the results for all participants combined (students and
LMs), as well as separately for students only and for LMs only.

The overall performance results revealed clear trends. The 39
students achieved an average task success rate of 0.6% (SD: 0.14%) across
all tasks, demonstrating consistent performance in the initial tasks (e.g.,
1A and 1C1). Conversely, LMs presented a broader range of variability,
with an average success rate of 0.52% (SD: 0.28%). Notably, students
excelled in SQLRho-related tasks (1A–1C5), while LMs performed

TABLE II. Grades Obtained for Each Student and LMs

1A 1B1 1B2 1B3 1B4 1B5 1B6 1C1 1C2 1C3 1C4 1C5 2A 2B 2C 2D 2E 2F Avg. SD
P1 1.00 0.67 0.33 0.67 0.67 0.50 0.50 0.50 0.67 0.67 0.33 0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.33
P2 1.00 0.67 0.33 0.33 0.33 0.50 0.50 0.50 0.33 0.00 0.33 0.25 0.00 0.00 0.40 0.10 0.00 0.00 0.31 0.27
P3 1.00 0.33 1.00 0.67 0.67 0.50 0.50 0.50 0.67 0.67 0.33 0.75 0.60 0.70 0.60 0.30 0.80 0.80 0.63 0.20
P4 1.00 0.33 0.33 0.33 0.00 0.25 0.25 0.50 0.33 0.33 0.00 0.25 0.80 0.70 0.70 0.80 0.40 0.40 0.43 0.27
P5 1.00 0.67 0.33 0.33 0.33 0.25 0.50 0.50 0.67 0.33 0.33 1.00 0.20 0.40 0.10 0.10 0.20 0.20 0.41 0.27
P6 1.00 1.00 1.00 1.00 1.00 0.75 0.75 1.00 1.00 1.00 1.00 0.75 1.00 0.90 0.90 1.00 1.00 1.00 0.95 0.10
P7 1.00 0.00 0.67 0.67 0.67 0.50 0.75 1.00 0.67 0.67 0.00 0.50 0.60 0.70 0.50 0.40 0.40 0.00 0.54 0.30
P8 1.00 1.00 1.00 1.00 1.00 0.75 0.75 1.00 1.00 1.00 1.00 0.75 1.00 1.00 1.00 0.80 1.00 1.00 0.95 0.10
P9 1.00 1.00 1.00 1.00 1.00 0.75 0.75 1.00 1.00 1.00 1.00 0.75 1.00 1.00 1.00 0.90 0.80 1.00 0.94 0.10

P10 1.00 0.00 1.00 0.67 0.67 0.50 0.50 0.50 0.67 0.67 0.33 0.50 0.60 0.60 0.60 0.10 0.80 0.80 0.58 0.26
P11 1.00 1.00 1.00 1.00 1.00 0.75 0.75 1.00 1.00 1.00 1.00 0.75 1.00 0.90 0.90 0.90 0.80 0.80 0.92 0.10
P12 1.00 0.67 0.33 0.33 0.33 0.50 0.25 0.50 0.33 0.33 0.33 0.25 0.60 0.70 0.40 0.40 0.60 0.00 0.44 0.22
P13 1.00 1.00 1.00 1.00 1.00 0.75 0.75 1.00 1.00 1.00 1.00 0.75 1.00 1.00 0.90 0.90 1.00 1.00 0.95 0.10
P14 1.00 1.00 0.67 0.67 0.67 0.50 0.50 1.00 1.00 0.67 0.67 0.75 0.20 0.00 0.00 0.00 0.00 0.00 0.52 0.39
P15 1.00 1.00 0.67 0.67 0.33 0.75 0.50 1.00 0.67 0.67 0.00 0.50 1.00 0.90 0.00 0.50 0.80 0.00 0.61 0.34
P16 1.00 0.67 0.33 0.67 0.33 0.50 0.50 0.50 0.33 0.33 0.33 0.50 0.60 0.70 0.30 0.30 0.80 0.60 0.52 0.20
P17 1.00 0.67 0.33 0.33 0.33 0.25 0.25 0.50 0.67 0.33 0.33 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.33
P18 1.00 1.00 0.67 1.00 0.67 0.50 0.75 1.00 0.67 0.67 0.67 0.50 1.00 0.50 0.50 0.00 0.40 1.00 0.69 0.28
P19 1.00 1.00 1.00 0.67 1.00 0.75 0.75 1.00 1.00 0.67 0.00 0.75 1.00 0.00 0.70 0.50 1.00 0.00 0.71 0.36
P20 1.00 1.00 1.00 1.00 1.00 0.75 0.75 1.00 1.00 1.00 1.00 0.75 1.00 0.80 0.80 0.80 0.60 0.60 0.88 0.15
P21 1.00 0.33 0.33 0.67 0.67 0.50 0.50 0.50 0.67 0.67 0.33 1.00 0.20 0.50 0.20 0.10 0.20 0.00 0.46 0.28

P22 0.60 0.33 0.33 0.33 0.33 0.25 0.25 0.50 0.33 0.33 0.33 0.50 0.80 0.50 0.00 0.60 0.40 0.40 0.40 0.17

P23 1.00 1.00 0.67 0.67 0.67 0.75 0.50 1.00 0.67 0.67 0.67 0.50 0.60 0.60 0.80 0.00 0.00 0.00 0.60 0.31
P24 1.00 0.67 0.67 0.67 0.67 0.25 0.50 0.50 0.67 0.67 0.33 0.25 0.60 0.70 0.00 0.20 0.60 0.20 0.51 0.25
P25 1.00 1.00 1.00 0.67 0.67 0.75 0.75 1.00 0.67 0.67 1.00 0.50 0.60 0.00 0.70 0.60 0.20 0.20 0.66 0.30
P26 1.00 1.00 1.00 1.00 1.00 0.75 0.75 1.00 1.00 1.00 1.00 0.75 1.00 0.90 0.90 0.90 0.80 0.80 0.92 0.10
P27 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.67 0.67 1.00 0.50 0.40 0.60 0.70 0.30 0.40 0.40 0.42 0.37
P28 1.00 0.67 0.33 0.67 0.67 0.25 0.50 0.50 0.67 0.00 0.00 0.75 0.60 0.70 0.30 0.10 0.60 0.40 0.48 0.27
P29 1.00 0.33 1.00 0.67 0.67 0.50 0.50 0.50 0.67 0.67 0.33 0.75 0.60 0.70 0.60 0.10 0.80 0.80 0.62 0.23
P30 1.00 0.67 0.67 0.67 0.67 0.50 0.50 0.50 1.00 0.67 0.33 0.75 1.00 0.90 0.40 0.30 1.00 1.00 0.70 0.24
P31 1.00 0.67 1.00 0.67 0.67 0.50 0.50 0.50 1.00 0.67 0.33 0.75 0.60 0.70 0.40 0.30 1.00 0.00 0.63 0.27
P32 1.00 1.00 0.67 1.00 0.67 0.50 0.75 1.00 0.67 0.67 0.67 0.50 0.80 0.50 0.50 0.00 0.40 0.40 0.65 0.26
P33 1.00 0.33 0.33 0.33 0.33 0.25 0.25 0.50 0.33 0.33 0.33 0.25 0.40 0.60 0.20 0.10 0.20 0.20 0.35 0.20
P34 1.00 0.33 0.67 0.67 0.33 0.25 0.50 0.50 0.67 0.67 0.33 0.75 0.20 0.50 0.40 0.10 0.20 0.00 0.45 0.26
P35 1.00 0.33 0.33 0.33 0.00 0.25 0.25 0.50 0.33 0.33 0.00 0.25 1.00 0.90 0.50 0.70 0.40 0.40 0.43 0.29
P36 1.00 1.00 1.00 1.00 1.00 0.75 0.75 1.00 1.00 1.00 0.00 0.75 1.00 1.00 0.80 0.80 0.40 0.40 0.81 0.28
P37 1.00 1.00 0.67 1.00 0.67 0.75 0.50 0.50 1.00 0.67 0.67 1.00 0.60 0.70 0.40 0.30 0.60 0.40 0.69 0.23
P38 1.00 0.67 0.33 0.33 0.33 0.50 0.50 0.50 0.67 0.67 0.33 0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.37 0.31
P39 1.00 0.67 0.67 0.67 0.33 0.50 0.50 0.50 0.67 0.33 0.33 0.25 0.60 0.70 0.50 0.30 1.00 1.00 0.58 0.24

ChatGPT-4 1.00 1.00 0.67 0.33 0.33 0.75 0.75 0.50 0.67 0.67 0.67 1.00 1.00 0.90 0.90 0.90 1.00 1.00 0.78 0.23
ChatGPT-4o 1.00 1.00 1.00 0.67 0.67 0.75 0.75 1.00 1.00 1.00 0.67 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.92 0.14

Perplexity 1.00 0.67 0.33 0.67 0.67 0.50 0.25 0.50 0.67 0.67 0.67 0.75 0.80 0.90 0.90 0.90 1.00 1.00 0.71 0.22
Copilot 1.00 0.33 0.00 0.00 0.00 0.00 0.25 0.00 0.00 0.33 0.00 0.75 0.80 0.70 0.70 0.70 0.80 0.60 0.39 0.36

Phind 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.80 0.90 0.90 0.90 0.80 0.60 0.33 0.43
Llama3 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.80 0.90 0.90 0.90 0.80 0.20 0.31 0.42

Phi-3 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.80 0.90 0.90 0.80 0.00 0.00 0.24 0.41

- 13 -

Article in Press

better in Handlebars-related tasks (2A–2F), particularly with GPT-4o
achieving results comparable to the highest-performing students.

Grades for the students reflect considerable variability in their
performance concerning specific task completion. Tasks 1A, 1C1,
and 1C2 emerged with notably high average success. The low
standard deviation in task 1A indicates significant consistency in
success achievement among the majority of participants, except for
participant P22. This suggests a solid understanding and robust skills
in the initial configuration of SQLRho and query operations within
the ‘employees’ table.

Conversely, tasks 2D, 2F, and 2C revealed lower success rates in
execution. The high standard deviations, particularly due to extremely
low scores from over 10 participants, point to significant challenges for
most individuals in handling Handlebars templates (TT4), associated
with operations within the ’departments’ and ’employees’ tables.
These tasks may require a more detailed approach and additional
support in future iterations of the experiment.

On the other hand, LMs showed a distinct behaviour. Moreover, it is
remarkable the difference in performance among GPT-based LLMs and
the others, being GPT-4o the one that best performs, obtaining similar
grades to those we can see for the best of the students. It is surprising
to see how Copilot, which after all is a front-end to ChatGPT platform
for Microsoft’s Office suite, has achieved such different results.

For their part, Llama3 together with Phind and Phi-3, have obtained
very poor performance for the first tasks. Maybe, the case of Phind is
the most remarkable of all, since it is specially trained for programming
tasks. However, as will be discussed later, far from making use of the
designed DSLs, this LM used main-stream GPPLs and DSLs such
as SQL, which may be comprehensible given its training process.
The grades of Phi-3 are also interesting, as although it is a SLM, it
performed similarly to the previous ones.

Analysing the grades obtained by LMs generally, they presented
significantly lower success rates for the initial tasks (1A to 1C5),
with some LMs obtaining extremely low results. This indicates
that LMs struggled in the first tasks of the experiment, involving
basic configurations and operations of SQLRho and queries in the
‘departments’ and ‘employees’ tables. However, in tasks 2A to 2F,
they showed notable improvement in their results, with high average
success rates in most tasks and lower standard deviations, reflecting
better consistency in their performance due to the training of the
LLMs in programming tasks.

To show some examples of answers, Appendix presents the responses
of the LMs to question 1B1. These responses reveal an error pattern
among the lower-performing LMs (grade 0): they generate an element
containing a complete query using standard SQL rather than employing
the required JSON structure. The reason for these meagre results is that
they failed to use the basic JSON structure of an SQLRho operation and
rapidly tended to reply with an SQL query. Another feasible cause is
that they did not differentiate between the grammar of DBRestRho
and SQLRho; in the former, there is an ’SQL’ tag in the definition for

managing the template of an SQL instruction, while in a SQLRho
operation on a table, there is a JSON structure for the SQL clauses.

Despite working with the same data, GPT-4o demonstrated a
superior ability to correctly interpret SQLRho grammar and query
operations, demonstrating a greater aptitude for distinguishing DSLs
from mainstream GPPLs and DSLs such as SQL. This suggests a better
capacity for generalization and processing of complex structures such
as JSON. In contrast, the other LMs appeared to prioritize the handling
of standard SQL, which limited their adaptability to the DSLs. The use
of a common training corpus underscores the intrinsic characteristics
of each LM as key determinants of observed performance variations.

The comparative analysis between students and LMs reveals key
differences. Students showed greater consistency and success in the
initial tasks of the experiment, while LMs presented more variable
performance, significantly improving in the later tasks. Tasks 2D, 2F,
and 2C were challenging for students and LMs, although LMs achieved
better results on average in tasks 2A to 2F. In terms of grades and
evaluations, students tended to obtain higher and more consistent
grades in the initial tasks, while LMs improved their grades in the
later tasks.

Finally, as a consequence of analysing the result, at this stage, we
can answer the research questions set out in Section I.

•	 RQ1. Is it possible to use current LMs together with DSLs for
assignments that involve the design and implementation
of RESTful APIs? The answer to this research question is
affirmative. The main requirement is a good definition of the DSL
and a proper prompting process to provide the LM with metadata,
persistent prompting and a solid knowledge corpus. This step is
vital for a good performance of the LM.

•	 RQ2. How do LMs perform against real students for
assignments on designing and implementing RESTful APIs
using DSLs? For this research question, the answer is that both
LLMs and SLMs can achieve excellent results depending on the
task and the prompt provided. Some LMs outperform others, and
this performance must be evaluated for each specific problem.

V.	 Discussion

The related works section of this article has evidenced the
growing importance of integrating LMs and DSLs into Computer
Science education. This integration not only facilitates the learning
of fundamental concepts but also allows students to experiment with
technologies that are transforming the industry. With an engineering
process in the use and customization of LM for specific applications,
LMs can provide instant and personalized student feedback, adapting
to their knowledge levels and learning styles.

Based on the results we obtained with our case of study, at this
stage it is possible to point out some issues that should be addressed
in future experimentation and use cases. First, as previously stated,
the combination of DSLs with LMs implies engineering the metadata,

TABLE III. Average and Standard Deviation for the Grades in Each Task

1A 1B1 1B2 1B3 1B4 1B5 1B6 1C1 1C2 1C3 1C4 1C5 2A 2B 2C 2D 2E 2F Avg. SD

Avg Total 1.08 0.63 0.59 0.59 0.53 0.47 0.48 0.64 0.65 0.57 0.43 0.59 0.74 0.82 0.72 0.61 0.55 0.44 0.62 0.15

SD Total 0.06 0.35 0.34 0.31 0.32 0.25 0.23 0.31 0.30 0.30 0.35 0.28 0.32 0.32 0.33 0.35 0.35 0.39 0.30 0.07

Avg. Students 0.99 0.68 0.66 0.67 0.60 0.51 0.53 0.72 0.72 0.62 0.47 0.62 0.64 0.59 0.48 0.37 0.53 0.42 0.60 0.14

SD Students 0.06 0.32 0.30 0.26 0.30 0.21 0.19 0.25 0.24 0.27 0.35 0.23 0.34 0.32 0.32 0.33 0.34 0.38 0.28 0.08

Avg. LM 1.00 0.43 0.29 0.24 0.24 0.29 0.29 0.29 0.33 0.38 0.29 0.50 0.86 0.89 0.89 0.87 0.77 0.63 0.52 0.28

SD LM 0.00 0.46 0.40 0.32 0.32 0.37 0.34 0.39 0.43 0.40 0.36 0.48 0.10 0.09 0.09 0.10 0.35 0.41 0.30 0.15

- 14 -

International Journal of Interactive Multimedia and Artificial Intelligence

persistent prompts, and knowledge corpus so that the latter can use
the DSLs with guarantees. Moreover, this adds complexity, since not
only the DSL itself must be validated, but also the completeness, clarity
and disambiguation of the information provided through prompts to
the LMs to allow them for optimal performance. That means opening
up a whole new interesting research line, that is, the design of tests to
validate prompts to maximise the performance of the LM.

Likewise, another important issue that should be taken into
account in the engineering process when applying and using LMs (not
only in education but in any domain), is to identify and define the
best metrics that allow the validation of different LMs as well as to
explore multiple outputs according to the hyperparameterization each
LM provides. The methodology applied in this case study to compare
the performance of LMs on specific JSON-DSL tasks in a reduced
learning context, against the solutions provided by the 39 students, has
facilitated the identification of areas where LMs need improvement
(for instance the SQLRest operations in our case study) and where
they already excel (like the use of HTML template creation in our case
study). This reveals that LM better performs on tasks where they can
use the knowledge they were trained for, but not on tasks where new
knowledge is necessary (like new JSON-DSLs designed in our case
study). Therefore, better-prompting LMs to handle complex SQLRho
operations is crucial in developing RestRho-based solutions.

While the sample size of 39 students provided valuable insights
into the comparative performance of LMs and human participants,
it represents a limitation in terms of generalizability. As this study
is exploratory in nature, future work should aim to validate findings
with larger and more diverse participant groups to strengthen the
robustness of the conclusions. Expanding the sample would also allow
for a more granular analysis of factors such as prior programming
experience, familiarity with DSLs, and demographic variability.

This study acknowledges potential biases inherent in its design.
The student participants, all in their final year of a Computer
Engineering program, represent a relatively homogeneous
group, which may not reflect the broader diversity of learners in
Computer Science. Similarly, the selected LMs were among the most
prominent general-purpose and programming-specific at the time
of the study, potentially excluding emerging LMs or alternative
paradigms. Additionally, the standardized rubric used for evaluation,
while ensuring consistency, may have limited the recognition of
unconventional but valid approaches in task completion.

VI.	Conclusion and Future Works

Since Computer Science students use GPPLs and DSLs to solve
problems, we need to first to determine how well LMs perform
compared to students. To investigate this, we conducted a case study
on the design and implementation of RESTful APIs by undergraduate
Computer Science students.

In this article, we have detailed a case study with Computer Science
undergraduates, designing, implementing and deploying two DSLs
and some specific task assignments. Up to 39 students and 5 different
LMs completed the assignment, and instructors graded both sets
of solutions so that the LMs scores were compared to those of the
students to measure the LMs performance.

Implementing evaluation criteria uniformly was essential to obtain
more accurate and useful comparisons between different LLM and their
possible applications. This allowed for a better understanding of each
LM’s capabilities and limitations, thus facilitating the identification
of areas for improvement and making informed decisions about the
use of these LMs in specific contexts. Adopting these uniform criteria
can lead to developing standards for LLM evaluation, allowing clear

expectations and goals for future LM development.

The results highlight that well-defined DSLs and an effective
prompting process are essential for LMs to perform well. This involves
providing the LM with metadata, consistent prompts, and a robust
knowledge base. With the right prompts, both LLMs and SLMs can
achieve excellent results, depending on the task. In the presented
case study, LMs must be rigorously prompted to handle complex
operations. While some LMs can manage the tasks with relative
accuracy, others struggle to generate correct and coherent results. This
is evidenced by the high variability in scores. Among the tested LMs,
it is worth mentioning that GPT-based LMs performed these tasks
almost perfectly.

Although the findings provide valuable insights, the relatively small
sample size limits the generalizability of the results. Expanding the
participant pool in future studies, incorporating students from diverse
backgrounds and skill levels, will enable more robust statistical analyses
and uncover potential nuances in LMs performance. Additionally,
addressing potential biases introduced by the specific selection of
LMs and configurations will be crucial. Broader experimentation
with various LMs, including those optimized for different purposes,
will ensure that results are representative and applicable to diverse
scenarios.

Given that our research questions delimited the prompt context,
in future works, this must be better studied and improved. LMs need
to be provided and customized with a greater number of examples
that include more complex and detailed operations while using the
defined DSLs. Additionally, these examples must be provided in a
systematically way to cover a wide range of scenarios and variations in
queries and database structures, ensuring that models can generalize
their learning in different contexts and provide solutions to specific
programming problems.

In this same concern, the automatic generation of prompts by the
tools is an interesting strategy for building a robust and effective
corpus for LMs. These autogenerated prompts can help and guide
the LMs in understanding and executing specific tasks, significantly
improving their ability to handle complex operations (in the case
study presented in this article, to create specific Handlebars templates
for database information). A well-structured corpus ensures that
LMs can learn from clear and well-defined examples, reducing
ambiguity and improving the accuracy of generated responses. This
autogeneration, in the future, allows for continuous improvement
of the training corpus. As new needs are identified or areas of
difficulty are discovered, prompts can be modified, expanded, or
added to address these aspects, enriching the corpus and improving
LM performance.

Another future work regards on analyzing how to make each
LM better perform for each specific tasks. The uniform evaluation
carried out in our case study may have penalized some LMs
against others, due to each LM follows different approaches and
goals. Therefore, we are willing to design specific prompts and
hyperparameter exploration for each LM to find the best performance
for each one.

As a challenge at a technical level, we want to explore developing
and evaluating the performance of LMs in creating templates that use
specific frameworks based on Material Design principles. This effort
would include implementing and testing complex design tasks that
require frameworks such as Material Design for Bootstrap, Material-
UI, Angular Material, and Semantic UI. Thus, it is necessary to
improve the prompting of LMs in managing and creating templates.
Additionally, specific prompts must be included to automatically
generate these templates and integrate them as outputs in the
RestRho system.

- 15 -

Article in Press

Appendix A. DBRestRho Grammar

This appendix briefly shows the DBRestRho and its associated
classes as shown in the CodeRho 1.

This JSON-DSL has been defined to specify what SQLRho
definitions the RESTful API can use, the templates for the HTTP
requests (endpoints) and related SQL statement to manage the data.
Also, to easy the labour of prompting LMs, the JSON-DSL allows
provide a prompt template.

Consequently, a DBRestRho program has five attributes:

•	 Name: name of the Server/Program.

•	 Description: brief description of the definitions.

•	 Databases: array of SQLRho programs, where each SQLRhoCodeI
follows the format:

	- “alias.connector.json”,

	- alias is the program alias, and

	- textitconnector is either “mariadb” or “mysql”

•	 Definitions: map of HTTP requests, each linked to a SQL
statement, a transformation result, and an associated Handlebars
template. Each definition (definitionI) includes:

	- Method (HTTP request method “get”, “post”, “put” or “delete”),

	- Parameters (list of parameters for the HTTP request and SQL
statement, i.e.: {“params”: [“key”]}),

	- Default (default options for a SQLRho program, i.e.:{“Fields”:
“*”}),

	- Path (URL structure of the HTTP request with Handlebars).
Each Path (templatePath) defined as:

	◦ /{{db}}/{{table}}/{{action}}: where {{db}} is the database name,
{{table}} is the table name, and {{action}} is action defined in
a SQLRho table.

	◦ /{{db}}/{{table}}/resource: a fixed resource. For example,
resource=/all.

	◦ /{{db}}/{{table}}/params: the list of parameters defined in
Params. For example, params=/:key.

	- SQL (SQL template in Handlebars). Each SQL template
(templateSLQ) in Handlebars with predefined tags: Fields,
Distinct, Join, InnerJoin, LeftJoin, RightJoin, FullJoin, Where,
GroupBy, Having, OrderBy, Limit, are added to attributes. For
example:

templateSql = “UPDATE {{Table}} SET
{{{Fields}}} WHERE {{key}}=:key”.

•	 Prompts: map for creating Prompts from a database, based
on Handlebar template. This is really useful for creating the
corresponding part of the prompt for the LMs. Each prompt
(promptI) includes:

	- Method (HTTP request method “get”, “post”, “put” or “delete”),

	- Action (action of the petition),

	- Database (reference to a database and information available
about tables and operations, where “*” applies all available
operations and [...”operationJ”, ...] specifies a particular list),

	- Template (Handlebars template that allows specifying the
content of promptI with the information available from the
database), and,

	- File (output to a text file when the template is applied to the
database information).

RhoCode 1. Grammar Structure DBRestRho

Appendix B. SQLRho Grammar

This appendix provides a brief description for the SQLRho
grammar and associated classes are established, RhoCode 2 shows a
summary explanation of a SQLRho program.

SQLRho is the JSON-DSL designed to configure DB connections
(particularly MariaDB or MySQL) and define the set of operations for the
database tables necessary to manage the requests defined in DBRestRho.

In SQLRho we can specify basic operations at record level (Insert,
Update, Delete, and Select) and at table level (Where and SelectAll); as
well as custom operations to support configuration, transformation
and the application of output templates to render the results in the
web browser.

Consequenlty, SQLRho has eight attributes:

•	 Name: part of the Path defined for the HTTP request

•	 Description: a brief description of the program

•	 Connector: the database type, as mariadb or mysql
•	 EnableToken: enables token use for HTTP requests, true or false
•	 Pool: defines the standard connection pool to a MariaDB or

MySQL database

•	 Registry: defines the database record table

•	 Templates: defines Handlebars templates for transforming table
operation results. Each template includes the name, directory, and
filename

•	 Tables: sets the tables targeted by HTTP request. For each table
(tableI), four attributes are defined:

	- Encrypt (list of fields to be encrypted using AES-256 in CBC
mode), Decrypt (list of fields to be decrypted on the server
using AES-256 in CBC mode),

- 16 -

International Journal of Interactive Multimedia and Artificial Intelligence

	- Uses (list of basic operations enabled for the table: Insert,
Update, Delete, Select, Where, SelectAll), and

	- Operations (list of custom operations including configuration,
parameters, transformations, and templates). Each operation
(operationI) includes:

	◦ Name (name of the definition specified in the DBRestRho
program);

	◦ Action: action of the petition.

	◦ Parameters: list of parameters to be used in the request.

	◦ Clauses: list of elements to build the SQL statement: Fields,
Distinct, Join, InnerJoin, LeftJoin, RightJoin, FullJoin,
Where, GroupBy, Having, OrderBy, Limit.

	◦ Transform: where Type is the type mandatory of
transformation, Map is return a map with the result,
Group is group the result by a field, or Position it returns
an object from the array.

	◦ Template: refers to a name nameTemplateI the list of
Templates available.

RhoCode 2. Grammar Structure SQLRho

Appendix C. LMs Results for Task 1B1 From Table I

This appendix presents the fragment of the results from the LMs for
question 1B1 from Table I:

1B1. Query the current number of employees in each department, sorted

↪ alphabetically by department name.

Fragments C1 and C2 display the responses of ChatGPT-4 and
ChatGPT-4o, respectively, to question 1B1. Both LMs correctly
structured and resolved the query as required in SQLRho.

Fragment C1. ChatGPT-4. Grade: 1.00

Fragment C2. ChatGPT-4o. Grade: 1.00

Fragment C3 presents Perplexity’s response to question 1B1. While
it did not construct the complete solution, the structure proposed by
the LM is correct; however, it included an additional field, “Table.”

Fragment C3. Perplexity. Grade: 0.67

Fragment C4 presents Copilot’s response to question 1B1. It did not
construct the complete solution, only added the action, and created
two tags, “type” and “select,” which do not belong to the SQLRho
grammar.

Fragment C4. Copilot. Grade: 0.33

Fragments C5, C6, and C7 present the responses of Phind, Llama3,
and Phi-3, respectively, to question 1B1. These LMs did not understand

- 17 -

Article in Press

the structure of the SQLRho grammar and provided a response based
on their knowledge of SQL.

Fragment C5. Phind. Grade: 0.00

Fragment C6. Llama3. Grade: 0.00

Fragment C7. Phi-3. Grade: 0.00

References

[1]	 OpenAI, “GPT-4 technical report,” OpenAI, 2023. [Online]. Available:
https://cdn.openai.com/papers/gpt-4.pdf, doi: 10.48550/arxiv.2303.08774.

[2]	 A. Gilson, C. W. Safranek, T. Huang, V. Socrates, L. Chi, R. A. Taylor,
D. Chartash, “How does ChatGPT perform on the united states medical
licensing examination? the implications of large language models for
medical education and knowledge assessment,” JMIR Medical Education,
vol. 9, p. e45312, Feb 2023, doi: 10.2196/45312.

[3]	 D. M. Katz, M. J. Bommarito, S. Gao, P. Arredondo, “Gpt-4 passes the bar
exam,” 382 Philosophical Transactions of the Royal Society A, 2024, doi:
10.2139/ssrn.4389233.

[4]	 M. Bernabei, S. Colabianchi, A. Falegnami, F. Costantino, “Students’ use
of large language models in engineering education: A case study on
technology acceptance, perceptions, efficacy, and detection chances,”
Computers and Education: Artificial Intelligence, vol. 5, p. 100172, 2023,
doi: https://doi.org/10.1016/j.caeai.2023.100172.

[5]	 M. Liu, L. J. Zhang, C. Biebricher, “Investigating students’ cognitive
processes in generative ai-assisted digital multimodal composing and
traditional writing,” Computers & Education, vol. 211, p. 104977, 2024, doi:
https://doi.org/10.1016/j.compedu.2023.104977.

[6]	 E. Kasneci, K. Sessler, S. Küchemann, M. Bannert, D. Dementieva, F.
Fischer, U. Gasser, G. Groh, S. Günnemann, E. Hüllermeier, S. Krusche,
G. Kutyniok, T. Michaeli, C. Nerdel, J. Pfeffer, O. Poquet, M. Sailer, A.
Schmidt, T. Seidel, M. Stadler, J. Weller, J. Kuhn, G. Kasneci, “ChatGPT
for good? on opportunities and challenges of large language models for
education,” Learning and Individual Differences, vol. 103, p. 102274, 2023,
doi: 10.1016/j.lindif.2023.102274.

[7]	 R. Gao, H. E. Merzdorf, S. Anwar, M. C. Hipwell, A. R. Srinivasa, “Automatic
assessment of text-based responses in post-secondary education: A
systematic review,” Computers and Education: Artificial Intelligence, vol.
6, p. 100206, 2024, doi: https://doi.org/10.1016/j.caeai.2024.100206.

[8]	 Phind, “Introducing phind-70b – closing the code quality gap with gpt-4
turbo while running 4x faster,” 2024. [Online]. Available: https://www.
phind.com/blog/introducing-phind-70b, Accessed on April 23, 2024.

[9]	 Meta, “Don’t settle for less. build your interview skills and take your
career to the next level,” 2024. [Online]. Available: https://codellama.dev,
Accessed on April 23, 2024.

[10]	 Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond, T.
Eccles, J. Keeling, F. Gimeno, A. Dal Lago, T. Hubert, P. Choy, C. de
Masson d’Autume, I. Babuschkin, X. Chen, P.-S. Huang, J. Welbl, S.
Gowal, A. Cherepanov, J. Molloy, D. J. Mankowitz, E. Sutherland Robson,
P. Kohli, N. de Freitas, K. Kavukcuoglu, O. Vinyals, “Competition-level
code generation with AlphaCode,” Science (New York, N.Y.), vol. 378, p.
1092—1097, December 2022, doi: 10.1126/science.abq1158.

[11]	 Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B.
Qin, T. Liu, D. Jiang, M. Zhou, “CodeBERT: A pre-trained model for
programming and natural languages,” 2020. doi: https://doi.org/10.18653/
v1/2020.findings- emnlp.139.

[12]	 Tabnine, “Tabnine | the AI coding assistant that you control,” 2023.
[Online]. Available: https://www.tabnine. com/, Accessed on April 23,
2024.

[13]	 Anysphere, “Build software faster in an ide designed for pair-
programming with ai,” 2024. [Online]. Available: https://cursor.sh/,
Accessed on April 23, 2024.

[14]	 GitHub, “Copylot,” 2024. [Online]. Available: https://github.com/features/
copilot, Accessed on April 23, 2024.

[15]	 M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan, H.
Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger,
M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan, S. Gray, N. Ryder,
M. Pavlov, A. Power, L. Kaiser, M. Bavarian, C. Winter, P. Tillet, F. P.
Such, D. Cummings, M. Plappert, F. Chantzis, E. Barnes, A. Herbert-
Voss, W. H. Guss, A. Nichol, A. Paino, N. Tezak, J. Tang, I. Babuschkin,
S. Balaji, S. Jain, W. Saunders, C. Hesse, A. N. Carr, J. Leike, J. Achiam, V.
Misra, E. Morikawa, A. Radford, M. Knight, M. Brundage, M. Murati, K.
Mayer, P. Welinder, B. McGrew, D. Amodei, S. McCandlish, I. Sutskever,
W. Zaremba, “Evaluating large language models trained on code,” 2021.
[Online]. Available: https://arxiv.org/abs/2107.03374, doi: https://doi.
org/10.48550/arxiv.2107.03374.

[16]	 D. Ankur, D. Atul, “Introducing amazon CodeWhisperer, the ml-powered
coding companion,” 2022. [Online]. Available: https://aws.amazon.com/
es/blogs/machine- learning/introducing-amazon-codewhisperer-the-ml-
powered-coding-companion/, Accessed on April 23, 2024.

[17]	 Code4Me, “Code4Me,” 2022. [Online]. Available: https://code4me.me/,
Accessed on April 23, 2024.

[18]	 FauxPilot, “FauxPilot - an open-source alternative to GitHub copilot
server,” 2023. [Online]. Available: https://github.com/fauxpilot/fauxpilot,
Accessed on April 23, 2024.

[19]	 J. Prather, B. N. Reeves, P. Denny, B. A. Becker, J. Leinonen, A. Luxton-
Reilly, G. Powell, J. Finnie- Ansley, E. A. Santos, ““it’s weird that it
knows what i want”: Usability and interactions with Copilot for novice
programmers,” ACM Transactions on Computer-Human Interaction, vol.
31, pp. 1–31, nov 2023, doi: 10.1145/3617367.

[20]	 P. Haindl, G. Weinberger, “Students’ experiences of using ChatGPT in
an undergraduate programming course,” IEEE Access, vol. 12, pp. 43519–
43529, 2024, doi: 10.1109/ACCESS.2024.3380909.

[21]	 V. Kozov, G. Ivanova, D. Atanasova, “Practical application of ai and
large language models in software engineering education,” International
Journal of Advanced Computer Science and Applications, vol. 15, no. 1,
2024, doi: 10.14569/IJACSA.2024.0150168.

[22]	 V. Parra, P. Sureda, A. Corica, S. Schiaffino, D. Godoy, “Can generative
ai solve geometry problems? strengths and weaknesses of llms for
geometric reasoning in spanish,” International Journal of Interactive
Multimedia and Artificial Intelligence, vol. 8, no. 5, pp. 65–74, 2024, doi:
https://doi.org/10.9781/ijimai.2024.02.009.

[23]	 J. Meyer, T. Jansen, R. Schiller, L. W. Liebenow, M. Steinbach, A. Horbach,
J. Fleckenstein, “Using LLMs to bring evidence-based feedback into
the classroom: AI-Generated feedback increases secondary students’
text revision, motivation, and positive emotions,” Computers and
Education: Artificial Intelligence, vol. 6, p. 100199, 2024, doi: 10.1016/j.
caeai.2023.100199.

[24]	 N. Rigaud Téllez, P. Rayón Villela, R. Blanco Bautista, “Evaluating
chatgpt-generated linear algebra formative assessments,” International

http://www.phind.com/blog/introducing-phind-70b
http://www.phind.com/blog/introducing-phind-70b

- 18 -

International Journal of Interactive Multimedia and Artificial Intelligence

Journal of Interactive Multimedia and Artificial Intelligence, vol. 8, no. 5,
pp. 75–82, 2024, doi: https://doi.org/10.9781/ijimai.2024.02.004.

[25]	 A. Mizumoto, M. Eguchi, “Exploring the potential of using an ai language
model for automated essay scoring,” Research Methods in Applied
Linguistics, vol. 2, no. 2, p. 100050, 2023, doi: https://doi.org/10.1016/j.
rmal.2023.100050.

[26]	 E. Latif, X. Zhai, “Fine-tuning ChatGPT for automatic scoring,” Computers
and Education: Artificial Intelligence, vol. 6, p. 100210, 2024, doi: 10.1016/j.
caeai.2024.100210.

[27]	 M. Urban, F. Děchtěrenko, J. Lukavský, V. Hrabalová, F. Svacha, C. Brom,
K. Urban, “ChatGPT improves creative problem-solving performance in
university students: An experimental study,” Computers & Education, vol.
215, p. 105031, 2024, doi: 10.1016/j.compedu.2024.105031.

[28]	 A. Desai, S. Gulwani, V. Hingorani, N. Jain, Karkare, M. Marron, S. R, S.
Roy, “Program synthesis using natural language,” in Proceedings of the
38Th International Conference on Software Engineering, ICSE ’16, New
York, NY, USA, 2016, p. 345–356, Association for Computing Machinery.

[29]	 K. Kolthoff, “Automatic generation of graphical user interface prototypes
from unrestricted natural language requirements,” in 2019 34Th IEEE/
ACM International Conference on Automated Software Engineering (ASE),
Los Alamitos, CA, USA, nov 2019, pp. 1234–1237, IEEE Computer Society.

[30]	 S. Kolahdouz-Rahimi, K. Lano, C. Lin, “Requirement formalisation using
natural language processing and machine learning: A systematic review,”
in Proceedings of the 11Th International Conference on Model-Based
Software and Systems Engineering - Volume 1: MODELSWARD,, 2023, pp.
237–244, INSTICC, SciTePress.

[31]	 A. Vernotte, A. Cretin, B. Legeard, F. Peureux, “A domain-specific
language to design false data injection tests for air traffic control
systems,” International Journal on Software Tools for Technology Transfer,
vol. 24, no. 2, pp. 127–158, 2022, doi: 10.1007/S10009-021-00604-4.

[32]	 E. Chavarriaga, F. Jurado, F. Díez, “An Approach to Build XML-Based
Domain Specific Languages Solutions for Client-Side Web Applications,”
Computer Languages, Systems & Structures, vol. 49, pp. 133–151, 2017, doi:
https://doi.org/10.1016/j.cl.2017.04.002.

[33]	 E. Chavarriaga, F. Jurado, F. D. Rodríguez, “An Approach to Build JSON-
Based Domain Specific Languages Solutions for Web Applications,”
Journal of Computer Languages, vol. 75, p. 101203, 2023, doi: https://doi.
org/10.1016/j.cola.2023.101203.

[34]	 E. Chavarriaga, L. A. Rojas, K. Sorbello, F. D. Rodríguez, F. Jurado, “JSON-
based domain-specific language: A case study using rhoarchitecture in
designing and developing API restful,” 2024. [Online]. Available: https://
ssrn.com/abstract=4740783, doi: http://dx.doi.org/10.2139/ssrn.4740783.

[35]	 I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay, D. Fox, J.
Thomason, A. Garg, “Progprompt: Program generation for situated robot
task planning using large language models,” Autonomous Robots, vol. 47,
pp. 999–1012, 2023, doi: 10.1007/s10514-023-10135-3.

[36]	 J. Wang, Y. Chen, “A review on code generation with llms: Application
and evaluation,” in 2023 IEEE International Conference on Medical Artificial
Intelligence (MedAI), 2023, pp. 284–289.

[37]	 S. Yeo, Y.-S. Ma, S. C. Kim, H. Jun, T. Kim, “Framework for evaluating
code generation ability of large language models,” Electronics and
Telecommunications Research Institute (ETRI) Journal, vol. 46, no. 1, pp.
106–117, 2024, doi: 10.4218/etrij.2023-0357.

[38]	 M. Schäfer, S. Nadi, A. Eghbali, F. Tip, “An empirical evaluation of
using large language models for automated unit test generation,” IEEE
Transactions on Software Engineering, vol. 50, no. 1, pp. 85–105, 2024, doi:
10.1109/TSE.2023.3334955.

[39]	 X. Zhou, Z. Sun, G. Li, “Db-gpt: Large language model meets database,”
2024. doi: 10.1007/s41019- 023-00235-6.

[40]	 J. Sauvola, S. Tarkoma, M. Klemettinen, J. Riekki, D. Doermann, “Future
of software development with generative ai,” Automated Software
Engineering, vol. 31, 2024, doi: 10.1007/s10515-024-00426-zDO.

[41]	 Z. Guo, R. Jin, C. Liu, Y. Huang, D. Shi, Supryadi, L. Yu, Y. Liu, J. Li, B.
Xiong, D. Xiong, “Evaluating large language models: A comprehensive
survey,” 2023. doi: https://doi.org/10.48550/arXiv.2310.19736.

[42]	 Y. Chang, X. Wang, J. Wang, Y. Wu, L. Yang, K. Zhu, H. Chen, X. Yi, C.
Wang, Y. Wang, W. Ye, Y. Zhang, Y. Chang, P. S. Yu, Q. Yang, X. Xie,
“A survey on evaluation of large language models,” ACM Transactions
on Intelligent Systems and Technology, vol. 15, pp. 1–45, mar 2024, doi:
10.1145/3641289.

[43]	 K. Papineni, S. Roukos, T. Ward, W.-J. Zhu, “BLEU: A method for
automatic evaluation of machine translation,” in Proceedings of the 40Th
Annual Meeting on Association for Computational Linguistics, ACL ’02,
USA, 2002, p. 311–318, Association for Computational Linguistics.

[44]	 S. Ren, D. Guo, S. Lu, L. Zhou, S. Liu, D. Tang, N. Sundaresan, M. Zhou,
A. Blanco, S. Ma, “Codebleu: a method for automatic evaluation of code
synthesis,” CoRR, vol. abs/2009.10297, 2020.

[45]	 C.-Y. Lin, “ROUGE: A package for automatic evaluation of summaries,” in
Text Summarization Branches Out, Barcelona, Spain, jul 2004, pp. 74–81,
Association for Computational Linguistics.

[46]	 A. Z. Broder, “On the resemblance and containment of documents,” in
Compression and Complexity of SEQUENCES 1997, Positano, Amalfitan
Coast, Salerno, Italy, June 11-13, 1997, Proceedings, 1997, pp. 21–29, IEEE.

[47]	 M. Voelter, DSL Engineering: Designing, Implementing and Using Domain-
Specific Languages. Springer, 2013.

[48]	 M. Fowler, T. White, Domain-Specific Languages. Addison-Wesley
Professional, 2010.

[49]	 J. Smith, DSLs in Practice. 2019.
[50]	 V. Bojinov, RESTful Web API Design with Node.js 10, Third Edition: Learn

to create robust RESTful web services with Node.js, MongoDB, and Express.
js, 3rd Edition. Packt Publishing, 2018.

[51]	 H. Subramanian, P. Raj, Hands-On RESTful API Design Patterns and Best
Practices: Design, develop, and deploy highly adaptable, scalable, and secure
RESTful web APIs. Packt Publishing Ltd, 2019.

[52]	 J. Wexler, Get Programming with Node. js. Simon and Schuster, 2019.
[53]	 D. Flanagan, JavaScript: The Definitive Guide: Master the World’s Most-

Used Programming Language. 7th editio ed., 2020.
[54]	 O. Foundation, “Express: Fast, unopinionated, minimalist web framework

for node.js,” 2023. [Online]. Available: https://expressjs.com/.
[55]	 OpenAI, “Introducing ChatGPT,” 2022. [Online]. Available: https://

openai.com/blog/chatgpt, Accessed on April 23, 2024.
[56]	 Microsoft, “Microsoft copilot,” 2024. [Online]. Available: https://copilot.

microsoft.com, Accessed on April 23, 2024.
[57]	 Perplexity AI, “Perplexity | where knowledge begins,” 2024. [Online].

Available: https://www.perplexity.ai/, Accessed on April 23, 2024.
[58]	 Perplexity AI, “Sonar,” 2024. [Online]. Available: https://docs.perplexity.

ai/docs/model-cards, Accessed on April 23, 2024.
[59]	 Meta, “Getting started with meta llama,” 2024. [Online]. Available:

https://llama.meta.com/, Accessed on April 23, 2024.
[60]	 Anthropic, “Claude,” 2024. [Online]. Available: https://claude.ai, Accessed

on April 23, 2024.
[61]	 Mistral IA, “Mistral technology,” 2024. [Online]. Available: https://mistral.

ai/technology/, Accessed on April 23, 2024.
[62]	 M. Abdin, S. A. Jacobs, A. A. Awan, J. Aneja, A. Awadallah, H. Awadalla,

N. Bach, A. Bahree, A. Bakhtiari, H. Behl, A. Benhaim, M. Bilenko, J.
Bjorck, S. Bubeck, M. Cai, C. C. T. Mendes, W. Chen, V. Chaudhary, P.
Chopra, A. D. Giorno, G. de Rosa, M. Dixon, R. Eldan, D. Iter, A. Garg,
A. Goswami, S. Gunasekar, E. Haider, J. Hao, R. J. Hewett, J. Huynh, M.
Javaheripi, X. Jin, P. Kauffmann, N. Karampatziakis, D. Kim, M. Khademi,
L. Kurilenko, J. R. Lee, Y. T. Lee, Y. Li, C. Liang, W. Liu, E. Lin, Z. Lin,
P. Madan, A. Mitra, H. Modi, A. Nguyen, B. Norick, B. Patra, D. Perez-
Becker, T. Portet, R. Pryzant, H. Qin, M. Radmilac, C. Rosset, S. Roy, O.
Ruwase, O. Saarikivi, A. Saied, A. Salim, M. Santacroce, S. Shah, N. Shang,
H. Sharma, X. Song, M. Tanaka, X. Wang, R. Ward, G. Wang, P. Witte,
M. Wyatt, C. Xu, J. Xu, S. Yadav, F. Yang, Z. Yang, D. Yu, C. Zhang, C.
Zhang, J. Zhang, L. L. Zhang, Y. Zhang, Y. Zhang, Y. Zhang, X. Zhou,
“Phi-3 technical report: A highly capable language model locally on your
phone,” 2024. doi: https://doi.org/10.48550/arXiv.2404.14219.

[63]	 A. Mitra, L. D. Corro, S. Mahajan, A. Codas, C. Simoes, S. Agarwal, X. Chen,
A. Razdaibiedina, E. Jones, K. Aggarwal, H. Palangi, G. Zheng, C. Rosset,
H. Khanpour, A. Awadallah, “Orca 2: Teaching small language models
how to reason,” 2023. doi: https://doi.org/10.48550/arXiv.2311.11045.

[64]	 Gemma Team, “Gemma: Open models based on gemini research and
technology,” 2024. doi: https://doi.org/10.48550/arXiv.2403.08295.

[65]	 Gemini Team, “Gemini: A family of highly capable multimodal models,”
2024. doi: https://doi.org/10.48550/arXiv.2312.11805.

http://dx.doi.org/10.2139/ssrn.4740783
http://www.perplexity.ai/

- 19 -

Article in Press

Francisco Jurado

He received the Ph.D. degree with honours in Computer
Science from the University of Castilla-La Mancha in 2010.
He is Associated Professor in the Computer Engineering
Department, Universidad Autónoma de Madrid, Spain. He
has (co)authored more than 70 research articles in journals
and conferences, participated in more than 15 competitive
researches projects, and used to served as reviewer in

indexed journals and international conferences. His main research areas include
Intelligent Tutoring Systems, Heterogeneous Distributed eLearning systems,
and Natural Language Processing.

Francy Rodriguez

She received her PhD degree from the Universidad
Politécnica de Madrid (UPM) in 2015. She is currently a
full-time Assistant Professor in the Computer Engineering
Department at UPM, Spain. Her research interests include
software development, design and programming patterns,
software usability, and applications of artificial intelligence.

Enrique Chavarriaga

He received his PhD in Computer Science and
Telecommunications Engineering from the Autonomous
University of Madrid in 2017. He currently works as a
research engineer in the I+D+i Department at UGROUND
GLOBAL S.L., Spain. His research interests include
domain-specific visual and textual languages, low-code
development environments, and artificial intelligence.

Luis Rojas

He received his M.S. and Ph.D. in Computer Science from
Universidad Autónoma de Madrid in 2017. He is currently
a Lecturer in the Universidad San Sebastian, Santiago,
Chile. He has been a software engineer at Chilean Nuclear
Energy Commission for 10 years. He has also served as
a reviewer and chair at different conferences on Software
Engineering and Human-Computer Interaction. He is the

author of several research articles, book chapters, and has also served as a book
editor. His research interests include artificial intelligent, human-computer
interaction, software engineering and learning analytics

