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Abstract

Improving current similarity measures in the collaborative filtering Recommender Systems is relevant, since it 
contributes to different applications such as to get better big data representations of users and items, to implement 
dynamic browsers able to navigate through data, and to explain recommendation results. Currently, there are 
many statistically based similarity measures, some of them tailored to the extraordinarily sparse collaborative 
filtering scenario. Nevertheless, the hypothesis of the paper is that using neural networks, learnt similarity 
measures can be obtained that improve existing ones. To accomplish the task, the typical neural models cannot 
be used, and it is necessary to focus on the similarity learning area, in which the goal is to make the model 
learn, which is a similarity function able to measure how similar two objects are. Siamese networks adequately 
implement the similarity learning concept, and we have adapted them to collaborative filtering particularities. 
The results in different scenarios show significant improvements compared to the state-of-the-art. 
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I.	 Introduction

Recommender Systems (RS) [1] is the Artificial Intelligence area 
focused on personalization. RS recommend products or services 

to users. Remarkable commercial RS are Spotify, TripAdvisor, Netflix, 
TikTok, etc. To accomplish their task, RS can use text and images of 
the items (products or services), so they could recommend a Sci-Fi film 
based on the similarity between its synopsis and the synopsis of some 
other films the user liked; this is content-based filtering. There are 
some other filtering strategies, such as demographic filtering [2] which 
recommends to an active user the products that users of the same age, 
sex, nationality, etc. consumed. Social filtering is based on followed, 
followers, and trusted information [3]. Context-based filtering usually 
makes use of geographical information [4], such as GPS coordinates. 
The most accurate filtering strategy is Collaborative Filtering (CF) [5]. 
CF makes use of datasets that contain all the iterations between users 
and items; typically, they hold the explicit votes that users cast to items, 
or the implicit interactions between users and items, such as listened 
to songs, watched movies, bought products, etc. The most accurate 
RSs combine several filtering strategies using ensemble architectures.

The research in this paper is focused on CF RS, so we will act on data 
sets containing ratings assigned by users to items. This information can 
be stored in a bidimensional matrix where each row represents a user, 
each column represents an item, and each value represents an explicit 
vote or an implicit rating. Since users can only vote or consume a tiny 
proportion of the available items, the CF matrices are extraordinarily 

sparse [6], usually around 98% sparsity. It is relevant in this paper since 
we will try to design a neural model capable of measuring the existing 
similarity between users, where each user is represented by a sparse 
vector of ratings. Accurately measuring similarities between sparse 
vectors is much more difficult than using dense vectors.

The first CF approaches made use of the K-Nearest Neighbors 
(KNN) algorithm [7]. It directly implements the CF concept: 1) to find 
the neighbors of the active user, 2) based on the set of neighbors, to 
predict the ratings of those items not voted for the active user, and 
3) to recommend the N highest predictions. The key to improving 
KNN accuracy is to design a suitable similarity measure between 
profile vectors and use it to find the neighbors of the active user. The 
better the similarity measure, the higher the accuracy. Currently, 
recommendations are made using machine learning matrix 
factorization, and deep learning models such as DeepMF [8] and Neural 
Collaborative Filtering [9]; they largely improve accuracy compared to 
KNN, and their performance is better, since once the model has been 
trained predictions are processed very fast. 

Beyond accuracy, there are many objectives in RS, such as novelty 
[10], diversity [11], trust [12], recommendation explanation [13], 
big data analysis [14], and information browser design [15]. Most of 
them can take advantage of improving similarity measures to find 
similar users or similar items. Some CF similarity measures have 
been borrowed from the statistical field: Pearson correlation, cosine, 
sine, Jaccard, MSD, etc. whereas some others have been heuristically 
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designed to fit some of the CF constraints, basically sparsity [6], and 
cold start [16]: JMSD, PIP [17], Singularities, Significances, etc. 

The objective of our research is, precisely, to obtain better similarity 
measures to improve RS beyond accuracy aims. The hypothesis of the 
paper is that we can train neural network models to automatically 
learn the similarity measure that better adapts to the provided CF data. 
The neural networks are expected to find complex nonlinear patterns 
that relate users or items in each CF dataset, and their results will 
be more accurate than those returned when using existing similarity 
measures. Note that, unlike existing similarity measures, the neural 
approach requires individual trainings for different CF datasets, since 
each dataset will hold its own patterns. This customization and the 
ability of neural networks to find non-linear patterns are the pillars 
supporting our hypothesis.  

Similarity learning is a field of neural networks in which the model 
is trained to predict similarity between objects. It can be explained 
by means of an example: let us imagine a company requiring a facial 
identification system to grant access to the offices; traditionally it 
would need a high number of pictures of each of their employees 
to train a neural network classifier. Additionally, each time a new 
employee joins to the company, the model must be retrained to 
incorporate the new category; this approach is not adequate. Similarity 
learning does not classify, and usually it only needs a sample to learn 
(a picture of each employee, in our example), because it makes use of 
the one-shot learning concept, where the model only needs a sample 
of each category to be trained. A similarity learning neural model 
predicts distances; specifically, it learns that the distance between a 
sample and some augmented version of it will be shorter than the 
distance between this sample and other samples. In our company 
example, we do not longer need to ask for many pictures of each 
employee, instead we will use image augmentation, and we do not 
need to retrain the model for each new employee, since the model 
can also apply the learnt similarity measure to the unseen pictures. 
Please note the similitude between the mentioned example and the CF 
scenario, where we only have one sample (vector of ratings) of each 
user (one-shot learning), and where the model is not retrained each 
time a new user registers and votes in the RS.

Siamese networks are designed to implement similarity learning. 
They contain two Multi-Layer Perceptron (MLP) to code pairs of 
samples (Fig. 1): a sample and its augmented version, associated to 
a short distance, e.g. label 0, or two different samples, associated to 
a large distance, e.g. label 1. The MLPs are called ‘towers’, and they 
share weights, since both the samples and their augmented versions 
contain similar patterns. Thus, a unique tower is defined in the neural 
model and two tower instances feed the architecture. Note that in the 
CF sparse context, the MLP can be replaced for an embedding layer 
that codes the discrete and sparse ratings to continuous and dense 
embedding representations. The coded outputs of both towers are 
usually merged using the Euclidean distance (Fig. 1), and then the 
distance is processed to convert it to the prediction of the similarity 
measure. The contrastive loss function is used to train the Siamese 
network; it contains a term to be applied if the given samples are 
similar and another term to be applied if they are dissimilar.

Siamese networks have currently begun to be used as a model to 
improve RS accuracy. Usually, their results are combined in one of the 
following three ways [18]: 1) feedforward, where Siamese distances 
are joined with any of the existing CF models, 2) clustering, where 
distances are used as a feature vector, and 3) learning-to-rank, where 
the Siamese output information reorders the recommendation list. 
Research examples of the feedforward approach are: a) the MOOCs 
RS, where distances between courses and students are used to improve 
CF results [19], and b) the use of graph-based dynamic matching for 
CF where neighborhoods are updated with the information of Siamese 

homogeneous graphs [20]. A Siamese generative adversarial prediction 
network has been designed to learn the data distribution characteristic 
of a HiDS matrix and then build a model to estimate the unknown 
entries [21]. Siamese networks have also been used to improve content-
based recommendations, such as in the fashion area [22] or the music 
one [23], but they focus on computer vision and signal processing 
rather than in CF information. Whereas all these approaches test the 
recommendation accuracy improvements, the quality of the learnt 
similarity is not tested in isolation, as it is necessary for the objectives 
of our paper: mostly, big data and recommendation explanation. For 
this reason, the experiments in this paper specifically test the Siamese 
similarity results and not the recommendation ones.

The rest of the paper is structured as follows: Section II explains 
the proposed model and its formalization, Section III contains the 
experiments design, the obtained results, and their explanation, Section 
IV highlights the main conclusions and proposes several future works. 
Finally, the references section contains current and representative 
papers related to this research.

II.	 Model

This paper proposes a Siamese model-based network to implement 
the similarity learning concept. The key idea here is that our model 
will learn a neural similarity measure capable of providing the distance 
between user profiles (vectors of ratings). It is expected that a learnt 
measure will provide more accurate results than the classical statistical 
ones: cosine, sine, MSD, JMSD, correlation, etc. Training, validation, 
and testing samples have been set up to allow the neural network to 
learn and test results. For each sample (vector of ratings casted from a 
user) some augmented sample variations are randomly created, then the 
Siamese model will learn that the distance between the active sample 
and their augmented versions will be small, whereas the distance 
between the active sample and other user samples will be larger than 
before. Feeding our Siamese model with hundreds of thousands of such 
training pairs, it will learn the expected similarity measure. 
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Fig. 1.  Proposed Siamese neural network model.

Our model architecture is shown in Fig. 1. The symbols included 
in it correspond to the formalization listed below. The model includes 
two data paths, called towers, that join in a Lambda layer. It is 
important to highlight that both neural towers share their weights; 
they are implemented using a unique MLP and two instances that 
use it. The training data, shown on the left side of Fig. 1, feeds the 
model with pairs of vectors. Randomly disposed, half of the samples 
will provide, as pairs, a user vector ( ) and an augmented version 
of him ( ); e.g. the first sample in the Fig. 1, containing  and . 
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The associated label is 0, and the aim is that the Siamese network 
learns that a variation of a sample should be predicted to have a short 
distance from its source. A variability parameter θ sets the number 
of ratings that randomly will be chosen to change their values in the 
source sample to generate the augmented one. These values are also 
Gaussian randomly set to one of the possible votes (usually from 1 to 
5 stars). The other half of the training samples are used to teach the 
model that two different users should return a higher distance than a 
user and its augmented sample. Fig. 1 shows it with the samples , , 
and the label 1. 

As can be seen in Fig. 1, half of each sample (left-side vertical 
vectors) feeds the MLP in charge of translating from large and sparse 
integer vectors to very small and dense vectors of real numbers (the 
embeddings denoted with the symbols EN and E’N). Each contrastive 
sample provides a raw user vector (real or augmented) to the first MLP 
tower, and another raw user vector (real or augmented) to the second 
MLP tower (both towers share the same weights). The whole deep 
learning model learns if both vectors represent the same user (short 
distance, label 0) or they represent different users (large distance, label 
1). The obtained embeddings will learn to similarly code users with 
the same tastes (similar ratings) and to dissimilarly code users with 
different tastes. These semantically enriched embeddings make it easy 
for the model to accurately predict contrastive distances. 

Each vector in a sample feed into the MLP that implements the 
embedding function. Embeddings code sparse and discrete (integer) 
data to dense and continuous (float) representations. We have used two 
dense layers (ψd and ψe ) to make this function, where ‘d’ and ‘e’ are the 
number of neurons in the layer. Note that the size of the ensemble will 
be ‘e’. In this stage, we have a dense representation of the source sample 
(EN), and a dense representation of the target (augmented or randomly 
picked) sample E'N. As shown in Fig. 1, both ensemble vectors are 
joined using a Lambda layer that implements the Euclidean distance. 
The Lambda layer returns values in the interval [0..∞], and they must 
be converted to values around the labels: 0 or 1. To accomplish the 
task, a dense layer ψd' makes the main work, followed by a dense final 
output layer containing a unique neuron ψ1. Since labels can only take 
values 0 or 1, the ‘sigmoid’ activation function has been chosen in 
this output layer; other layers implement the ‘relu’ activation function. 
Finally, the selected loss function to minimize the learning errors is the 
contrastive one: , 
where ‘y’ is the label, ‘pred’ is the predicted distance, and ‘m’ is a 
margin used to ensure that dissimilar pairs greater than ‘m’ do not 
contribute to the function loss. Following to Fig. 1, a formalization of 
the proposed Siamese model is provided. The symbols have been kept 
as shown in Fig. 1 to make it easy to interpret both the equations and 
the concepts of Fig. 1.

Proposed Siamese model formalization:

•	 Let U and I be, respectively, the sets of users and items in a CF 
dataset.

	 (1)

•	 Let V = {•, 1, 2, 3, 4, 5} be the set of votes (stars) a user can assign 
to an item in the CF dataset. The symbol • indicates lack of vote.

	 (2)

•	 Let  be the sample vector (profile) of user u, 
where ri ∈ V, represents the vote of user u ∈ U to item i ∈ I. Please 
note that CF datasets are extraordinarily sparse, so most of the  
ri = •. 					                  (3)

•	  is the augmented sample vector 
of user u, where a random Gaussian function is used to generate 
random rating values belonging to V-{•}. The fθ random function 
generates the  vector containing θ randomly chosen modified 

ri ratings. Note that the higher the variability value θ, the larger 
the distance between the original sample  and the augmented 
sample .

	 (4)

•	 Let h(u, θ) = < , fθ( ), 0> be the tuple containing the user u 
sample, its random augmented sample , and the label 0.           (5)

•	 , where u' is randomly selected from U, and u ≠ u'.
	 (6)

•	 Let  be the tuple containing the user u sample, 
the randomly picked sample , and the label 1.	               (7)

•	 , is a dataset 
containing N x |U| shuffled pairs of samples h(u, θ), q(u) ready to 
be trained, tested, or validated.			                (8)

•	 ψe (ψd) is a neural network ensemble where the first dense layer 
contains d neurons, and the second dense layer contains e neurons. 

	 (9)

•	 EN = ψe (ψd (DN [ 0 ])) is the activation vector at the exit of the tower 
1 embedding, where the input is the first element in the tuple: DN 
[ 0 ] = h(u, θ). 

	 (10)

•	 E'N = ψe (ψd (DN [ 1 ])) is the activation vector at the exit of the 
tower 2 embedding, where the input is the second element in the 
tuple: DN [ 1 ] = q(u). 				               (11)

•	 . The results of both towers are merged 
using the Euclidean distance, processed in a dense layer containing 
d’ neurons and, finally, compressed to the prediction dense layer 
ψ1, that contains a unique neuron. The result is the distance 
prediction between both inputs:  and , or  and .

	 (12)

•	  is the Siamese 
neural network contrastive loss in this model, where m is a 
margin used to ensure that dissimilar pairs greater than m do not 
contribute to the function loss. We have set this margin to 1. 

	 (13)

TABLE I. The Main Parameter Values Involved in the Proposed Model

Parameter Value
|U| 1000
|I| 1700 
V {•, 1, 2, 3, 4, 5}
θ {60, 80, 100, 125, 150}
N 50000
e 10
d 20
d’ 50

Table I shows the values chosen in our experiments to implement 
the model. Note that |U|, |I| and V are directly dependent on the CF 
dataset (Movielens 100K in our case).

The rest of parameter values should be adapted when other datasets 
are used.

Previously to the main experiments, we have selected several 
embedding sizes: N (see EN and E’N in Fig. 1) and compared their 
impact on the obtained qualities of the proposed Siamese neural 
network model. Fig. 2 shows the results; as expected, when the 
bottleneck threshold is reached (embeddings of size 5, in our case), 
the smaller the embedding size, the lower the accuracy of the Siamese 
network. In this model, embedding sizes smaller than 5 produce 
semantic information loss. Fig. 2 also shows that increasing the size 
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of the embeddings, above the threshold, does not improve the quality. 
This result has been obtained by processing the dataset Movielens 
1M, and large datasets would need a large embedding size. Research 
collaborative filtering models usually set the embeddings size to 10.  

embedding size
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Fig. 2. The proposed Siamese model quality obtained by choosing different 
embedding sizes. Dataset MovieLens 1M.

We made a grid search to set the number of neurons in the dense 
layers of the model. The reported result for Movielens 1M was 5 neurons 
in the first dense layer of MLP. Choosing this hyperparameter, our 
Siamese model needs 18,716 parameters (using an embedding size = 10). 
We selected 10 neurons in the first MLP dense layer, making it possible 
for the designed Siamese model to process large datasets. This model 
only needs 37,301parameters, which is affordable for any laptop 
computer. The grid search set to 15 neurons the size of the last dense 
layer; we have increased it to 40 neurons to hold any other dataset. This 
decision only increases the model from 30 to 80 parameters. In short, 
using the grid search results, we obtain a Siamese network holding 
18,716 parameters, but we have decided to enlarge the design to a 
model that contains 37,301 parameters able to process large datasets.

III.	Experiments and Results

To test the proposed Siamese model, we have chosen both the 
MovieLens 100K and the MovieLens 1M datasets. They are open and 
popular CF datasets. We have also made use of a reduced version 
of the complete Netflix dataset: Netflix* [24]. Table II shows the 
main parameter values for these datasets. Additionally, to facilitate 
reproducibility, the source code is provided via GitHub [25].

TABLE II. Main Parameter Values of the Tested Datasets

Dataset #users #items #ratings scores sparsity
MovieLens 100K 943 1682 99,831 1 to 5 93.71
MovieLens 1M 6,040 3,706 911,031 1 to 5 95,94
Netflix* 23,012 1,750 535,421 1 to 5 98.68

Experiments will test a) the learning loss and the model accuracy, 
b) the impact in accuracy when increasing the variability parameter 
θ, and c) the comparative results between the proposed model and 
a representative set of CF similarity measures. The chosen similarity 
measures are the following: Euclidean, correlation, cosine, Manhattan, 
Jaccard, MSD, and JMSD that will act as baselines. Note that these 
measures are the usual ones when the KNN algorithm is used to 
predict and recommend in CF RS. Finally, experiments compare 
the accuracy results between the proposed Siamese model and the 
seven baselines. Accuracy is tested by varying both the a) variability 
parameter and b) the N-ways testing strategy, where the active user 
variation (augmentation) must be correctly selected from N samples: a 
set of N-1 users and the augmented user. Table III shows the values of 
the selected parameters and the baselines.

TABLE III. Parameter Values and Baselines Used in the Experiments

Parameter Value
Variability {60, 80, 100, 125, 150}

N_ways {4, 8, 16}

Baselines Euclidean, correlation, cosine, Manhattan, Jaccard, 
MSD, and JMSD

The Siamese model shown in the previous section was run and 
provided the training and testing results shown in Fig. 3. The graph 
on the left of Fig. 3 shows adequate learning trajectories, where 
contrastive loss progressively decreases until it reaches a very low 
value. The right graph in Fig. 3 shows a learning with no overfitting 
and stable from epoch 6.  90% of hits (accuracy) have been reached by 
classifying between two categories: variations of the active user, and 
different users. Note that the training and testing data contain both 
categories equally, so the random baseline gets an accuracy of 50%.
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Fig. 3.  The proposed training and testing results of the Siamese RS model. 
The left graph shows the contrastive loss (the lower the values, the better the 
result), whereas the right graph shows the accuracy obtained in the range 
[0..1] (the higher the values, the better the result). The x-axis shows the 
number of epochs (learning evolution).
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From Fig. 4 we can extract some relevant conclusions: 

•	 The higher the variability parameter θ, the higher the accuracy 
returned by the proposed Siamese model and the better the 
comparative between the proposed model and the baselines. In short, 
the higher the variability parameter, the better the model learns, 
and the more difficult will be to distinguish between augmented 
samples and different samples.

•	 The variation of samples (θ) must reach a minimum value to let the 
Siamese network properly work. This is the expected result, since 
the Siamese network design and strategy needs a minimum of 
variation between each sample and their augmentations to learn 
differences between augmented samples and different samples.

•	 When the variability of the samples is high enough, the proposed 
method always improves the baseline result. This is the effect of 
combining the two previous conclusions.

•	 The baselines get similar quality results to each other. It is known 
from CF KNN-based published results that the quality reached 
of different similarity measures highly depends on the data size, 
sparsity, and internal patterns but, overall, their differences are 
usually small.

To better compare the proposed model results when the variability 
values θ change, Fig. 5 extracts this information from Fig. 4. As 
mentioned above, an accuracy increase happens as the variability 
increases, and it is true for all the N-ways tested values. As can be 
seen, each N-way value yields different increases in accuracy; Fig. 6 
averages the increase in accuracy along the three considered N-way 
values. Starting from the variability value θ = 60, Fig. 6 shows the 
number of times that each variability value has improved accuracy.
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Fig. 5. Proposed Siamese model accuracy results when tested on different 
variability values θ. The x-axis holds the three considered N-ways sizes. The 
higher the accuracy, the better the result.
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Fig. 6. Increase in the averaged accuracy of the proposed Siamese model. The 
x-axis shows the considered variability values θ.  The y-axis shows the number 
of times each variability value improves accuracy.

Fig. 7 shows the results obtained using the collaborative filtering 
data set MovieLens 1M. As can be seen, the results follow a shape and 

pattern similar to the ones obtained by processing MovieLens 100K. 
It is noteworthy that this large data set also requires larger variability 
values (θ) than the MovieLens 100K one to generate representative 
augmented samples. Overall, Fig. 7 shows the scalability of the 
proposed Siamese model.

Fig. 8 shows the Netflix* results in the same format used in the 
preceding figures. The graph patterns and the accuracy values 
reinforce the MovieLens 100K and the MovieLens 1M explanations, 
emphasizing the scalability of the proposed Siamese network model.

IV.	Conclusion

Improving collaborative filtering-based similarity measures is 
important, since they can be used in big data representations and 
to provide better recommendation explanations. This paper shows 
how neural network models can be used to learn similarities and 
dissimilarities between user profiles in Recommender Systems. 
We have adapted the Siamese network similarity learning model 
to the collaborative filtering scenario, feeding it with real user 
profiles and augmented ones. The proposed Siamese network has 
adequately learnt the similarity between vectors containing each user 
rating. Furthermore, the Siamese neural results improve the seven 
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Fig. 7. Results obtained using MovieLens 1M. 
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representative baselines used in the experiments. The results also 
show that a meaningful parameter used to set the learning samples 
has to be fine-tuned to get adequate accuracies. This parameter sets 
the distance between source samples and the augmented ones, created 
to train and to test the model. As expected, a balance is needed to 
generate representative augmented user profiles. Remarkable future 
works are a) to extend experiments to different collaborative filtering 
datasets, b) to test the impact of using the triplet loss instead of the 
contrastive one, and c) to implement different strategies to generate 
more accurate augmented samples.
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