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ABSTRACT

KEYWORDS

In recent years generative Al models and tools have experienced a significant increase, especially techniques
to generate synthetic multimedia content, such as images or videos. These methodologies present a wide
range of possibilities; however, they can also present several risks that should be taken into account. In this
survey we describe in detail different techniques for generating synthetic multimedia content, and we also

Al-Generated Content,
Image Generation,
Multimodal, Video
Generation.

analyse the most recent techniques for their detection. In order to achieve these objectives, a key aspect is the
availability of datasets, so we have also described the main datasets available in the state of the art. Finally,
from our analysis we have extracted the main trends for the future, such as transparency and interpretability,
the generation of multimodal multimedia content, the robustness of models and the increased use of diffusion

models. We find a roadmap of deep challenges, including temporal consistency, computation requirements,

generalizability, ethical aspects, and constant adaptation.

I. INTRODUCTION

THE recent progress in Artificial intelligence (AI) has led to a
revolution in the creation of synthetic images and videos, mainly
due to the remarkable capabilities of advanced generative models,
diffusion models, or Generative adversarial networks (GANs), among
others. There are now a large number of applications and tools
available to users, such as DALL-E [1], GLIDE [2], Midjourney [3],
Imagen [4], VideoPoet [5], Sora [6], or Genie [7]. These tools are
designed to produce realistic and believable digital content easily. This
development has had a profound impact, with various applications
across different areas.

These techniques are capable of generating multimedia content
on any topic or object. Therefore, there are countless opportunities,
especially in some application domains, which can benefit greatly
from these techniques and tools: entertainment and media, allowing
the generation of characters, scenarios or elements that would be very
difficult to create by traditional means [8]-[10]; creative industries,
allows artists to streamline their work and improve its quality, for
example by creating sketches to work on further, or creating elements
to add to their work [11], [12]; education, creating engaging educational
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content, including simulations and visual aids to help illustrate and
clarify complex ideas, and adapting to different learning styles [13],
[14]; security and forensics, helping to create robust models capable of
detecting false or generated information more easily, for example by
assisting in data augmentation [15], [16]. As we can see, the applications
of these techniques are limitless, and as their capabilities improve, they
can be more easily applied to different problems in society.

This collection of tools and methodologies not only presents
advantages, but also a number of weaknesses and potential risks that
need to be carefully analysed. The ability to produce highly realistic
synthetic media easily causes concernabout their possible inappropriate
use. Deepfakes and other kinds of manipulated content can be used
to spread misinformation, create disinformation, and manipulate
public opinion, undermining trust in digital media [17], [18]. This dual
potential for both positive and negative impact highlights a crucial
problem. While leveraging the benefits of generative models, there is
an urgent need to develop effective detection methods to distinguish
between real and Al-generated content. As generative models become
more sophisticated, the task of detecting synthetic media becomes
increasingly complex, necessitating the continuous evolution of
detection techniques.
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Despite the significant advancements in generative models, several
gaps and challenges persist in both their deployment and the methods
used to detect synthetic media. One major challenge lies in the
resource-intensive nature of training and deploying these models. High
computational requirements limit accessibility, particularly for smaller
organizations and researchers lacking the necessary infrastructure
to fully utilise these technologies. This creates a barrier to wider
adoption and raises concerns about the scalability and sustainability
of generative models as they continue to evolve. Furthermore, even
advanced models such as GLIDE [2] and DALL-E 2 [1] encounter
challenges when processing complex prompts. These challenges can
limit their ability to generate high-quality outputs under specific
conditions. Similarly, Imagen [19] enhances computational efficiency
but still grapples with resource demands and complex prompts. These
limitations underscore a need for improved flexibility and robustness
in current generative technologies.

On the video generation front, text-to-video models face significant
challenges in maintaining high fidelity and continuity of motion over
extended sequences. Many existing methods simply extend text-to-
image models, which do not fully address the unique complexities
inherent in video generation. This highlights the need for more
specialized approaches that can effectively handle the temporal
dynamics and continuity required for high-quality video content.

Detecting synthetic media presents significant challenges. Current
detection models struggle to keep pace with the rapid advancements
in generative technologies, making it difficult to reliably differentiate
between real and Al-generated images and videos. These models tend
to specialize in the types of synthetic content they were trained on,
leading to poor performance when faced with new data from different
or updated models. Additionally, detection algorithms must be
resilient against various transformations and adversarial attacks [20],
[21], such as image compression and blurring, which can significantly
diminish their effectiveness. Techniques for identifying deepfakes
[22] and other forms of image and video forgeries [23] also encounter
obstacles due to the constantly evolving nature of these manipulations
and the need for high-quality datasets and standardized benchmarks.

To address these challenges and advance the field, this survey:

+ Presents an updated picture of synthetic image generation and
detection techniques.

« Presents an overview of video generation and detection techniques.

« Provides a list of the main video and image datasets used by
researchers.

« Describes trends, challenges and research directions that can be
explored in the Al generation, in video and image, and supports
them with the conclusions of the analysis.

By providing a thorough examination of both the generative and
detection aspects of synthetic media, this survey aims to foster a deeper
understanding of the current challenges and opportunities in the field,
promoting the development of technologies that can maximize the
benefits of Al-generated content while minimizing its risks.

This survey is structured to comprehensively address both the
generative capabilities and detection techniques of Al-generated
images and videos, see Fig. 1. Section II reviews related works and
surveys, providing a foundation for understanding the current state
of research in this domain. Section III dives into image generation
and detection, detailing various advanced generative models and
the methods used to detect synthetic images. Section IV focuses on
video generation and detection, exploring the advancements in video
generation and the techniques to identify Al-generated videos. Section
V discusses the datasets used for generative and detection algorithms,
highlighting the importance of diverse and high-quality datasets.

Section VI identifies the ongoing challenges in both generating and
detecting synthetic media. Finally, Section VII concludes the survey
by summarizing the key findings and suggesting future directions for
research and development in this field.

II. RELATED WORK AND RELATED SURVEYS

The field of Al-generated images and videos has been extensively
studied, with several surveys reviewing the advancements and
challenges in this area. This section provides an overview of key
surveys and positions our work in relation to them, highlighting the
unique aspects of our approach, summarised in Table I.

« Liu et al [24] conducted an extensive review on human image
generation, categorizing existing techniques into three main
paradigms: data-driven, knowledge-guided, and hybrid. The survey
covers the most representative models and approaches within each
paradigm, highlighting their specific advantages and limitations.
Additionally, it explores a range of applications, datasets, and
evaluation metrics relevant to human image generation. The
paper also addresses the challenges and potential future directions
in the field, offering valuable insights for researchers interested in
this rapidly evolving domain.

+ Chen et al [28] concentrated on controllable text-to-image
generation models. They investigated various methods that
precisely control the produced content, such as personalized and
multi-condition generation techniques. The authors explore the
practical applications of these models in content creation and
design while also recognizing current constraints and suggesting
future directions to enhance the adaptability and accuracy of these
generative models.

« Joshi et al. [29] provided an extensive analysis on the use of
synthetic data in human analysis, focusing on the advantages
and challenges in biometric recognition, action recognition, and
person re-identification. The survey delves into various techniques
for generating synthetic data, including deep generative models
and 3D rendering tools, emphasizing their potential to tackle
issues related to data scarcity, privacy concerns, and demographic
biases in training datasets. Additionally, the authors explore
how synthetic data can augment real datasets to enhance model
performance scalability analysis and simulate complex scenarios
that are challenging to capture with real data. They also address
concerns about synthetic datasets, such as identity leakage and
lack of diversity.

 Figueira et al. [25] focused on the generation of synthetic data
with Generative Adversarial Networks (GANs). The authors
emphasize the significance of synthetic data, particularly in cases
where data is limited or contains sensitive information. They
highlight how GANs can proficiently create high-quality synthetic
samples that imitate real data distributions. This study presents a
detailed summary of current methods and challenges in synthetic
data generation, emphasizing the utilization of GANs for diverse
data types, including tabular data, and exploring various GAN
architectures that cater to these requirements.

« Nguyen et al [26] offered a comprehensive review of deepfake
generation and detection methods using deep learning techniques.
They explored different types of deepfakes, such as face-swaps, lip-
syncs, and puppet-master variations, while highlighting the progress
and challenges in identifying these manipulations. The survey
covers traditional and deep learning-based approaches for detecting
deepfakes, including methods based on manual feature creation and
those utilizing deep neural networks. Their work emphasizes the
importance of developing robust detection algorithms to counter
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TABLE I. COMPARISON OF PREVIOUS LITERATURE REVIEWS
Task analysed Modalities . o o
Authors Year Main Contribution Limitations

Generation Detection  Image Video

It provides a detailed analysis of video and
image sample manipulation and detection
techniques.

It provided an extensive review on the
generation of human images

It only deals with the generation of
human images, without covering
other possible scenarios.

Focus on the manipulation of video
and image samples.

It provides a very detailed analysis of

the use of GANs within data generation,
focusing on training problems and

It does not focus on image and video
generation.

evaluation techniques.

It analyses both the techniques of
generation, or manipulation, and the
detection of images and videos.

Performs a detailed analysis of
manipulation and detection techniques for ~generation and detection techniques,
video and audio samples.
It performs one of the most comprehensive It is not focused on the generation of
data generation analyses available.

It covers one of the newest approaches
to image generation, diffusion models for
Text-to-image task.

Explores techniques including improving
model performance, increasing data
diversity and scalability, and mitigating
privacy issues.

Liu et al. [24] 2022 v x v v
Zhang et al. [22] 2022 v v

Figueira et al. [25] 2022 v x v x
Nguyen et al. [26] 2022 v v v v
Tyagi et al. [23] 2023 v v v v
Bauer et al. [27] 2024 v x v v
Chen et al. [28] 2024 v x v x
Joshi et al. [29] 2024 v x v v

It is mainly focused on the
manipulation of multimedia data,
not so much on the generation of
synthetic samples.

The focus is not on synthetic sample

but on manipulation techniques.

image and video samples.

This is a very limited survey, as

it covers only one of the imaging
approaches, without analysing other
techniques or modalities.

It only focuses on generating samples
that represent humans, leaving a
large part of the field unstudied.

the increasing complexity of deepfake creation techniques. This
study holds particular relevance in developing new multimodal
approaches for deepfake detection, which are in alignment with
investigating cross-modality fusion strategies.

Bauer et al. [27] examined Synthetic Data Generation (SDG)
models, analyzing 417 models developed over the past decade.
The survey classifies these models into 20 distinct types and 42
subtypes, providing a comprehensive overview of their functions
and applications. The authors identified significant model
performance and complexity trends, highlighting the prevalence
of neural network-based approaches in most domains, except
privacy-preserving data generation. The survey also discusses
challenges, such as the absence of standardized evaluation metrics
and datasets, indicating the need for enhanced comparative
frameworks in future research.

Zhang et al. [22] analysed the generation and detection of deepfakes,
shedding light on both the progress made and the challenges
encountered in this area. They outline two main techniques for
creating deepfakes, face swapping and facial reenactment, and
discuss the impact of GANs and other deep learning methods.

Their work also explores various detection strategies, ranging from
biometric and model features to machine learning-based methods.
They emphasize the persistent challenges arising from evolving
deepfake technologies, the need for high-quality datasets, and
the absence of a standardized benchmark for detection methods.
This survey is essential for gaining insights into the current state
of generating and detecting deepfakes, which present significant
challenges to privacy, security, and societal trust.

Tyagi et al. [23] conducted a comprehensive analysis of image
and video forgery detection techniques, highlighting the
various manipulation methods, such as morphing, splicing, and
retouching, and the challenges associated with detecting these
alterations in digital media. The survey also reviewed different
datasets used for training and evaluating forgery detection
algorithms, emphasizing the need for robust, generalized
methods capable of detecting multiple types of manipulations
across diverse visual datasets. This work provides a detailed
examination of both traditional and deep learning-based
approaches, illustrating the advancements and limitations in the
field of digital media forensics.
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Fig. 3. Overview of Al-generated Image Detection.

As we can see, this survey has a number of advantages over other
published reviews of the field. Firstly, it is the first work to focus
exclusively on synthetic sample generation techniques, which also
provides a list of datasets published in recent years. It also analyses
the approaches with which researchers are tackling the problem of
detecting these synthetic samples.

III. AI IMAGE GENERATION AND DETECTION

In this section, we will focus on the generation of images with AI
techniques, as well as on the main approaches for their detection. As
mentioned above, Al, more specifically Deep Learning (DL) has shown
significant progress in the fields of image generation and detection.

Advanced models have greatly improved the ability to generate
synthetic images, focusing on enhancing aspects such as image
quality and realism. Recent developments have led to improved
training stability and higher-quality generated images, addressing
common challenges and allowing for the creation of diverse and
realistic outputs. Innovations in model architectures have also
provided greater control over the image generation process, resulting
in even more varied and convincing synthetic images. Fig. 2 illustrates
a subset of Al-generated image and video techniques, specifically
focusing on generative models that rely on text or prompts to create

the samples. While this figure highlights key models used in text-to-
image or text-to-video synthesis, other generative approaches are
discussed in the subsequent sections.

Models for synthetic images detection have also made
substantial progress. These detection models have become more
advanced, using deep learning techniques to identify subtle artifacts
and inconsistencies in generated images. As a result, they are crucial
in differentiating between real and synthetic images, ensuring the
integrity of visual content. The ongoing evolution of these models
indicates the dynamic nature of the field, with continuous research
efforts focused on improving their precision and resilience [30], [31].

A. Image Generation

Within Al image generation, we will analyse two different
approaches, see Fig. 3. The first approach, Text-to-image synthesis,
will focus on generating image samples from text descriptions; while
the second approach, Image-to-image translation, focuses on
modifying the original image while preserving some visual properties
in the final sample. A concise summary of the main image generation
techniques is presented in Table II.
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TABLE II. COMPREHENSIVE OVERVIEW OF A FEW SYNTHETIC IMAGE GENERATION TECHNIQUES

Models Year Technique Target Outcome Data Used Open Source

NVAE [66] 2020 Hierarchical VAE High-fidelity images CelebA, FFHQ No
CogView [41] 2021 Transformer-based Text-to-image synthesis Diverse text and images Yes
StyleGAN3 [59] 2021 GAN-based High-quality images FFHQ, CelebA Yes
BigGAN [73] 2021 GAN-based Large-scale image synthesis ImageNet Yes
GLIDE [2] 2021 Diffusion-based Generate images from text prompts DALL-E's dataset Yes
DALL-E 2 [1] 2022 Transformer-based Text-to-image synthesis Custom, diverse content Yes
DiVAE [38] 2022 VQ-VAE with diffusion High-quality reconstruction ImageNet No
VQ-VAE-2 [65] 2022 VA E -based High-resolution images Large-scale datasets Yes

EfficientGAN [61] 2022 GAN-based Efficiency and quality Custom datasets Partial
Latent Diffusion [43] 2023 Diffusion-based Photorealistic images Various Yes
DALL-E 3 [51] 2023 Enhanced Transformer Improved prompt following Custom i(rlzztif:etcaptioner No
Imagen [4] 2023 Transformer-based High-fidelity image synthesis Open Images, ImageNet No
Imagen2 [50] 2023  Style-conditioned diffusion Lifelike images with context Diverse dataset No
Muse [40] 2023 Transformer T5-XXL High-fidelity zero-shot editing CC3M, COCO No
SDXL [48] 2023 Stable Diffusion High-resolution image synthesis Custom dataset Yes
StyleGAN-T [32] 2023 GAN-based High-quality image synthesis Ci:ﬁfﬁf;i:;ﬁz;f;;:sﬂh Yes
GALIP [35] 2023 GAN-based, utilizing CLIP Efficient quality image creation from text Diverse datasets Yes
GigaGAN [33] 2023 Advanced GAN High-resolution, gitr;laﬂ;()i( timage generation (];:;\(:rr;i‘;; ;i;:::}t: }\;\thr}; Yes
UFOGen [37] 2024 GAN and diffusion High-quality fast generation - No
RAPHAEL [49] 2024 Diffusion with MoEs Artistic images from text Subset of LAION-5B Yes
Ahmed et al. [36] 2024 GAN with spatial co-attention Enhanced image generation CUB, Oxford-102, COCO No

1. Text-to-Image Synthesis

In this section, we will look at different approaches to creating
synthetic images from text. As this is a growing field we can observe
a variety of different techniques, such as GANs, transformers or
diffusion models.

Generative Adversarial Networks: Some authors continue
to focus on GANs which, although not particularly novel, have
competitive results in the field. For example, Sauer et al. [32] have
improved the robust StyleGAN architecture to develop StyleGAN-T.
This model tackles the challenge of producing visually diverse and
attractive images from textual descriptions at scale, effectively
speeding up the process while maintaining image fidelity. StyleGAN-T
is trained on a comprehensive dataset containing various text-image
pairs, ensuring diverse visual outputs. However, one limitation is the
potential for reduced accuracy in rendering complex scenes due to
the inherent challenges of text ambiguity and the current limitations
of GANs in understanding nuanced textual descriptions. Kang et al.
[33] proposed GigaGAN'’s, an architecture that includes an improved
generator and discriminator that efficiently handle large-scale data,
allowing for the creation of diverse and visually compelling images.
However, like other large-scale GANs, GigaGAN requires significant
computational resources for training and has the potential to overfit
precise textual descriptions if the training data lacks diversity. Despite
these limitations, GigaGAN’s image synthesis capability is a powerful
tool in Al-driven creative image generation, expanding the boundaries
of machine understanding and visualization of textual content. The
model TextControlGAN [34] introduces an innovative method
to improve text-to-image synthesis by modifying the Generative
Adversarial Network (GAN) architecture. This modification aims
to enhance control and precision in generating images from textual

descriptions, by integrating specific control mechanisms within the
GAN framework. This capability is essential for applications that
require high fidelity between textual inputs and visual outputs, such
as in digital media creation and automated content generation.

Other authors have explored the option of a combination
between GAN with other types of techniques such as the CLIP
model, such as Ming Tao et al. [35] have applied the pre-trained CLIP
model to Generative Adversarial Networks (GANs) to transform
the process of text-to-image synthesis. This innovative approach
enhances the efficiency and quality of the images created from
textual descriptions. By integrating CLIP into both the discriminator
and generator, the model achieves strong scene understanding and
domain generalization using fewer parameters and less training data.
By leveraging diverse and extensive datasets, this method enables
the generation of a broad range of intricate and visually appealing
images. This approach accelerates the synthesis process and ensures
a smoother and more controllable latent space, thereby significantly
reducing the computational resources typically required for high-
quality image synthesis.

Ahmed et al [36] proposed a novel approach that involves
simultaneously generating images and their corresponding
foreground-background segmentation masks. This is achieved by using
a new Generative Adversarial Network (GAN) architecture named
COS-GAN, which incorporates a spatial co-attention mechanism to
improve the quality of both the images and segmentation masks. The
innovative aspect of COS-GAN lies in its ability to handle multiple
image outputs and their segmentations from textual descriptions,
thereby enhancing applications such as object localization and image
editing. It was extensively tested on diverse datasets, including CUB,
Oxford-102, and COCO. However, it faces challenges, such as the
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high computational demand required for training and potential biases
embedded within the large-scale datasets used. These limitations could
impact the generalizability and ethical deployment. By contrast, Xu
et al. [37], chose to combine these GAN with diffusion models. They
proposed UFOGen, that offers a novel approach to generating high-
quality images from text quickly. Combining elements of Generative
Adversarial Networks (GANs) and diffusion models efficiently creates
images in a single step, eliminating the need for slower, multi-step
processes used by standard diffusion models. UFOGen’s training
process is greatly improved by utilizing pre-trained diffusion models,
which enhances efficiency and reduces training times. However,
similar to other generative models, UFOGen also faces limitations.
It depends on large-scale datasets that may contain biased or
inappropriate content, potentially leading to biased generated images,
which raises ethical concerns and affects the fairness and diversity of
the output.

Autoencoder models: Another approach we have seen in the
generation of images from text is autoencoder models. For example,
Saharia et al. [4] introduced Imagen, a text-to-image model using
classifier-free guidance (CFG) and a pre-trained T5-XXL encoder to
improve computational efficiency. The model’s key innovation is
using large language models to enhance image quality and text-image
alignment. Imagen generates images starting at 64x64 resolution, then
upscales to 256x256 and 1024x1024 using super-resolution models.
Despite achieving a strong FID score of 7.27 on COCO, the model
faces challenges with dataset biases, high computational demands, and
difficulties in generating realistic human images. On the other hand Shi
et al. [38] developed DiVAE, which combines a VQ-VAE architecture
with a denoising diffusion decoder to create highly realistic images,
excelling in image reconstruction and text-to-image synthesis
tasks. Using a CNN encoder, the model first compresses images into
latent embeddings and then reconstructs them into high-quality
images through a diffusion-based decoder. Trained on the ImageNet
dataset, DiVAE delivers superior performance in terms of FID scores
compared to models like VQGAN. However, the diffusion process is
computationally intensive, requiring many steps, and the model is
restricted by the fixed image size determined by the training data.

Contrastive learning;: it has also been shown that this type of
learning is a good technique for tackling this type of task using Al
models. The CLIP model [39], created by OpenAl, has attracted the
attention of a large number of researchers. This model is able to
relate images and text by using contrastive learning, training on large
multimodal datasets to align visual and linguistic representations in
a shared space, allowing tasks such as image generation, search and
classification to be performed without the need for specific supervised
training. As a result, it is one of the most widely used approaches for
researchers to generate synthetic images from text.

Tranformer: We have also analysed different research that has
used transformers for the generation of synthetic images. Muse [40]
is a Transformer designed for text-to-image generation. It utilizes a
pre-trained T5-XXL language model to predict masked image tokens.
Trained on 460 million text-image pairs from CC3M and COCO
datasets, this model excels in generating high-fidelity images and
supports zero-shot editing, such as inpainting and outpainting. Muse’s
efficiency exceeds that of diffusion and autoregressive models due
to its discrete token space and parallel decoding. However, it faces
challenges in rendering long phrases, handling high object cardinality,
and managing multiple cardinalities in prompts. Ming Ding et al. [41]
have introduced CogView. This model harnesses a 4-billion-parameter
Transformer architecture in combination with a VQ-VAE tokenizer.
CogView operates by encoding text into discrete tokens, which the
Transformer processes to forecast corresponding visual tokens. These
visual tokens are then transformed into high-quality images using the

VQ-VAE decoder. CogView underwent training on extensive datasets,
incorporating image-text pairs from diverse sources. Despite its
remarkable capabilities, CogView does have limitations. The model
demands substantial computational resources for training owing to its
expansive parameter size. Similar to numerous text-to-image models,
it encounters challenges with intricate or ambiguous text prompts,
leading to less precise image generation. Additionally, dependence
on extensive datasets can introduce biases within the training data,
impacting the variety and impartiality of the generated images.
CogView2 [42] used a sophisticated Transformer architecture to
quickly generate high-quality images from text. The model begins by
producing low-resolution images and then progressively refines them
using super-resolution modules, ensuring detailed and consistent
results. With a foundation built on a 6-billion-parameter Transformer,
the model is trained on diverse datasets of text-image pairs, allowing it
to handle tasks such as text-to-image generation, image infilling, and
captioning in multiple languages. Nevertheless, CogView2 requires
substantial computational resources and careful tuning to balance
local and global coherence in the generated images.

Diffusion models. This is one of the topics that has attracted the
most researchers. Latent Diffusion Models (LDMs) [43] are a major step
forward in high-resolution image synthesis, see Fig. 4. They achieve
this by using diffusion models within the latent space of pre-trained
autoencoders. This reduces the computational requirements typically
associated with diffusion models operating in pixel space while
maintaining high visual fidelity. Incorporating cross-attention layers
within the UNet backbone is a significant advancement in LDMs. It
enables the generation of high-quality outputs based on various
input conditions, such as text prompts and bounding boxes. This
architecture supports high-resolution synthesis using a convolutional
approach. The model is trained to predict a less noisy version of the
latent variable by focusing on essential semantic features rather than
on high-frequency details that are often imperceptible.
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Fig. 4. Latent Diffusion Models architecture from Rombach et al. [43].
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Anton et al. [44] present a new method for synthesizing images
from a text by combining image-prior models with latent diffusion
techniques. The model utilizes CLIP to map text embeddings to image
embeddings and incorporates a modified MoVQ implementation as
the image autoencoder. After training on the COCO-30K dataset,
Kandinsky achieves high-quality image generation with a competitive
FID score. Despite the need for further improvements in the
semantic coherence between text and generated images, Kandinsky’s
versatility in supporting text-to-image generation, image fusion, and
inpainting represents a significant advancement in Al-driven image
synthesis. EmoGen [45] marks a significant leap forward in text-to-
image models. It centers on producing images that capture distinct
emotions, solving the difficulty of linking abstract emotions with
visual representations. This model excels at creating images that are
semantically clear and resonate emotionally. It accomplishes this
by aligning the emotion-specific space with the powerful semantic
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capabilities of the CLIP model. This alignment is established through
a mapping network that interprets abstract emotions into concrete
semantics, guaranteeing that the generated images faithfully reflect
the intended emotional tones. The model has undergone training and
validation using EmoSet, a comprehensive visual emotion dataset
with detailed attribute annotations, aiding in optimizing the model
for diverse and emotionally accurate image generation. Despite its
advancements, EmoGen faces challenges akin to other generative
models, including reliance on potentially biased large datasets and the
substantial computational resources needed for training and inference,
limiting its accessibility and applicability across different research
groups and practical uses.

Latent Diffusion Models (LDMs) also have their limitations. One
significant challenge is the use of large-scale, often uncurated datasets,
which can introduce biases and ethical concerns. While LDMs are
more computationally efficient than traditional pixel-based diffusion
models, they still require substantial computational resources for
training and inference, which may be prohibitive for smaller research
groups. LDMs also struggle with generating realistic images of people,
leading to lower preference rates in evaluations. Additionally, these
models can reflect societal biases, highlighting the importance of
robust bias mitigation strategies and the need for more ethically curated
datasets in future research. Hang Li et al. [46] present an innovative
approach focusing on the ethical implications of Al-generated content
and introduce a self-supervised method for identifying interpretable
latent directions within diffusion models. The objective is to mitigate
the generation of inappropriate or biased images, thus enhancing
control over the generated images and ensuring they align with
ethical standards while avoiding perpetuating harmful stereotypes.
The model has been trained on diverse datasets, allowing it to handle
a broad scope of concepts sensitively and responsibly. However, the
extensive reliance on datasets may introduce potential biases, while
the high computational demand for processing these datasets presents
challenges for accessibility and scalability.

Some researchers have chosen to combine the CLIP model with
diffusion models. For example, Nichol et al. [2] introduced GLIDE,
a text-to-image diffusion model that replaces class labels with text
prompts. It uses classifier guidance, with a CLIP model in noisy
image space, and classifier-free guidance [47], which integrates text
features directly into the diffusion process. GLIDE’s 3.5B parameter
model encodes text through a transformer to generate high-quality
images. While effective in photorealism and caption alignment,
GLIDE struggles with complex prompts and requires substantial
computational power. Ramesh et al. [1] introduced DALL-E 2, a model
leveraging CLIP and diffusion techniques for generating realistic
images from text descriptions. DALL-E 2 operates in two stages:
a prior model creates a CLIP image embedding from text, followed
by a diffusion-based decoder that generates the final image. This
architecture ensures both diversity and realism in the output. The
model’s use of CLIP embeddings captures semantic and stylistic
nuances, enabling high-quality image generation and manipulation.
Although trained on a vast dataset, DALL-E 2 faces challenges with
complex prompts and fine-grained attribute accuracy, highlighting
areas for further improvement.

Furthermore, Podell et al. [48] developed SDXL, which is a major
step forward in high-resolution image synthesis, expanding on the
foundational work of Stable Diffusion models. It utilizes a significantly
larger UNet backbone, about three times larger than its predecessors,
with more attention blocks and a larger cross-attention context. This
enhanced architecture enables SDXL to tackle complex text-to-image
synthesis tasks effectively. Additionally, SDXL incorporates multiple
innovative conditioning schemes and is trained on various aspect
ratios, enhancing its versatility in producing images of different

resolutions and aspect ratios. Firstly, it generates initial 128x128
latents. Then, a specialized high-resolution refinement model is
applied to improve these latents to higher resolutions. The SDXL
training involved utilising an improved autoencoder from previous
Stable Diffusion versions. It exceeded its predecessors in all assessed
reconstruction metrics, ensuring improved local and high-frequency
details in the generated images. The final training stage included
multi-aspect training with different aspect ratios, further boosting the
model’s capabilities. Despite its progress, SDXL has some limitations.
The model’s reliance on large-scale datasets can lead to biases and
ethical concerns due to potentially inappropriate content such as
pornographic images, racist language, and harmful social stereotypes.
SDXL also struggles to create realistic images of people, often resulting
in lower preference rates. Furthermore, the model perpetuates existing
social biases, favouring lighter skin tones. Xue et al. [49] presents
Raphael, an innovative method for generating images from text.
It aims to create highly artistic images that closely match complex
textual prompts. The model stands out for its mixture-of-experts
(MoEs) layers, incorporating both space-MoE and time-MoE layers,
allowing for billions of unique diffusion paths. This distinct approach
enables each path to function as a "painter,' translating individual
parts of the text into corresponding image segments with high fidelity.
RAPHAEL has outperformed other state-of-the-art models like Stable
Diffusion and DALL-E 2. It excels in generating images across diverse
styles, such as Japanese comics and cyberpunk, and has achieved
impressively low zero-shot FID scores on the COCO dataset. Training
on a combination of a subset of LAION-5B and some internal datasets
has ensured a broad and diverse range of training images and text for
RAPHAEL.

Several tools based on diffusion models have also emerged, such as
the following:

« Imagen2 [50]: this model can generate realistic images by
improving the way it pairs images with captions in its training
data. The model is adept at understanding context and can edit
images, including inpainting and outpainting. It also offers
style conditioning, allowing for the use of reference images to
guide style adherence, providing greater flexibility and control.
However, it struggles with complex object placement and specific
detail generation, and there is a possibility of biased content,
so safety measures are essential. Trained on a large and diverse
dataset, Imagen2 achieves high-quality, contextually aligned
image generation.

« Dall-E3 [51]: has made significant strides in text-to-image
generation through the use of improved image captions to enhance
prompt following. By developing a custom image captioner
to generate detailed, synthetic captions, the model has greatly
improved its ability to follow prompts, coherence, and the overall
aesthetics of the generated images. However, DALL-E 3 still
grapples with issues such as spatial awareness, object placement,
unreliable text rendering, and the tendency to hallucinate specific
details like plant species or bird types. The model’s training
consists of a mix of 95% synthetic captions and 5% ground truth
captions, which helps regulate inputs and prevent overfitting.
This thorough training process allows DALL-E 3 to produce high-
quality images with improved prompt following and coherence.

As we have seen in this section, we have analysed the different
approaches that are currently being researched within the domain of
text-to-image synthesis. The most commonly used techniques have
been GANSs, Transformers, Diffusion Models and the CLIP model. This
shows that there are a large number of synthetic image generation
techniques that will allow the creation of large datasets created with
many different techniques. This will allow the creation of detection
models that are able to generalise better to real situations.
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2. Image-to-Image Translation

Recent advances in image-to-image translation have introduced
several cutting-edge models that enhance generated images’ quality,
efficiency, and versatility.

Computer vision is one of the most important fields where GANs
are applied, and realistic image generation is the most widely used
application of these techniques. For example, Augmented CycleGAN
[52] builds on the traditional CycleGAN architecture to handle
more complex image-to-image translation tasks, improving domain
adaptation, style transfer, and reducing artifacts. DualGAN++
[53] introduces advanced regularization techniques and optimized
training strategies, resulting in higher fidelity and fewer distortions
in synthetic images. CUT++ [54] refines the original CUT model
with contrastive learning techniques and enhanced loss functions for
generating higher-quality synthetic images, especially in scenarios
with limited data availability. SPADE++ [55] incorporates new
strategies for better handling spatial inconsistencies and enhancing
the realism of high-resolution synthetic images, particularly effective
for images with complex structures. SSIT-GAN [56] leverages self-
supervised learning techniques to generate high-quality synthetic
images with self-supervised loss functions, useful for applications with
limited annotated data. UMGAN [57] proposes a unified approach for
multimodal image-to-image translation, enabling the generation of
diverse synthetic images from multiple input modalities across various
applications. Zero-shot GANs [58] aim to generate images without
extensive labelled data, enhancing the zero-shot learning capabilities
of GANs. This approach allows for the creation of diverse and high-
quality images even with minimal training data.

Recent advancements in GAN-based synthetic image generation
have been focused on enhancing image quality, efficiency, and
usability across different domains. StyleGAN3 tackles the issue of
"texture sticking" in generated images by introducing architectural
revisions to eliminate aliasing, ensuring that image details move
naturally with depicted objects. The new design interprets all signals
continuously, achieving full equivariance to translation and rotation
at subpixel scales. This results in images that maintain the high
quality of StyleGAN2 but with improved internal representations,
making StyleGAN3 more suitable for video and animation generation.
The model was trained using high-quality datasets such as FFHQ,
METFACES, AFHQ, and a newly collected BEACHES dataset.
However, the architecture assumes specific characteristics of the
training data, which can lead to challenges when these assumptions
are not met, such as with aliased or low-quality images. Additionally,
further improvements might be possible by making the discriminator
equivariant and finding ways to reintroduce noise inputs without
compromising equivariance [59], [60]. EfficientGAN [61] focuses
on optimizing computational efficiency while maintaining high-
quality image generation. This model aims to reduce the resource
requirements for training GANs without compromising the generated
images’ visual quality. It introduces novel architectural modifications
and training strategies that balance performance and efficiency.

Other authors have explored how to combine GANs with
other types of techniques such as Latent Diffusion Models, which
combine GANs with diffusion models to achieve high-resolution
image synthesis. The integration of latent diffusion models helps in
generating detailed and high-quality images while maintaining the
robustness of GANs [62]. In contrast, Torbunov et al. [63] chose to
combine them with Transformers. They introduced UVCGAN, an
advanced model designed for image-to-image translation, focusing on
synthetic image generation. This model improves upon the traditional
CycleGAN framework by integrating a Vision Transformer (ViT)
into the generator, enhancing its ability to learn non-local patterns.
UVCGAN is highly effective for unpaired image-to-image translation

tasks, making it a valuable tool for applications in fields such as art,
design, and scientific simulations. ViT enables more complex and
nuanced image transformations, pushing the boundaries of synthetic
image generation possibilities.

Recently, significant developments have been made in Variational
Autoencoders (VAEs) for synthetic image generation. These
advancements have resulted in the creation of innovative models
that enhance the quality, efficiency, and versatility of the images
generated. For instance, Conditional VAEs [64] have improved
inpainting results and training efficiency by utilizing pre-trained
weights and datasets such as CIFAR-10, ImageNet, and FFHQ. VQ-
VAE-2 employs hierarchical latent representations to capture high-
resolution details, leading to a notable improvement in image fidelity
and diversity [65]. NVAE [66], with its hierarchical architecture and
advanced regularization techniques, has enabled high-resolution,
realistic image generation. Another example is StyleVAE [67], which
integrates VAEs with style transfer techniques to produce visually
appealing images with stylistic consistency. Additionally, FHVAE
has enhanced the disentanglement of latent factors, allowing for
better control over image attributes [68]. EndoVAE [69], developed by
Diamantis et al., introduces a fresh approach for producing synthetic
endoscopic images using a Variational Autoencoder (VAE). This novel
technique addresses the drawbacks of traditional GAN-based models,
particularly in the domain of medical imaging where maintaining data
privacy and diversity is crucial. EndoVAE is specifically designed to
generate a diverse set of high-quality synthetic images, which can
be used in lieu of real endoscopic images. This aids in the training
of machine learning models for medical diagnosis. The outcomes
illustrate that EndoVAE adeptly creates realistic endoscopic images,
positioning it as a promising tool for advancing medical image
analysis and circumventing the challenges stemming from limited
data availability.

Furthermore, Dos Santos et al. [70] have introduced a Synthetic
Data Generation System (SDGS) that utilizes Variational Autoencoders
(VAEs) to produce synthetic images. Their system aims to automate
the creation of synthetic datasets by using the Linked Data (LD)
paradigm to collect and merge data from multiple repositories.
The SDGS framework incorporates advanced feature engineering
methods to enhance the quality of the dataset before training the
VAE model. This results in synthetic images that closely mimic real-
world data, making them extremely useful for training machine
learning models, especially in scenarios where actual data is scarce.
The system’s efficacy has been confirmed through various case
studies, demonstrating that the generated synthetic data achieves
high accuracy and closely resembles the original datasets in crucial
characteristics. Seunghwan et al. [71] have introduced a new method
for creating synthetic data using Variational Autoencoders (VAEs).
Their approach overcomes the limitations of the typical Gaussian
assumption in VAEs by incorporating an infinite mixture of asymmetric
Laplace distributions in the decoder. This advancement provides
more flexibility in capturing the underlying data distribution, which
is crucial for generating high-quality synthetic data. Their model,
known as "DistVAE," has demonstrated exceptional performance in
generating synthetic datasets that maintain statistical similarity to the
original data and also ensures privacy preservation. The effectiveness
of the approach was confirmed through experiments on various real-
world tabular datasets, indicating that DistVAE can generate accurate
synthetic data while allowing for adjustable privacy levels through a
tunable parameter. This makes it particularly valuable in situations
where data privacy is a concern.

Finally, we can see how the use of diffusion models in image-
to-image translation is also beginning to be explored. For example,
Parmar et al. [72] proposed pix2pix-zero, a method for image-to-image
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TABLE III. OVERVIEW OF TECHNIQUES FOR DETECTING AI-GENERATED IMAGES

Authors Year Technique Target Outcome Data Used Open Source
Shiohara et al. [19] 2022 Self-blended images Detect fake or synthetic images Self-blended image data Yes
Wang et al. [79] 2023 lefus.lon Detect difusion model-generated images DiffusionForensics dataset Yes
Reconstruction Error
Ma et al. [80] 2023 Det'e}‘mlnlstlc reveirse and Detect images from difusién models CIFAR-IO, TinyImageNet, Yes
denoising computation errors CelebA
Zhong et al. [78] 2023 Texture patch analysis Identify Al-generated images Datasets frr?::: dgsgeneratlve Yes
. Intrinsic Dimensionality- Detect artificial images from deep diffusion ~ CiFake, ArtiFact, DiffusionDB,
lorenz et al. [82] 2023 based models LAION-5B, SAC yes
Alzantot et al. [77] 2023 Wavelet-packet re.presentatlon Differentiate real and synthetic images FFHOQ, CelebA., LSUN, Face Yes
analysis Forensics++
Poredi et al. [75] 2023 Frequency analysis Identify Al-generated images on social media Stanford image dataset Yes
Bammey et al. [76] 2023  Frequency artifacts analysis ~ Detect images generated by diffusion models ~ Raise and Dresden datasets Yes
Guarnera et al. [83] 2023 Hierarchical classification Identify deepfake images CelebA, FFHQ, ImageNet Yes
Ojha et al. [85] 2023  Universal fake image detector Enhance detection of synthetic or fake images Images genr::lroaézi by various Yes
- ixel-level Di ith real
Mathys et al. [86] 2024 CNN-based p eeve Identify synthetic images rverse datas#t Wlt real and No
analysis synthetic images
Coccomini et al. [84] 2024 Visual and 'te'xtu'al feature Detect synthetic images from diffusion MSCOCO and Wikimedia Yes
classification models datasets
P I i
Tan et al. [87] 2024 Category pommon rompt Enhance detection of deepfakes mages generated by various Yes
in CLIP models
Sinitsa et al. [74] 2024 Fingerprint-based Detect synthetic fri)adgeelz with low-budget Various models datasets Yes
Keita et al. [55] 2024 Vision-language model with ~ Detect synthetic images using vision-language Various datasets Yes

dual LORA mechanism

model

translation without relying on text prompts or additional training. This
approach utilizes cross-attention guidance to maintain image structure
and automatically discovers editing directions in the text embedding
space. The architecture leverages pre-trained Stable Diffusion models
for tasks like object type changes and style transformations. The
model’s performance is assessed using real and synthetic images from
the LAION 5B dataset. However, some limitations include the low
resolution of the cross-attention map for fine details and challenges
with atypical poses and fine-grained edits.

In this section we have analysed the latest work in the field of
Image-to-Image translation, focusing on image alterations while
maintaining some visual features. Within this domain we have looked
at three main approaches: GANs, AutoEncoders and diffusion models.
We can observe that this domain although it has been widely explored,
still presents a wide range of possibilities.

B. Detection of AI-Generated Images

The development of generative models requires the creation of
detection models to differentiate between Al-generated and real
images. Detection methods can be split into two main types: those
focused solely on improving detection performance and those that
enhance detectors with additional features such as generalizability,
robustness, and interpretability while maintaining accurate and
effective detection capabilities. An overview of techniques for
detecting Al-generated images is provided in Table III, summarizing
various methods and their key features, including the application areas
and datasets used. For example, the Deep Image Fingerprint (DIF) [74]
method is specifically designed to detect low-budget synthetic images.
It can identify images generated by both Generative Adversarial
Networks (GANs) and Latent Text-to-Image Models (LTIMs). The
method utilizes datasets from various models, including CycleGAN,

ProGAN, BigGAN, StyleGAN, Stable Diffusion, DALL-E-2, and GLIDE,
and achieves high detection accuracy with minimal training samples.
While it excels in detecting synthetic images, it may encounter some
challenges with models like GLIDE and DALL-E-2 due to their weaker,
less distinct fingerprints.

Some authors still opt for more traditional techniques, such as
the Fourier Transform for the detection of artefacts left in the
image samples. For example, the AUSOME (AUthenticating SOcial
MEdia) [75] method is focused on identifying Al-generated images
on social media. It achieves this by utilizing frequency analysis
techniques, such as the Discrete Fourier Transform (DFT) and
Discrete Cosine Transform (DCT), to compare the spectral features
of Al-generated images, like those produced by DALL-E 2, with
legitimate images from the Stanford image dataset. AUSOME can
distinguish between Al-generated and real images by examining
differences in frequency responses. Although it demonstrates high
accuracy, it may encounter difficulties when dealing with images
where semantic content is essential for determining authenticity.
Nevertheless, this method presents a promising approach for
verifying social media images, particularly in light of the increasing
prevalence of Al-generated content. Synthbuster [76] is a technique
developed to identify images created by diffusion models by
analyzing frequency artifacts in the Fourier transform of residual
images. This method is effective at spotting synthetic images, even
when they are slightly compressed in JPEG format, and it works
well with unknown models. It analyzes real images from the RAISE
and Dresden datasets and synthetic images from various models
such as Stable Diffusion, Midjourney, Adobe Firefly, DALL-E 2,
and DALL-E 3. While Synthbuster is generally effective, it may
encounter challenges when dealing with different compression
levels and diverse image categories.
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Other authors focus on taking advantage of textures, in order
to exploit all available information. For instance, Alzantot et al. [77]
proposed multi-scale wavelet-packet representations. Their deepfake
image analysis and detection technique aims to differentiate real
from synthetic images by analyzing their spatial and frequency
information. This method has undergone evaluation using various
datasets, including FFHQ, CelebA, LSUN, and FaceForensics++. It has
shown strong capabilities in identifying GAN-generated images, such
as those created by StyleGAN. However, it may face challenges when
analyzing complex images where semantic information is crucial,
and its effectiveness may be limited to the detection of image-based
synthetic media. PatchCraft [78] introduces a fresh approach to
identifying synthetic Al-generated images. Instead of relying solely
on global semantic information, this method focuses on analyzing
texture patches within the images for more effective detection. To
enhance detection, the method employs a preprocessing step called
Smash&Reconstruction, which removes global semantic details and
amplifies texture patches, thereby utilizing the contrast between rich
and poor texture regions to boost performance. Tested on datasets
from 17 common generative models, including ProGAN, StyleGAN,
BigGAN, CycleGAN, ADM, Glide, and Stable Diffusion, the method
has shown superior adaptability and resilience against previously
unseen models and image distortions. Nevertheless, it may encounter
challenges when dealing with images in which semantic information
is critical for accurate detection.

An analysis on the error inserted in generated images has also
been a productive research line. For example, the DIRE (Dlffusion
REconstruction Error) [79] method is utilized to identify images
created through diffusion processes by comparing the reconstruction
error between an original image and its reconstructed version using a
pre-trained diffusion model. This technique is based on the idea that
diffusion-generated images can be accurately reconstructed using
diffusion models, unlike genuine images. DIRE has been evaluated
using the DiffusionForensics dataset, encompassing images from
various diffusion models, including ADM, DDPM, and iDDPM.
It has demonstrated notable accuracy in detecting images and is
resilient to unseen diffusion models and alterations. Nonetheless, it
may encounter difficulties with the intricate features of real images.
Shiohara et al. [19] has introduced an innovative approach for
detecting fake or synthetic images, specifically deepfakes. They utilize
self-blended images (SBIs) as synthetic training data to enhance the
robustness of detection models. This allows the models to effectively
identify various types of deepfake manipulations by scrutinizing
inconsistencies and artifacts in the images. Consequently, this method
provides a robust tool for preserving the authenticity of digital
media in the face of increasingly advanced generative techniques.
The SeDID [80] method utilizes deterministic reverse and denoising
computation errors found in diffusion models. This approach includes
two branches: the statistical-based SeDIDStat and the neural network-
based SeDIDNNs. SeDID was evaluated on various datasets like
CIFAR-10, TinyImageNet, and CelebA and demonstrated superior
detection accuracy and robustness against unseen diffusion models
and perturbations. However, the method may encounter challenges
when dealing with the complex features of real images. Nevertheless,
SeDID underscores the importance of selecting the optimal timestep to
enhance detection performance.

As expected, another approach widely used by state-of-the-
art researchers is Convolutional Neural Networks, which have
demonstrated excellent performance on numerous similar classification
problems [81], making it one of the most explored techniques. Some
authors continue to rely on classical architectures such as ResNet. It
continues to perform competitively on many classification problems.
Among them, The multi-local Intrinsic Dimensionality (multiLID)

[82] method is developed to identify artificial images produced
by deep diffusion models. This method utilizes the local intrinsic
dimensionality of feature maps extracted by an untrained ResNet18,
making it efficient and not relying on pre-trained models. It has been
evaluated on various datasets like CiFake, ArtiFact, DiffusionDB,
LAION-5B, and SAC, demonstrating high accuracy in detecting
artificial images from models including Glide, DDPM, Latent Diffusion,
Palette, and Stable Diffusion. However, multiLID may have limitations
in its ability to perform well on unfamiliar data from different datasets
or models within the same domain. Guarnera et al. [83] developed a
hierarchical multi-level approach for detection and identification of
deepfake images produced by GANs and Diffusion Models (DMs).
This method utilizes ResNet-34 models at three levels of classification:
distinguishing genuine images from Al-generated ones, discerning
between GANs and DMs, and identifying specific Al architectures.
Their dataset comprises authentic images from CelebA, FFHQ, and
ImageNet, as well as synthetic images from nine GAN models (e.g.,
AttGAN, CycleGAN, ProGAN, StyleGAN, StyleGAN2) and four
diffusion models (e.g., DALL-E 2, GLIDE, Latent Diffusion), totalling
42,500 synthetic and 40,500 real images. With an accuracy of over 97%,
the method demonstrates strong performance, but it may encounter
challenges related to real-world robustness, such as JPEG compression
and complex image features.

However, other authors have opted for different architectures
rather than CNNs. Coccomini et al. [84] investigate the detection of
synthetic images generated by diffusion models, such as those created
with Stable Diffusion and GLIDE. Their approach involves using
classifiers like multi-layer perceptrons (MLPs) and convolutional
neural networks (CNNs) to distinguish synthetic images from real
ones. The model is trained on datasets like MSCOCO and Wikimedia,
focusing on leveraging visual and textual features for effective
detection. A notable limitation of the study is the challenge of cross-
method generalization, where models trained on one type of synthetic
image struggle to detect images generated by different methods. This
work underscores the complexities of detecting Al-generated images,
particularly as diffusion models become more sophisticated. Ojha et al.
[85] have introduced a method to enhance the detection of synthetic
or fake images generated by various models, including GANs and
diffusion models. Their approach aims to create a universal fake image
detector that performs well across different generative models. This
is achieved through a combination of convolutional neural networks
(CNNs) and advanced training techniques to identify subtle anomalies
commonly found in Al-generated images. The model is trained on
diverse datasets, incorporating images generated by various models
to improve its reliability. However, the study highlights a challenge in
maintaining high detection accuracy when faced with new generative
models not included in the training set, indicating the need for further
improvements to achieve universal detection capabilities. Mathys et al.
[86] present a method for identifying synthetic images produced by Al
models. The focus is on spotting subtle artifacts and inconsistencies
that are indicative of Al-generated content. Their proposed architecture
utilizes a convolutional neural network to scrutinize pixel-level details
and capture the distinct markers left by generative models. Training
the model on a diverse dataset containing both real and synthetic
images from various sources makes it adept at generalizing across
different types of Al-generated content. This method significantly
boosts the accuracy of detecting fake images, effectively tackling
the challenges brought about by the increasingly lifelike outputs of
modern generative models. This research holds particular significance
in upholding the authenticity and integrity of digital content in an age
where synthetic media is increasingly prevalent.

Lastly, we will analyse some research that has chosen other novel
approaches such as the use of models like CLIP or vision-language
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models. Tan et al [87] introduce C2P-CLIP, a novel approach
designed to enhance the detection of Al-generated images, specifically
deepfakes, by injecting a Category Common Prompt (C2P) into the
CLIP model. CLIP (Contrastive Language-Image Pre-training) is a
powerful model trained on various image-text pairs, which allows
it to understand and match images and text descriptions effectively.
However, its application to deepfake detection has been limited by
its generalization capability across different types of manipulations.
The C2P-CLIP method addresses this limitation by incorporating a
category-specific prompt that captures standard features across related
deepfakes, improving the model’s ability to generalize beyond the
specific types of manipulations seen during training. This technique
leverages the extensive pre-training of CLIP while fine-tuning its
capacity to identify subtle inconsistencies and artifacts introduced by
deepfake generation techniques. Through comprehensive experiments,
the authors demonstrate that C2P-CLIP significantly outperforms
existing methods on several benchmark datasets, showing superior
performance in detecting a wide range of Al-generated manipulations.
Keita et al. [88] present Bi-LORA, a vision-language approach designed
to detect synthetic images. Bi-LORA effectively captures the unique
features and artefacts of Al-generated images by leveraging a dual Low-
Rank Adaptation (LORA) mechanism within a vision-language model.
The method integrates visual and textual information, enhancing
its ability to differentiate between real and synthetic content more
accurately. Through extensive experiments, Bi-LORA demonstrates
significant improvements in detection performance over traditional
methods, highlighting its potential as a robust tool for identifying AI-
generated images across various datasets.

Lastly, we have analysed the most recent research into the detection
of synthetic image. This field is highly dependent on the previous
one, as quality datasets will be needed, i.e. with intra-class variability,
enough quality and resolution, and representativeness, allowing the
creation of models that can be used in real situations. In this domain
we have seen that the main approaches explored by researchers are
CNNs, and vision-language models, although other more traditional
approaches are still used.

IV. ViIDEo GENERATION AND DETECTION

In recent years, the field of video generation has attracted
significant attention, due to advancements in artificial intelligence,
machine learning, and the emergence of diffusion models (see Fig. 5),
this has forced researchers to develop new techniques to detect these
synthetic samples. This section provides an overview of the current
state of video generation methods, which are increasingly being used
to create high-quality, realistic videos across different applications.
Additionally, it explores the challenges and methods associated with
detecting Al-generated videos, an area of growing importance as
these technologies become more sophisticated. The aim of this section

is to provide a comprehensive understanding of the methods and
techniques involved in future video content creation and analysis.

A. Video Generation

In video content creation, generative models are beginning to
revolutionize productionand consumptionby automating the generation
of realistic and high-quality videos. Recently, a surge of generative
video models capable of various video creation tasks has emerged. In
this section we are going to analyse five different approaches: Text-to-
video, deep learning techniques that generate synthetic video samples
from text descriptions; image-to-video techniques that transform static
images to dynamic video; video-to-video, a set of techniques focused
on the generation of realistic video sequences by transforming or
translating visual information from one video domain to another; Text-
Image-to-Video which generates synthetic video samples from a real
image and a text description; Multimodal video generation, this field
focuses not only on the generation of the visual part of the video but
also on the audio part of the video, from different inputs, such as text,
image, video or audio. Deep learning-based generative models such as
GANS, Variational Autoencoders (VAEs), autoregressive, and diffusion-
based models have remarkably succeeded in generating realistic and
diverse content. By training on large datasets, these models learn
the underlying data distribution, enabling them to generate samples
that closely resemble the original data. Fig. 6 illustrates the various
categories of video generation.
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Fig. 6. Categories of video generation methods.

1. Text-to-Video Synthesis

Generating photo-realistic videos presents significant challenges,
particularly when it comes to maintaining high fidelity and continuity
of motion over extended sequences. Despite these difficulties, recent
advancements have utilized diffusion models to enhance the realism of
video generation. Text, being a highly intuitive and informative form
of instruction, has become a central tool in guiding video synthesis,
leading to the development of Text-to-video (T2V) generation
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models. This approach focuses on creating high-quality videos based
on text descriptions, acting as a conditional input for the video
generation process.

To address the challenges in text-to-video synthesis, existing
methods primarily extend Text-to-image models by incorporating
temporal modules, such as temporal convolutions and temporal
attention, to establish temporal correlations between video frames.
A notable example is the work by Ho et al. [89], who introduced
Video Diffusion Models (VDM). This model extends text-to-image
diffusion models to video generation by training jointly on both
image and video data. Their approach utilizes a U-Net-based
architecture, which integrates joint image-video denoising losses,
ensuring temporal coherence by conditioning on both past and
future frames, thus resulting in smoother transitions and more
consistent motion. Building on this foundation, Ho et al. [90]
proposed Imagen Video, a novel approach for generating high-
definition videos using diffusion models. Imagen Video employs
a cascaded video diffusion model approach, adapting techniques
from text-to-image generation, such as a frozen T5 text encoder and
classifier-free guidance, to the video domain. It uses a hierarchical
approach, beginning with a low-resolution video to capture the
overall structure and motion, which is then progressively refined to
higher resolutions. Temporal dynamics are managed by conditioning
each frame on previous frames, ensuring consistency throughout
the video. Super-resolution techniques are subsequently applied to
enhance the detail and quality of each frame.

In a different approach, Singer et al. [91] introduced Make-A-Video,
which generates videos from textual descriptions without relying
on paired text-video data. This methodology builds upon a text-to-
image synthesis model and incorporates spatio-temporal layers to
extend it into the video domain. The approach integrates pseudo-3D
convolutional and attention layers to manage spatial and temporal
dimensions efficiently. Additionally, super-resolution networks
are employed to improve visual quality, and a frame interpolation
network is used to increase the frame rate and smooth out the
video output. Meanwhile, Zhou et al. [92] presented MagicVideo, a
framework designed to generate high-quality video clips from textual
descriptions. Instead of directly modeling the video in visual space,
MagicVideo leverages a pre-trained Variational autoencoder (VAE)
to map video clips into a low-dimensional latent space, where the
distribution of videos’ latent codes is learned via a diffusion model.
This approach optimizes computational efficiency and improves video
synthesis by performing the diffusion process in the latent space.
Further pushing the boundaries of video generation, Dan Kondratyuk
et al. [5] proposed VideoPoet, an advanced language model for zero-
shot video generation. This model integrates the MAGVIT-v2 [93]
tokenizer for images and videos and the SoundStream [94] tokenizer
for audio, enabling the processing and generation of multimedia
content within a unified framework. VideoPoet employs a prefix
language model with a decoder-only architecture as its backbone,
facilitating the creation of high-quality videos from textual prompts,
along with interactive editing capabilities. VideoPoet is trained on a
diverse set of tasks without needing paired video-text data, allowing it
to learn effectively from video-only examples. It can generate videos
based on textual descriptions, animate static images, apply styles [95]
to videos through optical flow and depth prediction, and even extend
video sequences by iteratively predicting subsequent frames.

In another innovative approach, Girdhar et al. [96] introduced
EMU VIDEO, a two-stages Text-to-video generation model: first,
it generates an image from text, and then it produces a video using
both the text and the generated image. This method simplifies video
prediction by leveraging a pretrained text-to-image model and freezing
spatial layers while adding new temporal layers for video generation.

EMU VIDEO efficiently achieves high-resolution video generation,
maintaining the conceptual and stylistic diversity learned from large
image-text datasets. Similarly, Wang et al. [97] proposed LaVie, a
cascaded framework for Video Latent Diffusion Models (V-LDMs)
conditioned on text descriptions. LaVie is composed of three networks:
a base T2V model for generating short, low-resolution key frames,
a Temporal interpolation (TI) model for increasing the frame rate
and enriching temporal details, and a Video super-resolution model
(VSR) for enhancing the visual quality and spatial resolution of the
videos. The base T2V model modifies the original 2D UNet to handle
spatio-temporal distributions and utilizes joint fine-tuning with both
image and video data to prevent catastrophic forgetting, resulting in
significant video quality improvements. The TI model uses a diffusion
UNet to synthesize new frames, enhancing video smoothness and
coherence, while the VSR model adapts a pre-trained image upscaler
with additional temporal layers, enabling efficient training and high-
quality video generation.

Further developments include the work by Menapace et al. [98],
who proposed a method to generate high-resolution videos by
modifying the Efficient diffusion model (EDM) [99] framework
for high-dimensional inputs and developing a scalable transformer
architecture inspired by Far-reaching interleaved transformerss (FITs)
[100]. They adjust the EDM framework to handle high SNR in videos
with a scaling factor for optimal denoising. This method addresses the
scarcity of captioned video data by jointly training the model on both
images and videos, allowing for more effective learning of temporal
dynamics. The video generation uses FITs, transformer models that
reduce complexity by compressing inputs with learnable latent tokens
and employing cross-attention and self-attention to focus on spatial
and temporal information. The approach includes conditioning
tokens for text and metadata and uses a cascade model: the first stage
generates low-resolution videos, and the second stage refines them
into high-resolution outputs. During training, variable noise levels are
introduced to the second-stage inputs to improve upsampling quality,
aiming for effective high-quality video generation. In addressing
data scarcity, Chen et al. [101] designed VideoCrafter2, a model that
improves spatio-temporal consistency in video diffusion models
through a data-level disentanglement strategy. This approach separates
motion aspects from appearance features, leveraging low-quality
videos for motion learning and high-quality images for appearance
learning. This design strategy eases a targeted fine-tuning process
with high quality images, with the aim of significantly increasing the
visual fidelity of the generated content without compromising the
precision of motion dynamics. Importantly, synthetic images with
complex concepts are used for finetuning, rather than real images, to
enhance the concept composition ability of video models.

Furthermore, Ma et al. [102] introduced Latte, a simple and general
video diffusion method that extends Latent diffusion models
(LDMs) for video generation by employing a series of transformer
blocks to process latent space representations of video data obtained
from a pre-trained variational autoencoder. Latte specifically
addresses the inherent disparities between spatial and temporal
information in videos by decomposing these dimensions, allowing
for more efficient processing. The method includes four efficient
Transformer-based model variants, designed to manage the large
number of tokens extracted from input videos, thereby improving the
overall performance and scalability of video generation. Li ef al. [103]
introduced VideoGen, a text-to-video generation method that produces
high-definition videos with strong frame fidelity and temporal
consistency using reference-guided latent diffusion. In their approach,
an off-the-shelf T2I model like Stable diffusion (SD) generates a high-
quality image from a text prompt, which then serves as a reference
for video generation. This process involves a cascaded latent diffusion
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module conditioned on both the reference image and text prompt,
followed by a flow-based temporal upsampling step that enhances
temporal resolution. Finally, a video decoder maps the latent video
representations into high-definition videos, improving visual fidelity
and reducing artifacts while focusing on learning video dynamics.
The training process benefits from high-quality unlabeled video data,
using the first frame of a ground-truth video as the reference image to
enhance motion smoothness and realism.

Building on the VQ-VAE architecture, Godiva et al [104]
proposed GODIVA, an open-domain text-to-video model pre-trained
on the HowTol00M [105] dataset. This model generates videos
in an auto-regressive manner using a three-dimensional sparse
attention mechanism. Initially, a VQ-VAE auto-encoder represents
continuous video pixels as discrete video tokens. Subsequently, the
three-dimensional sparse attention model utilizes language input
alongside these discrete video tokens to generate videos, effectively
considering temporal, column, and row information. Similarly,
Ding et al. [106] advanced the field by introducing CogVideo, a
9B-parameter transformer built upon the pretrained text-to-image
model CogView2 [42] for video generation. CogVideo employs a
multi-frame-rate hierarchical training strategy, which aligns text with
video clips by controlling frame generation intensity and ensuring
accurate alignment between text and video content. This is achieved
by prepending text prompts with frame rate descriptions, which
significantly enhances generation accuracy, particularly for complex
semantic movements. Additionally, CogVideo’s dual-channel attention
mechanism improves the coherence of generated videos by focusing
on both textual and visual cues simultaneously. This approach allows
CogVideo to efficiently adapt a pretrained model for video synthesis
without the need for costly full retraining.

Expanding on the capabilities of earlier models, Wu et al. [107]
developed NUWA, a unified multimodal pre-trained model
designed for generating and manipulating visual data, including images
and videos, across various visual synthesis tasks. NUWA utilizes a 3D
transformer encoder-decoder framework to process 1D text, 2D
images, and 3D videos. This model introduces a 3D nearby attention
(3DNA) mechanism that efficiently handles visual data, reduces
computational complexity, and enables high-quality synthesis with
notable zero-shot capabilities. Further advancing this work, Wu et al.
[108] introduced NUWA-Infinity, a groundbreaking model for infinite
visual synthesis capable of generating high-resolution images or long-
duration videos of arbitrary size. The model features an autoregressive
over autoregressive generation mechanism, with a global patch-level
model managing inter-patch dependencies and a local token-level
model handling intra-patch dependencies. To optimize efficiency,
NUWA-Infinity incorpores a Nearby context pool (NCP) to reuse
previously generated patches, minimizing computational costs while
maintaining robust dependency modeling. Additionally, an Arbitrary
direction controller (ADC) enhances flexibility by determining optimal
generation orders and learning position embeddings tailored for
diverse synthesis tasks. NUWA-Infinity thus transcends the limitations
of fixed-size approaches, enabling comprehensive and efficient content
creation on a variable scale. In contrast to these approaches, Yan et al.
[109] proposed VideoGPT, a simpler and more efficient architecture
for scaling likelihood-based generative modeling to natural videos.
By employing VQ-VAE with 3D convolutions and axial self-attention,
VideoGPT learns downsampled discrete latent representations of raw
videos. These representations are then autoregressively modeled by
a GPT-like architecture with spatio-temporal position encodings to
generate videos. This method involves training a VQ-VAE with an
encoder that downsamples space-time and a decoder that upsamples
it, sharing spatio-temporal embeddings across attention layers.
Furthermore, a prior over the VQ-VAE latent codes is learned using

an Image-GPT-like architecture with dropout for regularization,
which enables conditional sample generation via cross attention and
conditional norms. Blattmann et al. [110] introduced a novel approach
to efficient high-resolution video generation through Video LDMs, by
adapting pre-trained image diffusion models into video generators.
They achieve this by temporal fine-tuning with alignment layers,
which maintains computational efficiency. Initially, an LDM is pre-
trained on images and then transformed into a video generator by
adding a temporal dimension and fine-tuning on video sequences.
Additionally, diffusion model upsamplers are temporally aligned for
consistent video super resolution, allowing the efficient training of
high-resolution, long-term consistent video generation models using
pre-trained image LDMs with added temporal alignment.

Building on these advancements, Chen et al. [111] introduced two
diffusion models for high-quality video generation: T2V and Image-to-
video (I2V). The T2V model, based on SD 2.1, incorporates temporal
attention layers to ensure temporal consistency and employs a joint
image and video training strategy. The VideoCrafter T2V model
further leverages a Latent Video Diffusion Model (LVDM) with a
video VAE and a video latent diffusion model, where the VAE reduces
sample dimensions to improve efficiency. Video data is encoded into a
compressed latent representation, processed through a diffusion model
with noise added at each timestep, before being decoded by the VAE
to generate the final video. He et al. [112] expanded on the concept of
video generation by introducing a hierarchical LVDM framework that
extends videos beyond the training length. Their method addresses
performance degradation with conditional latent perturbation and
unconditional guidance. Their lightweight video diffusion models use
a low-dimensional 3D latent space, significantly outperforming pixel-
space models with limited computational resources. By compressing
videos into latents using a video autoencoder and utilizing a unified
video diffusion model for both unconditional and conditional
generation, their approach generates videos autoregressively
and improves coherence and quality over extended lengths with
hierarchical diffusion.

To further advance video generation, Wang et al. [113] proposed
ModelScope Text-to-Video (ModelScopeT2V), a simple yet
effective baseline for video generation. This model introduces two key
technical contributions: a spatio-temporal block to model temporal
dependencies in text-to-video generation, and a multi-frame training
strategy with both image-text and video-text paired datasets to
enhance semantic richness. ModelScopeT2V evolves from a text-to-
image model (stable diffusion) and includes spatio-temporal blocks to
ensure consistent frame generation and smooth transitions, adapting
to varying frame numbers during training and inference. In the
realm of scalable and efficient video generation, Gupta et al. [114]
proposed W.ALT, a simple yet scalable and efficient transformer-
based framework for latent video diffusion models. Their approach
consists of two stages: an autoencoder compresses images and videos
into a lower-dimensional latent space, allowing for efficient joint
training on combined datasets. Subsequently, the transformer employs
window-restricted self-attention layers that alternate between spatial
and spatio-temporal attention, reducing computational demands and
supporting joint image-video processing. This method facilitates
high-resolution, temporally consistent video generation from textual
descriptions, offering an innovative approach to T2V synthesis. Villegas
et al. [115] contributed to the field by proposing Phenaki, a unique
C-ViViT encoder-decoder structure for generating variable-length
videos from textual inputs. This model compresses video data into
compact tokens, allowing for the production of coherent and detailed
videos. By utilizing a bidirectional masked transformer to translate
text tokens into video tokens, the model can generate long, temporally
coherent videos from both open-domain and sequential prompts. It
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also improves video token compression by 40% by exploiting temporal
redundancy, enhancing reconstruction quality and accommodating
variable video lengths, while the causal variation of ViViT manages
temporal and spatial dimensions in an auto-regressive manner.

Previous methods of text-to-video generation face high
computational costs with pixel-based VDMs or struggle with text-
video alignment with latent-based VDMs. To marry the strength
and alleviate the weakness of pixel-based and latent-based VDMs,
Zhang et al. [117] proposed Show-1, a hybrid model that combines
both pixel-based and latent-based VDMs to overcome the limitations
of previous methods. By employing pixel-based VDMs to create low-
resolution videos with strong text-video correlation, and then using
latent-based VDMs to upsample these to high resolution, Show-1
ensures precise text-video alignment, natural motion, and high visual
quality with reduced computational cost. Khachatryan et al. [118]
built upon the Stable diffusion T2I model to develop Text2Video-
Zero, a zero-shot T2V synthesis model. This approach enriches
latent codes with motion dynamics to ensure temporal consistency
and employs a cross-frame attention mechanism to maintain object
appearance and identity across frames. Although Text2Video-Zero
enables high-quality, temporally consistent video generation from
textual descriptions without additional training, leveraging existing
pre-trained T2I models, there is still potential for improvement. It
struggles to generate longer videos with sequences of actions.

Furthermore, FuWeng et al. [119] introduced ART-V, an efficient
framework for autoregressive video generation using diffusion
models. ART<V generates frames sequentially, conditioned on
previous frames, by focusing on simple, continuous motions between
adjacent frames, which helps to avoid the complexity of long-range
motion modeling. This approach retains the high-fidelity generation
capabilities of pre-trained image diffusion models with minimal
modifications and can produce long videos from diverse prompts,
such as text and images. To address the common issue of drifting in
autoregressive models, ART+V incorporates a masked diffusion model
that draws information from reference images rather than relying
solely on network predictions, thereby reducing inconsistencies. By
conditioning on the initial frame, ART.V enhances global coherence,
which is particularly useful for generating long videos. The framework
also employs a T2I-Adapter for conditional generation, ensuring high
fidelity with minimal changes to the pre-trained model, matching the
inference speed of one-shot models, and supporting larger batch sizes
during training. In summary, ART.V effectively reduces drifting issues
in video generation by incorporating masked diffusion, anchored
conditioning, and noise augmentation to better align training with

testing. Shi et al. [120] introduced BIVDIff, a training-free video
synthesis framework that integrates frame-wise video generation,
mixed inversion, and temporal smoothing. This framework bridges
the gap between specific image diffusion models (e.g., ControlNet,
Instruct Pix2Pix) and general text-to-video diffusion models (e.g.,
VidRD, ZeroScope). The process begins with frame generation using
an image diffusion model, followed by Mixed Inversion to adjust latent
distributions, which balances temporal consistency with the open-
generation capability of video diffusion models. Finally, video diffusion
models are applied for temporal smoothing. This method effectively
addresses issues of temporal consistency and task generalization that
are common in previous training-free approaches.

Finally, Xing et al. [116] proposed a parameter-efficient video
diffusion model called Simple Diffusion Adapter (SimDA), see Fig.
7, which fine-tunes the large T2I model (i.e., Stable Diffusion) for
enhanced video generation. SimDA generates videos from textual
prompts through efficient one-shot fine-tuning of pre-trained
Stable Diffusion models, focusing on a parameter-efficient approach
by fine-tuning only 24 million out of the 1.1 billion parameters. The
model employs an adapter with two learnable fully connected layers,
incorporating spatial adapters to capture appearance transferability
and temporal adapters to model temporal information, utilizing
GELU activations and depth-wise 3D convolutions. Additionally,
SimDA introduces Latent-shift attention (LSA) to replace the
original spatial attention, enhancing temporal consistency without
adding new parameters. More recently, Qing et al. [121] presented
HiGen, a diffusion-based model that improves video generation by
decoupling spatial and temporal factors at both the structure and
content levels. At the structural level, HiGen splits the T2V task
into spatial reasoning, which involves generating spatially coherent
priors from text, and temporal reasoning, which creates temporally
coherent motions from these priors using a unified denoiser. On
the content side, HiGen extracts cues for motion and appearance
changes from input videos to guide training, thereby enhancing
temporal stability and allowing for flexible content variations.
Despite its strengths, HiGen faces challenges in generating
detailed objects and accurately modeling complex actions due to
computational and data quality limitations.

As we have seen in this section, for the generation of video from text,
the main approaches used are the application of T2I techniques together
with temporal modules, attention mechanisms, transformers and
autoencoder. However, in recent years many researchers are focusing
on diffusion models, which are becoming more and more widely used
and are expected to increase in popularity in the coming years.
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2. Image-to-Video Synthesis

Generating videos from static images poses significant challenges,
particularly in preserving temporal consistency and achieving realistic
motion across frames. Despite these difficulties, advancements in
image-to-video synthesis have leveraged sophisticated modeling
techniques to transform still images into dynamic video sequences.
This area has become increasingly important for various applications,
ranging from content creation to enhanced video editing tools.

Recent methods in image-to-video synthesis focus on generating
high-quality videos by incorporating temporal dynamics into the
transformation process. Techniques like temporal modeling and
attention mechanisms are employed to ensure smooth transitions
between frames, thus maintaining coherence and realism in the
generated videos. A noteworthy contribution to this field is the
work by Wu et al. [122], which introduces LAMP, a few-shot-based
tuning framework for Text-to-video generation, leveraging a first-
frame-attention mechanism to transfer information from the initial
frame to subsequent ones. This approach, which focuses on fixed
motion patterns, is constrained in its ability to generalize across
diverse scenarios. LAMP utilizes an off-the-shelf text-to-image
model for content generation while emphasizing motion learning
through expanded pre-trained 2D convolution layers and modified
attention blocks for temporal-spatial motion learning. A first-frame-
conditioned pipeline ensures high video quality by retaining the
initial frame’s content and applying noise to subsequent frames
during training. During inference, high-quality first frames generated
by SD-XL enhance video performance. Despite its promise, LAMP
faces challenges with complex motions and background stability,
suggesting areas for future improvement. Guo et al. [123] introduced
the I2V-Adapter, a lightweight and plug-and-play solution designed
for text-guided Image-to-video generation. The key innovation of this
adapter lies in its cross-frame attention mechanism, which preserves
the identity of the input image by propagating the unnoised image
to subsequent noised frames. This approach ensures compatibility
with pretrained Text-to-video models, maintaining their weights
unchanged while seamlessly integrating the adapter. By introducing
minimal trainable parameters, the 12V-Adapter not only reduces
training costs but also ensures smooth compatibility with community-
driven models and tools. Moreover, the authors incorporated a Frame
Similarity Prior, which provides adjustable control coefficients to
balance motion amplitude and video stability, thereby enhancing both
the controllability and diversity of the generated videos.

Futhermore, Zhang et al. [124] proposed MoonShot, a video
generation model that leverages both image and text as conditional
inputs. MoonShot addresses limitations in controlling visual
appearance and geometry by employing the Multimodal video block
(MVB) as its core component. This module integrates spatial-temporal
layers for comprehensive video feature representation and utilizes
a decoupled cross-attention layer to condition both image and text
inputs effectively. Notably, MoonShot reuses pre-trained weights
from text-to-image models, allowing for the integration of pre-trained
image ControlNet modules to achieve geometry control without
necessitating additional training. The model’s architecture, which
includes spatial-temporal U-Net layers and decoupled multimodal
cross-attention layers, ensures high-quality frame generation and
temporal consistency. As a result, MoonShot is versatile, supporting
tasks like image animation and video editing without the need for
fine-tuning, while also enabling geometry-controlled generation
through the effective integration of ControlNet modules. Gong
et al. [125] proposed AtomoVideo, a high-fidelity Image-to-video
generation framework that transforms product images into engaging
promotional videos. AtomoVideo achieves superior motion intensity
and consistency compared to existing methods and can also perform

Text-to-video generation by combining advanced text-to-image
models. The approach involves using a pre-trained T2I model with
added temporal convolution and attention modules, training only the
temporal layers, and injecting image information at two positions:
low-level details via VAE encoding and high-level semantics via CLIP
image encoding and cross-attention. Long video frames are predicted
iteratively, using initial frames to generate subsequent ones. The
framework is trained using Stable Diffusion 1.5 and a 15M internal
dataset, employing zero terminal SNR and v-prediction techniques for
stability. During inference, classifier-free guidance with image and text
prompts significantly enhances the stability of the generated output.

Other researchers have explored diffusion models for the creation
of videos from images. For example, Shi et al. [126] proposed Motion-
I2V, a novel framework for consistent and controllable text-guided
image-to-video generation. Unlike previous methods, Motion-12V
factorizes the process into two stages with explicit motion modeling.
The first stage involves a diffusion-based motion field predictor to
deduce pixel trajectories of the reference image. The second stage
introduces motion-augmented temporal attention to enhance the
limited 1-D temporal attention in video latent diffusion models,
effectively propagating reference image features to synthesized
frames guided by predicted trajectories. By training a sparse trajectory
ControlNet for the first stage, Motion-I2V enables precise control over
motion trajectories and regions, also supporting zero-shot Video-to-
video translation. Although Motion-12V provides fine-grained control
of 12V generation through sparse trajectory guidance, region-specific
animation and zero-shot Video-to-video translation, it is limited in
handling occlusions, brightness uniformity and complex motion.

Expanding on the idea of temporal consistency, Ren et al. [127]
proposed ConsistI2V, a diffusion-based method for 12V generation,
designed to enhance visual consistency by using spatiotemporal
attention over the first frame to maintain spatial and motion coherence.
They introduced Framelnit, an inference-time noise initialization
strategy that uses the low-frequency band from the first frame to
stabilize video generation, which supports applications such as long
video generation and camera motion control. The approach leverages
cross-frame attention mechanisms and local window temporal layers
to achieve fine-grained spatial conditioning and temporal smoothness.
The ConsistI2V’s architecture, based on a U-Net structure adapted
with temporal layers, employs a latent diffusion model to generate
videos that closely align with the first frame and follow the textual
description. To address motion consistency and efficiency, Shen et
al. [128] proposed a novel approach to Conditional image-to-video
(cI2V) generation by disentangling RGB pixels into spatial content
and temporal motions. Using a 3D-UNet diffusion model, they predict
temporal motions, including motion vectors and residuals, to improve
consistency and efficiency. The approach begins with Decouple-Based
Video Generation (D-VDM) to predict differences between consecutive
frames and is further refined with Efficient Decouple-Based Video
Generation (ED-VDM), which separates content and temporal
information using motion vectors and residuals extracted via CodeC.
The model employs Gaussian noise and a diffusion model to learn the
video distribution score and generate a video clip from the initial frame
and text condition. The approach includes Decoupled Video Diffusion
Model using DDPM to estimate video distribution scores and a ResNet
bottleneck module to encode the first frame, improving spatial and
temporal representation alignment. Efficient representation is
achieved using I-frames and P-frames, with compression via a Latent
Diffusion autoencoder, optimizing video generation through a learned
joint distribution of motion vectors and residuals.

Facing the challenge of maintaining temporal coherence while
preserving detailed information about the characters in the image-video
synthesis for character animation is difficult. Hu et al. [129] proposed
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anovel framework using diffusion models for character animation, see
Fig. 8, addressing the challenges of maintaining temporal consistency
with detailed character information in image-to-video synthesis. They
designed ReferenceNet to merge intricate appearance features from a
reference image via spatial attention, and introduced a Pose Guider to
ensure controllability and continuity in character movements, along
with an effective temporal modeling approach for smooth inter-frame
transitions. The method extends Stable Diffusion (SD) by reducing
computational complexity through latent space modeling and includes
an autoencoder. The network architecture includes ReferenceNet for
appearance feature extraction, Pose Guider for motion control, and a
temporal layer for continuity of motion. The training strategy consists
of two stages: first, training on individual video frames without the
temporal layer, and second, introducing and training the temporal layer
using a 24-frame video clip. Despite its advancements, the model faces
limitations in generating stable hand movements, handling unseen
parts during character movement, and operational efficiency due to
DDPM. Moreover, Xu et al. [130] proposed MagicAnimate, a novel
diffusion-based human image animation framework that integrates
temporal consistency modeling, precise appearance encoding, and
temporal video fusion to synthesize temporally consistent human
animation of arbitrary length. They address the challenges of existing
methods, which struggle with maintaining temporal consistency
and preserving reference identity, by developing a video diffusion
model that encodes temporal information with temporal attention
blocks and an innovative appearance encoder that retains intricate
details of the reference image. MagicAnimate employs a simple video
fusion technique to ensure smooth transitions in long animations by
averaging overlapping frames. The framework processes animations
segment-by-segment to manage memory constraints while leveraging
a sliding window method to improve transition smoothness and
consistency across segments. This comprehensive approach enables
MagicAnimate to produce high-fidelity, temporally consistent
animations that faithfully preserve the appearance of the reference
image throughout the entire video.

In cases where no motion clue is provided, videos are generated
stochastically, constrained solely by the spatial information in the
input image. Dorkenwald et al. [131] proposed an approach to 12V
synthesis by framing it as an invertible domain transfer problem
implemented through a Conditional invertible neural network

(cINN). To bridge the domain gap between images and videos, they
introduced a probabilistic residual representation, ensuring that
only complementary information to the initial image is captured.
The method allows sampling and synthesizing novel future video
progressions from the same start frame. They utilized a separate
conditional variational encoder-decoder to compute a compact video
representation, facilitating the learning process. Their model captures
the interplay between images and videos, explaining video dynamics
with a single image and residual information, and supports controlled
video synthesis by incorporating additional factors such as motion
direction. However, this kind of stochastic video generation can only
handle short dynamic patterns in the distribution. Ni et al. [132]
proposed a method for cI2V generation that synthesizes videos from
a single image and a given condition, such as an action label. They
introduced Latent flow diffusion models (LFDM), which generate an
optical flow sequence in the latent space to warp the initial image,
thereby improving the preservation of spatial details and motion
continuity. The method involves a two-stage training process: an
unsupervised Latent flow auto-encoder (LFAE) to estimate latent
optical flow between video frames, and a conditional 3D U-Net-based
Diffusion model (DM) to produce temporally-coherent latent flow
sequences based on the image and condition. During inference, the
image is encoded to a latent map, the condition to an embedding, and
the trained DM generates latent flow and occlusion map sequences.
During inference, the image is encoded to a latent map, the condition
to an embedding, and the trained DM generates latent flow and
occlusion map sequences. These sequences warp the latent map to
create a new latent map sequence, which is then decoded into video
frames. The proposed method, with its decoupled training strategy
and efficient operation in a low-dimensional latent flow space, reduces
computational cost and complexity while ensuring easy adaptation to
new domains.

Wang et al. [133] proposed a high-fidelity image-to-video generation
method, named DreamVideo, which addresses issues of low fidelity
and flickering in existing methods by employing a frame retention
branch in a pre-trained video diffusion model. The approach preserves
image details by perceiving the reference image through convolution
layers and integrating these features with noisy latents. The model
incorporates double-condition classifier-free guidance, allowing a
single image to generate videos of different actions through varying
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prompts, enhancing controllable video generation. DreamVideo’s
architecture includes a primary T2V model and an Image Retention
block that infuses image control signals into the U-Net structure.
During inference, the model combines text and image inputs to
generate contextually consistent videos using CLIP text embeddings
and a U-Net-based generative process. Additionally, the Two-Stage
Inference method extends video length and creates varied content by
using the final frame of one video as the initial frame for the next,
showcasing the model’s strong image retention and video generation
capabilities. Zhang et al. [134] proposed I2VGen-XL, a method utilizing
two stages of cascaded diffusion models to achieve high semantic
consistency and spatiotemporal continuity in video synthesis. The
approach addresses challenges in semantic accuracy, clarity, and
continuity by decoupling semantic and qualitative factors, using static
images as guidance. The base stage ensures semantic coherence and
preserves content at low resolution with two hierarchical encoders—a
fixed CLIP encoder for high-level semantics and a learnable content
encoder for low-level details. The refinement stage enhances video
resolution and refines details using a brief text input and a separate
video diffusion model. Training involves initializing the base model
with pre-trained SD2.1 parameters and moderated updates, while the
refinement model undergoes high-resolution training and fine-tuning
on high-quality videos. Inference employs a noising-denoising process
and DDIM/DPM-solver++ to generate high-resolution videos from
low-resolution outputs.

To create more controllable videos, various motion cues like
predefined directions and action labels are used. Blattmann et al. [135]
proposed an approach for generating videos from static images by
learning natural object dynamics through local pixel manipulations.
Their generative model learns from videos of moving objects without
needing explicit information about physical manipulations and infers
object dynamics in response to user interactions, understanding the
relationships between different object parts. The goal is to predict
object deformation over time from a static image and a local pixel
shift, using two encoding functions: an object encoder for the current
object state and an interaction encoder for the pixel shift. They utilize a
hierarchical recurrent model to understand complex object dynamics,
predicting a sequence of object states in response to the pixel shift.
Object dynamics are modeled using a flexible prediction function based
on Recurrent Neural Networks (RNN), with higher-order dynamics
captured by introducing a hierarchy of RNN predictors operating
on different spatial scales. The decoder generates individual image
frames from the predicted object states using a hierarchical image-to-
sequence UNet structure. Instead of ground-truth interactions, dense
optical flow displacement maps are used to simulate training pokes,
minimizing the perceptual distance between predicted and actual
video frames. Training involves pretraining the encoders and decoder
to reconstruct image frames, then refining the model to predict object
states and synthesize video sequences. Their interactive 12V synthesis
model allows users to specify the desired motion through the manual
poking of a pixel.

In addition, Menapace et al. [136] proposed a novel framework for
the Playable video generation (PVG) task, which generates videos
from the first frame and a sequence of discrete actions. While the
PVG task reduces user burden by not requiring detailed motion
information, it struggles with generating videos involving complex
motions. An unsupervised learning approach is adopted that allows
users to control video generation by selecting discrete actions at
each time step, similar to video games. The framework, named
Clustering for Action Decomposition and DiscoverY (CADDY), learns
semantically consistent actions and generates realistic videos based
on user input using a self-supervised encoder-decoder architecture
driven by a reconstruction loss on the generated video. CADDY

discovers distinct actions via clustering during the generation
process, employing an encoder-decoder with a discrete bottleneck
layer to capture frame transitions without needing action label
supervision or a predefined number of actions. The action network
estimates action label posterior distributions by decomposing actions
into discrete labels and continuous components, ensuring meaningful
action labels by preventing direct encoding of environment changes
in the variability embeddings.

Within the generation of dynamic videos from static images presents
a trend very similar to the previous section, Text-to-Video Synthesis,
where we can see how attention mechanisms, autoencoders and
diffusion models stand out. As we can see, GANSs are not as frequent
as in synthetic image generation. This approach to video generation
can raise more ethical concerns than the previous one, as it can use
images of real people and generate videos that can potentially harm
them; whereas in the previous section, it involves content generated
completely from scratch.

3. Video-to-Video Synthesis

Video-to-video (V2V) synthesis is an advanced field focused on
generating realistic video sequences by transforming or translating
visual information from one video domain to another. The main goal
is to create high-quality, temporally consistent videos that adhere to
specific input conditions, such as text, pose, style, or semantic maps.
Recent advancements in this area have introduced several techniques
to enhance the quality, efficiency, and consistency of video synthesis,
thus pushing the boundaries of what is possible in video generation.
Wang et al. [137] proposed a three-stage framework for human pose
transfer in videos, focusing on transferring dance poses from a source
person in one video to a target person in another. The process begins
with the extraction of frames and pose masks from both source and
target videos. Subsequently, a model synthesizes frames of the target
person in the desired dance pose, followed by a refinement phase to
enhance the quality of these frames. The model comprises several
key components, including pose extraction and normalization, a
GAN-based synthesis using Cross-domain correspondence network
(CoCosNet), and a coarse-to-fine strategy with two GANs for detailed
face reconstruction and smooth frame sequences. Their approach
involves visualizing keypoints to create pose skeleton labels, adjusting
for differences in body proportions, learning the translation from
pose domain to image domain, and matching features for coherent
synthesis. Although their method outperforms existing approaches,
it still encounters challenges with large pose variations and domain
generalization, which suggests potential areas for future improvement.

Furthermore, Zhuo et al. [138] introduced Fast-Vid2Vid, a spatial-
temporal compression framework designed to reduce computational
costs and accelerate inference in Video-to-Video synthesis (Vid2Vid).
While traditional Vid2Vid generates photorealistic videos from semantic
maps, it suffers from high computational costs due to the network
architecture and sequential data streams. Zhuo et al. addressed this by
introducing Motion-aware inference (MAI) to compress the input data
stream without altering network parameters and developing Spatial-
temporal knowledge distillation (STKD) to transfer knowledge from a
high-resolution teacher model to alow-resolution student model. Their
approach incorporates Spatial knowledge distillation (Spatial KD) for
generating high-resolution frames from low-resolution inputs and
Temporal knowledge distillation (Temporal KD) to maintain temporal
coherence in sparse video sequences. Additionally, they utilize a
part-time student generator for sparse frame synthesis and a fast
motion compensation method for interpolating intermediate frames,
thereby reducing computational load while maintaining visual quality.
Further advancing the field, Yang et al. [139] introduced a zero-shot
text-guided video-to-video translation framework that adapts image

_17_



International Journal of Interactive Multimedia and Artificial Intelligence

models for video applications. This framework is composed of key
frame translation and full video translation. Key frames are generated
using an adapted diffusion model with hierarchical cross-frame
constraints to ensure coherence in shapes, textures, and colors. These
frames are then propagated to the rest of the video using temporal-
aware patch matching and frame blending, achieving both global style
and local texture temporal consistency without requiring re-training
or optimization. A key innovation of this approach is the use of optical
flow for dense cross-frame constraints, ensuring consistency across
different stages of diffusion sampling. However, the method’s reliance
on accurate optical flow can lead to artifacts if the flow is incorrect,
and significant appearance changes may disrupt temporal consistency,
limiting the ability to create unseen content without user intervention.

Following the trend of previous researchers but focusing on zero-
shot techniques, Wang et al. [140] presented vid2vid-zero, a zero-
shot video editing method that leverages pre-trained image diffusion
models without requiring video-specific training. Their method
introduces a null-text inversion module for text-to-video alignment, a
cross-frame modeling module for temporal consistency, and a spatial
regularization module to preserve the fidelity of the original video.
Vid2vid-zero addresses the issue of flickering in frame-wise image
editing by ensuring temporal consistency through a Spatial-temporal
attention (ST-Attn) mechanism, which balances bi-directional temporal
information and spatial alignment using pre-trained diffusion models.
While effective in video editing tasks, the method’s reliance on pre-
trained image models limits its capacity to edit actions in videos
due to the absence of temporal and motion priors. Expanding on the
idea of zero-shot video editing, Qi et al. [141] proposed FateZero, a
zero-shot text-based editing method for real-world videos that does
not require per-prompt training or user-specific masks. To achieve
consistent video editing, FateZero utilizes techniques based on pre-
trained models, capturing intermediate attention maps during DDIM
inversion to retain structural and motion information and fusing these
maps during editing. A blending mask, derived from cross-attention
features, minimizes semantic leakage, while the reformed self-attention
mechanism in the denoising UNet enhances frame consistency. Despite
its impressive performance, FateZero faces challenges in generating
entirely new motions or significantly altering shapes.

Other authors have opted for the use of diffusion models, due to their
performance in similar tasks. Molad et al. [142] proposed Dreamix, a
text-driven video editing method that uses a text-conditioned video
diffusion model (VDM). Dreamix preserves the original video’s fidelity
by initializing with a degraded version of the input video and then fine-
tuning the model. This mixed fine-tuning technique enhances motion
editability by incorporating individual frames with masked temporal
attention. Dreamix achieves text-guided video editing by inverting
corruptions, downsampling the input video, corrupting it with noise,
and then upscaling it using cascaded diffusion models aligned with
the text prompt. This approach effectively preserves low-resolution
details while synthesizing high-resolution outputs. Focusing on
motion guidance, Hu et al. [143] introduced VideoControlNet, a
motion-guided video-to-video translation framework using a diffusion
model with ControlNet. Inspired by video codecs, VideoControlNet
leverages motion information to maintain content consistency and
prevent redundant regeneration. The first frame (I-frame) is generated
using the diffusion model with ControlNet, mirroring the structure of
the input frame. Key frames (P-frames) are then generated using the
motion-guided P-frame generation (MgPG) module, which employs
motion information for consistency and inpaints occluded areas using
the diffusion model. The remaining frames (B-frames) are efficiently
interpolated using the motion-guided B-frame interpolation (MgBI)
module. This framework produces high-quality, consistent videos by
utilizing advanced inpainting methods alongside motion information.

Adding to the discussion of temporal consistency, Liang et al
[144] introduced FlowVid, a V2V synthesis framework that ensures
temporal consistency across frames by leveraging spatial conditions
and temporal optical flow clues from the source video. Unlike previous
methods, FlowVid uses optical flow as a supplementary reference to
handle imperfections in flow estimation. The model warps optical
flow from the first frame and uses it in a diffusion model, enabling the
propagation of edits made to the first frame throughout subsequent
frames. FlowVid extends the U-Net architecture to include a temporal
dimension and is trained using joint spatial-temporal conditions, such
as depth maps and flow-warped videos, to maintain frame consistency.
During generation, the model edits the first frame with prevalent
Image-to-image (I12I) models and propagates these edits using a trained
model, incorporating global color calibration and self-attention feature
integration to preserve structure and motion, thus achieving effective
video synthesis with high temporal consistency. In a similar pursuit
of enhancing temporal coherence, Wu et al. [145] proposed Fairy, a
minimalist yet robust adaptation of image-editing diffusion models
for video editing. Fairy improves temporal consistency and synthesis
fidelity through anchor-based cross-frame attention, which propagates
diffusion features across frames. To handle affine transformations,
Fairy employs a unique data augmentation strategy, enhancing the
model’s equivariance and consistency. The anchor-based model
samples K anchor frames to extract and propagate diffusion features,
ensuring consistency by aligning similar semantic regions across
frames. While Fairy excels in maintaining temporal consistency, its
strong focus on this aspect reduces its accuracy in rendering dynamic
visual effects, such as lightning or flames.

Lastly, several other methods offer significant contributions to the
video-to-video synthesis domain. Ku et al. [146] proposed AnyV2V, see
Fig. 9, a training-free video editing framework that simplifies video
editing into two steps: editing the first frame with any image editing
model and using an image-to-video generation model to create the
edited video through temporal feature injection. AnyV2V is compatible
with various image editing tools, allowing for diverse edits such as style
transfer, subject-driven editing, and identity manipulation, without
the need for fine-tuning. The framework uses DDIM inversion for
structural guidance and feature injection to maintain consistency in
appearance and motion, enabling accurate and flexible video editing.
Additionally, it supports long video editing by handling videos beyond
the training frame lengths of current 12V models, outperforming
existing methods in user evaluations and standard metrics. Ouyang
et al. [147] introduced I2VEdit, a video editing solution designed to
extend the capabilities of image editing tools to videos. This approach
achieves this by propagating single-frame edits throughout an entire
video using a pre-trained Image-to-video model. Notably, I12VEdit
adapts to the extent of edits, preserving visual and motion integrity
while handling various types of edits, including global, local, and
moderate shape changes. The method’s core processes, coarse motion
extraction and appearance refinement, play crucial roles in ensuring
consistency. Coarse motion extraction captures basic motion patterns
through a motion LoRA and employs skip-interval cross-attention to
mitigate quality degradation in long videos.

Meanwhile, appearance refinement uses fine-grained attention
matching for precise adjustments and incorporates Smooth arearandom
perturbation (SARP) to enhance inversion sampling. To achieve its
results, I2VEdit segments the source video into clips, processes each clip
for motion and appearance consistency, and refines appearances using
EDM [99] inversion and attention matching. Building on this, Ouyang
et al. [148] further proposed Content deformation field (CoDeF), a
novel video representation, emphasizing its application in Video-to-
video translation. CoDeF introduces a canonical content field for static
content aggregation and a temporal deformation field for recording
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Fig. 9. AnyV2V [146] framework.

frame transformations. This approach optimizes the reconstruction
of videos while preserving essential semantic details, such as object
shapes. In the context of Video-to-video translation, CoDeF employs
ControlNet on the canonical image, which significantly enhances
temporal consistency and texture quality compared to state-of-the-
art zero-shot video translations using generative models. By avoiding
the need for time-intensive inference models, this process becomes
more efficient. The canonical image, optimized through CoDeF, serves
as a basis for applying image algorithms, ensuring consistent effect
propagation across the entire video via the temporal deformation field.

A different approach to video editing with VideoSwap was presented
by Gu et al. [149], focusing on customized video subject swapping.
Unlike methods relying on dense correspondences, VideoSwap utilizes
semantic point correspondences, allowing the replacement of the
main subject in a video with a target subject of a different shape and
identity, all while preserving the original background. The approach
includes encoding the source video, applying DDIM inversion, and
using semantic points to guide the subject’s motion trajectory. The
process also involves extracting and embedding semantic points,
registering these points for motion guidance, and enabling user
interactions to refine motion and shape alignment. Recently, Bai et
al. [150] proposed UniEdit, a tuning-free framework for video motion
and appearance editing. This framework leverages a pre-trained Text-
to-video generator in an inversion-then-generation pipeline. UniEdit
addresses content preservation by using temporal and spatial self-
attention layers to encode inter-frame and intra-frame dependencies.
Additionally, it introduces auxiliary reconstruction and motion-
reference branches to inject the desired source and motion features
into the main editing path. For content preservation, the auxiliary
reconstruction branch injects attention features into the spatial self-
attention layers. Motion injection, on the other hand, is achieved
by guiding the main path with a motion-reference branch during
denoising, utilizing temporal attention maps for alignment with the
target prompt. In appearance editing, UniEdit maintains structural
consistency by implementing spatial structure control while omitting
the motion-reference branch. Despite its robust capabilities, UniEdit
faces challenges, particularly when addressing motion and appearance
editing simultaneously.

In this section we have analyzed the latest research related to video-
to-video synthesis. Within this field we have seen how the most used

technique is the diffusion model, as we have seen in other sections of
this survey. This is in line with expectations due to all the attention
they are receiving in recent years. However, we can also see that other
methodologies such as GANs or attention mechanisms are also used.
We have also noted that several papers use a zero-shot approach to
address the problem.

4. Text-Image-to-Video Synthesis

Text-image-video synthesis (TI2V) is a growing field of research
focused on generating dynamic video content from static images
and text descriptions. Given a single image I and text prompt T, text-
image-to-video generation aims to synthesize I new frames to yield
a realistic video, = (I°, I, .., I} y starting from the given frame I° and
satisfying the text description T . This field aims to bridge the gap
between different modalities to create coherent and contextually
accurate videos. Several approaches have been developed to address
the challenges in this domain, ranging from aligning visual and
textual information to ensuring temporal consistency and control
over generated content. Hu et al. [151] proposed a novel video
generation task called Text-Image-to-Video (TI2V) generation, which
creates videos from a static image and a text description, focusing
on controllable appearance and motion. They introduced the Motion
Anchor-based video GEnerator (MAGE) to address key challenges
such as aligning appearance and motion from different modalities and
handling text description uncertainties. MAGE uses a Motion anchor
(MA) structure to store aligned appearance-motion representations
and incorporates explicit conditions and implicit randomness to
enhance diversity and control. The framework employs a VQ-VAE
encoder-decoder architecture for visual token representation and uses
three-dimensional axial transformers to recursively generate frames.
Training involves a supervised learning approach to approximate the
conditional distribution of video frames based on the initial image
and text. The motion anchor aligns text-described motion with visual
features, ensuring consistent and diverse video output through auto-
regressive frame generation.

Complementing this, Guo et al. [152] proposed AnimateDiff, a
practical framework for animating personalized T2I models without
requiring model-specific tuning. The core of the framework is a
plug-and-play motion module, trained to learn transferable motion
priors from real-world videos, which can be integrated into any
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personalized T2I model. The training process involves three stages:
fine-tuning a domain adapter to align with the target video dataset,
introducing and optimizing a motion module for motion modeling,
and using MotionLoRA, a lightweight fine-tuning technique, to
adapt the pre-trained motion module to new motion patterns with
minimal data and training cost. AnimateDiff effectively addresses
the problem of animating personalized T2Is while preserving their
visual quality and domain knowledge, demonstrating the adequacy of
Transformer architecture for modeling motion priors and offering an
efficient solution for users who desire specific motion effects without
bearing the high costs of pre-training. In contrast, Yin et al. [153]
proposed NUWA-XL, a novel "Diffusion over Diffusion" architecture
for generating extremely long videos. Unlike traditional methods that
generate videos sequentially, leading to inefficiencies and a training-
inference gap, NUWA-XL uses a "coarse-to-fine" process where a
global diffusion model generates keyframes and local models fill in
between, allowing parallel generation. The architecture incorporates
Temporal KLVAE to compress videos into low-dimensional latent
representations and Mask temporal diffusion (MTD) to handle both
global and local diffusion processes using masked frames. Although
NUWA-XL is currently validated on cartoon data due to the lack of
open-domain long video datasets, it shows promise in overcoming
data challenges and improving efficiency, albeit requiring substantial
GPU resources for parallel inference.

Esser et al. [154] proposed a structure and content-guided video
diffusion model that edits videos based on user descriptions. They
resolved conflicts between content and structure by training on
monocular depth estimates with varying detail levels and introduced
a novel guidance method for temporal consistency through joint
video and image training. The approach extends latent diffusion
models to video by incorporating temporal layers into a pre-trained
image model, adding 1D convolutions and self-attentions to residual
and transformer blocks. The encoder downsamples images to a latent
code, improving efficiency, while depth maps and CLIP embeddings
are used for structure and content conditioning, respectively. This
approach allows full control over temporal, content, and structure
consistency without requiring per-video training or pre-processing,
showing improved temporal stability and user preference over
related methods. Expanding on the concept of control, Yin et al.
[155] proposed DragNUWA, an open-domain diffusion-based video
generation model that integrates text, image, and trajectory inputs
to provide fine-grained control over video content from semantic,
spatial, and temporal perspectives. They address the limitations
of current methods, which focus on only one type of control
and struggle with complex trajectory handling, by introducing
advanced trajectory modeling techniques: a Trajectory sampler
(TS) for arbitrary trajectories, Multiscale fusion (MF) for controlling
trajectories at different granularities, and an Adaptive training
(AT) strategy for generating consistent videos. DragNUWA can
generate realistic and contextually consistent videos by leveraging
the combined inputs of text, images, and trajectories during both
training and inference.

Further enhancing controllability, Wang et al. [156] proposed
VideoComposer, a system for enhancing controllability in video
synthesis through the use of temporal conditions like motion vectors.
They introduced a Spatio-temporal condition encoder (STC-encoder)
to integrate spatial and temporal dependencies, ensuring inter-frame
consistency. The system decomposes videos into textual, spatial, and
temporal conditions, and uses a latent diffusion model to recompose
videos based on these inputs. Textual conditions provide coarse-
grained visual content, while spatial conditions offer structural and
stylistic guidance. Temporal conditions, including motion vectors
and depth sequences, allow detailed control of temporal dynamics.

Recently, Ni et al. [157] proposed TI2V-Zero, a zero-shot, tuning-free
method for text-conditioned Image-to-video (TI2V) generation that
leverages a pretrained T2V diffusion model. This approach avoids
costly training, fine-tuning, or additional modules by using a "repeat-
and-slide" strategy to condition video generation on a provided image,
ensuring temporal continuity through a DDPM inversion strategy and
resampling techniques. The method uses a 3D-UNet-based denoising
network and modulates the reverse denoising process to generate
videos frame-by-frame, preserving visual coherence and consistency,
thus enabling the synthesis of long videos while maintaining high
visual quality.

In this section where we have analyzed the techniques to generate
videos from static images and textual descriptions, we have seen again
a main focus, which are the diffusion models, i.e. a trend is observed,
which seems to show that it will be the most used technique in the
coming years. In addition, we also continue to observe other approaches
such as attention mechanisms or autoencoders. The greatest danger of
this set of techniques, like the previous one, is that they can use images
of people to create complete videos, which can cause serious damage.
However, not all applications of these techniques are negative.

5. Multi-Modal Video Generation

Multi-Modal Video Generation (MMVG) refers to a versatile field in
which video content is synthesized based on different forms of input,
such as text, images, or existing videos. Although models like Sora and
Genie can accept various types of input, they typically process one
modality at a time—either generating videos from text descriptions,
animating static images, or transforming existing video footage. These
approaches leverages the strengths of different data modalities to
produce highly realistic and contextually coherent videos. The core
objective of MMVG is to create coherent, high-fidelity, temporal
consistent videos by leveraging the strengths of each input type.
Recent advancements in this field have led to the development of
sophisticated models capable of interpreting and synthesizing complex
scenes by concurrently analyzing textual descriptions, visual cues,
and pre-existing video footage. These models push the boundaries of
video generation, offering versatile applications in content creation,
entertainment, and beyond.

More recently, OpenAl [6] introduced Sora, a diffusion model that
represents a significant advancement in T2V generation by training
a model from scratch rather than fine-tuning pre-trained models.
Drawing from transformer architecture scalability, Sora replaces the
conventional U-Net with a transformer-based structure, effectively
managing large-scale video data for complex generative tasks. Sora can
generate high-fidelity videos up to a minute long, maintaining visual
quality and narrative consistency across multiple shots. It leverages
a patch-based approach, turning visual data into spacetime patches,
which enhances its ability to handle videos and images of varying
durations, resolutions, and aspect ratios. Sora excels in linguistic
comprehension, accurately following detailed prompts to generate
coherent video content. However, it faces challenges in rendering
realistic interactions and comprehending complex scenes with
multiple active elements. Despite these limitations, Sora’s capabilities
in video-to-video editing, image animation, and extending generated
videos mark a significant step toward building general-purpose
simulators of the physical world. Bruce et al. [7] introduced Genie, a
generative interactive environment model trained unsupervised from
unlabelled Internet videos. Genie uses spatiotemporal transformers,
a novel video tokenizer, and a causal action model to create diverse,
action-controllable virtual worlds from various inputs such as text,
images, and sketches. It generates video frames autoregressively,
enabling interaction on a frame-by-frame basis without ground-truth
action labels.
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TABLE IV. COMPREHENSIVE OVERVIEW OF A FEW SYNTHETIC VIDEO GENERATION TECHNIQUES

Models Year Technique Target Outcome Data Used Open Source
Make-A-Video [91] 2023 Transformer-based Text-to-video synthesis Various No
Video Diffusion [89] 2023 Diffusion-based High-quality video synthesis Video datasets No
VideoPoet [5] 2023 Transformer-based Generate poetic video narratives Web-collected dataset No
Godiva [104] 2023 GAN-based Generate dynamic video content High-resolution video datasets No
CogVideo [106] 2023 Transformer-based Extend CogView into video Diverse text and video datasets Yes
NUWA [107] 2023 Transformer-based Synthesize coherent video clips Diverse content from web datasets No
NUWA-Infinity [108] 2023 Transformer-based Generate endless video streams Extended NUWA dataset No
VideoGPT [109] 2023 GPT-based Utilize GPT architecture Various video datasets Yes
Video LDMs [110] 2024 Latent Diffusion Models Implement latent space techniques Various No
Text-to-[\lh;ée]o (T2V) 2023 Transformer-based Synthesize video from static images Diverse image and video datasets No
Model.Scop ¢ T?Xt_to_ 2024 Transformer-based Scalable text-to-video model Large-scale web-collected video Yes
Video [113] datasets
W.ALT [114] 2023 Diffusion Models Enhance video synthesis Various No
C-ViViT [115] 2023 VAE-based Create detailed videos from categories Category-labeled video datasets No
Text2Video-Zero [118] 2023 Zero-Shot Learning Generate videos without explicit training General video datasets Yes
ART.V [119] 2024 Al Rendered Textures Artistic video creation Artistic style datasets No
BIVDIff [120] 2023  Bi-directional Diffusion Bidirectional control over video generation Various Yes
Simple Diffusion P RECTPSRSa .
Adapter [116] 2024 Diffusion Models Simplify diffusion processes Various Yes
HiGen [121] 2024 Hierarchical Generation Layered approach to video scenes Multi-layer video datasets Yes
TABLE V. OVERVIEW OF TECHNIQUES FOR DETECTING AI-GENERATED VIDEOS
Authors Year Technique Target Outcome Data Used Open Source
Vahdati et al. [159] 2024 Synthetlc'wdeo detecno'n by Detect Al-generated synthetic videos Synth-vid-detect No
forensic trace analysis
He et al. [160] 2024 Temporal defects analysis Identify temporal defects in Al-generated videos ExposingAl-Video No
Detail M fi ial-
Chen et al. [162] 2024 etal am.ba Or SP at1§l Enhance detection of Al-generated videos GenVideo Yes
temporal artifacts detection
Bai et al. [163] 2024  Spatio-temporal CNN analysis Detect Al—gene‘rated v1de-()s using motion GVD Yes
discrepancies
Ma et al. [164] 2024 Temporal artifact focus Focus on temporal artifacts in video detection GVF Yes
Jietal [165] 2024 Dual-Branch 3D Transformer Integrate motion %md visual appearance for fake GenVidDet No
video detection
Liu et al. [167] 2024 Diffusion-generated video Capture spatial and temporal features in RGB TOINR No

detection

frames and DIRE values

As we can see, this section, multimodal video generation, is the least
explored of all the approaches analyzed, see Table IV, and possibly the
most complex, since we not only have to generate the visual part of the
videos, but also the audio. In addition, we must ensure that both are
matched and do not generate easily detectable artifacts. The techniques
analyzed in this field are diffusion models and transformers. Possibly
this area will be explored in more detail in the coming years.

B. Detection of AI-Generated Videos

In the rapidly evolving landscape of Generative Al (Gen Al),
significant progress has been made in developing techniques to detect
Al-generated synthetic images. Given that a video can be viewed as a
sequence of images, one might reasonably expect that synthetic image
detectors would also be effective at identifying Al-generated synthetic
videos. Surprisingly, Vahdati et al. [159] reveal that current synthetic
image detectors fail to reliably detect synthetic videos. Their study
demonstrates that the forensic traces left by synthetic video generators

are markedly different from those produced by image generators. This
issue is not due to the degradation effects of H.264 compression but
rather to the distinct characteristics of video generation. Therefore,
their findings underscore the urgent need for detection methods
tailored specifically to synthetic video content. Table V provides an
overview of the techniques used for detecting Al-generated videos,
highlighting key approaches and their application to various datasets.
Despite the growing concerns, research into detecting synthetic
videos has been relatively limited. Video generation technology is still
in its early stages compared to image generation, and as a result, fewer
detection methods are available. However, recent efforts have started
to address this gap (see Fig. 10).

One early approach comes from,He et al. [160] who proposed anovel
detection method for identifying Al-generated videos by analyzing
temporal defects at both local and global levels. The method is based
on the assumption that Al-generated videos exhibit different temporal
dependencies compared to real videos due to their distinct capturing
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Fig. 10. AI-Generated videos detection methods overview.

and generation processes. Real videos, which are captured by cameras,
have high temporal redundancy, whereas Al-generated videos control
frame continuity in the latent space, leading to defects at different
spatio-temporal scales. To address local motion information, the
method uses a frame predictor trained on real videos to measure inter-
frame motion predictability. Fake videos show larger prediction errors
because they have less temporal redundancy. Temporal aggregation is
employed to maintain long-range information and reduce the impact
of diverse spatio-temporal details. The aggregated error map is then
processed by a 2D encoder to obtain local motion features. For global
appearance variation, the method extracts visual features using a
pre-trained BEIT v2 [161] image encoder. These features are fed into
a transformer to model temporal variations, identifying abnormal
appearance changes across frames. Finally, a channel attention-based
fusion module combines the local motion and global appearance
features to enhance detection reliability. This module adjusts channel
significance to extract more generalized forensic clues.

Furthermore, Chen et al. [162] proposed a plug-and-play module
named Detail Mamba (DeMamba), designed to enhance the detection
of Al-generated videos by identifying spatial and temporal artifacts.
DeMamba builds upon the Mamba framework to explore both
local and global spatial-temporal inconsistencies, addressing the
limitation of models that consider only one aspect, either spatial or
temporal. Using vision encoders like CLIP and XCLIP, it encodes
video frames into a sequence of features, groups them spatially, and
applies the DeMamba module to model intra-group consistency.
Aggregated features from different groups help determine video
authenticity. The DeMamba module introduces a novel approach to
spatial consolidation by splitting features into zones along height
and width, performing a 3D scan for spatial-temporal input. Unlike
previous mechanisms, DeMamba’s continuous scan aligns spatial
tokens sequentially, enhancing the model’s ability to capture complex
relationships. For classification, DeMamba averages input features to
obtain global features and pools processed features into local features,
concatenating them with the global ones for classification via a simple
MLP, ensuring robust video authenticity detection.

Based on the assumption that low-quality videos show abnormal
textures and physical rule violations, while high-quality videos,
indistinguishable to the naked eye, often manifest temporal
discontinuities in optical flow maps, Bai et al.  [163] proposed
an effective Al-generated video detection (AIGVDet) scheme
by capturing forensic traces with a two-branch spatio-temporal
Convolutional Neural Network (CNN). This scheme employs two

ResNet sub-detectors to identify anomalies in the spatial and optical
flow domains. The spatial detector examines the abnormality of
spatial pixel distributions within single RGB frames, while the optical
flow detector captures temporal inconsistencies via optical flow. The
model uses RGB frames and optical flow maps as inputs, with the
two-branch ResNet50 encoder detecting abnormalities and a decision-
level fusion binary classifier combining this information for the final
prediction. AIGVDet effectively leverages motion discrepancies for
comprehensive spatio-temporal analysis to detect Al-generated
videos. Ma et al. [164] found that detectors based on spatial artifacts
lack generalizability. Hence, they proposed DeCoF, a detection model
that focuses on temporal artifacts and eliminates the impact of spatial
artifacts during feature learning. DeCoF is the first method to use
temporal artifacts by decoupling them from spatial artifacts, mapping
video frames to a feature space where inter-feature distance is inversely
correlated with image similarity, and detecting anomalies from inter-
frame inconsistency. The method reduces computational complexity
and memory requirements, needing only to learn anomalies between
features. However, DeCoF may experience significant performance
degradation or be inapplicable in the face of tampered video, such as
Deepfake and malicious editing.

Traditional video detection models often overlook specific
characteristics of downstream tasks, particularly in fake video
detection where motion discrepancies between real and generated
videos are significant, as generators tend to excel in appearance
modeling but struggle with accurate motion representation. Ji et al.
[165] proposed the Dual-Branch 3D Transformer (DuB3D) to address
this issue by integrating motion information with visual appearance
using a dual-branch architecture that fuses raw spatio-temporal data
and optical flow. The spatial-temporal branch processes original
frames to capture spatial-temporal information and identify anomalies,
while the optical flow branch uses GMFlow [166] to estimate and
capture motion information, and these features are combined using
a Multi-layer perceptron (MLP) for classification. Built on the Video
Swin Transformer backbone, DuB3D effectively enhances fake video
detection by emphasizing motion modeling and demonstrating strong
generalization across various video types. More recently, Liu et al. [167]
proposed a novel approach for DIffusion-generated VIdeo Detection
(DIVID). DIVID uses CNN+LSTM architectures to capture both spatial
and temporal features in RGB frames and DIRE values. Initially, the
CNN is fine-tuned on original RGB frames and DIRE values, followed
by training the LSTM network based on the CNN’s feature extraction.
This two-phase training enhances detection accuracy for both in-
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TABLE VI. AI-GENERATED IMAGE DETECTION DATASETS

Dataset Year Content Real Source Generator #Real #Generated Available
LSUN Bed [168] 2022  Bedroom LSUN GAN/DM 420,000 510,000 v
DFF [169] 2023 Face IMDB-WIKI DM 30,000 90,000 v
RealFaces [170] 2023 Face - DM - 25,800 v
DiffusionForensics [79] 2023 General LSUN ImageNet DM 134,000 481,200 v
Synthbuster [76] 2023 General Raise-1k DM - 9,000 v
DDDB [171] 2023 Art LAION-5B DM 64,479 73,411 v
DE-FAKE [172] 2023 General I;/fc(l:{(‘r);(:)g DM - 191 946 x
Al-Gen [173] 2023 General ALASKA DM 20,000 40,000 x
ArtiFact [174] 2023 General Variogzli%‘iﬁeé,ig%‘é%?if HOQ, GAN/DM 964,989 1,531,749 v
AutoSplice [175] 2023 General Visual News DM 2,273 3,621 4
HiFi-TFDL [176] 2023 General " Arioussources i’gﬁfi‘;i gi I:thC _CEI‘*bAHQ’ FSUN GANDM 600000 1,300,000 v
M3DSYNTH [177] 2023 CT LIDC-IDRI GAN/DM 1,018 8,577 v
DIF [74] 2023 General Laion-5B GAN/DM 168,600 168,600 4
DGM* [178] 2023 General Ux‘;’ggﬁ’%‘zﬁi‘i’;’tfg& . GAN/DM 77426 152,574 v
COCOFake [179] 2023 General COCO DM ~ 1,200,000 ~ 1,200,000 v
DiFF [180] 2024 Face VoxCeleb2 CelebA DM 23,661 537,466 v
CIFAKE [181] 2024  General CIFAR-10 DM 60,000 60,000 v
Genlmage [182] 2024 General ImageNet GAN/DM 1,331,167 1,350,000 4
Fake2M [183] 2024 General CC3M GAN/DM - 2,300,000 v
WildFake [184] 2024 General  Various sources including COCO, FFHQ Laion-5B, etc. =~ GAN/DM 1,013,446 2,680,867 x

domain and out-domain videos. Diffusion Reconstruction Error
(DIRE) is calculated as the absolute difference between an original
image and its reconstructed version from a pre-trained diffusion
model, capturing signals of diffusion-generated images. By training
the CNN+LSTM with DIRE and RGB frame features, DIVID improves
detection accuracy for Al-generated videos.

Detecting Al-generated videos is an emerging challenge, distinct
from synthetic image detection due to unique forensic traces in video
content. While promising methods have begun to address this gap,
leveraging spatio-temporal analysis and novel fusion techniques, the
field is still evolving, see Table V. Continued innovation is essential to
stay ahead of rapidly advancing video generation technologies.

V. DATASETS

One of the most important aspects of DL model development is
the availability of quality datasets. These datasets have to have some
fundamental properties to be able to create robust models: to be
representative, intra-class variability, balance between classes and a
minimum quality. This will allow us to create suitable new generative
and detection models. In this section we will focus on image and video
datasets generated with AL

The development of Al-generated images relies heavily on the
availability of diverse and comprehensive datasets. These datasets
provide the essential training material for models to learn from,
enabling them to generate realistic and varied images. Ranging from
large-scale collections of image-text pairs to datasets specifically
designed for detecting synthetic content, these resources play a
pivotal role in advancing the field. Regarding detection, we need
representative and varied datasets that include different generation

techniques and models. This will allow the development of robust
models capable of being applied in real situations.

A. Image Datasets

In this section, we highlight some of the key image datasets that
have significantly contributed to state-of-the-art Al-generated
imagery. These datasets not only differ in size and content but
also cater to various research needs, from general-purpose image
generation to specialized tasks like Al-generated images detection
and multimodal learning. For a detailed comparison, refer to Table VI,
which summarizes the features and scope of these datasets.

Conceptual Captions 12M (CC12M) [185] is a large-scale dataset
of 12.4 million image-text pairs derived from the Conceptual Captions
3M (CC3M) dataset [186]. CC12M was created by relaxing some of the
filters used in CC3M to increase the recall of potentially useful image-
alt-text pairs. The relaxed filters allow for more diverse and extensive
data, though this results in a slight drop in precision. Unlike CC3M,
CC12M does not perform hypernymization or digit substitution,
except for substituting person names to protect privacy. This dataset’s
larger scale and diversity make it well-suited for vision-and-language
pre-training tasks.

WIT [187] introduced to facilitate multimodal, multilingual
learning, contains 37.5 million entity-rich image-text examples and
11.5 million unique images across 108 Wikipedia languages. It serves
as a pre-training dataset for multimodal models, particularly useful
for tasks like image-text retrieval. WIT stands out due to its large size,
multilingual nature with over 100 languages, diverse concepts, and a
challenging real-world test set. It combines high-quality image-text
pairs from curated datasets like Flickr30K and MS-COCO with the
scalability of extractive datasets. WIT’s creation involved filtering
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low-information associations and ensuring image quality. The dataset
provides multiple text types per image (reference, attribution, and alt-
text), offers extensive cross-lingual text pairs, and supports contextual
understanding with 120 million contextual texts.

RedCaps [188] is alarge-scale dataset introduced in 2021, consisting
of 12 million image-text pairs collected from Reddit. This dataset
includes images and captions depicting a variety of objects and scenes,
sourced from a manually curated set of subreddits to ensure diverse
yet focused content. The data collection process involves three steps:
subreddit selection, image post filtering, and caption cleaning. Images
are primarily photographs from 350 selected subreddits, excluding any
NSFW, banned, or quarantined content. Filtering techniques are used
to maintain high-quality captions and mitigate privacy and harmful
stereotypes, resulting in a robust and extensive dataset.

Laion-5b [189] is a large-scale vision-language dataset derived
from Common Crawl, containing nearly 6 billion image-text pairs.
Images with alt-text were extracted and processed to remove low-
quality and malicious content. Filtering based on cosine similarity with
OpenATI’s ViT-B/32 CLIP model reduced the dataset size significantly.
The dataset is divided into three subsets: 2.32 billion English pairs,
2.26 billion multilingual pairs, and 1.27 billion pairs with undetected
languages. Metadata includes image URLs, text, dimensions, similarity
scores, and NSFW tags.

DiffusionDB [190] is the first large-scale prompt dataset totaling
6.5TB, containing 14 million images generated by Stable Diffusion
using 1.8 million unique prompts. Constructed by collecting images
shared on the Stable Diffusion public Discord server. Most prompts
are between 6 to 12 tokens long, with a significant spike at 75 tokens,
indicating many users exceed the model’s limit. 98.3% of the prompts
are in English, with the rest covering 34 other languages. DiffusionDB
provides unique research opportunities in prompt engineering,
explaining large generative models, and detecting deepfakes, serving
as an important resource for studying prompts in text-to-image
generation and designing next-generation human-Al interaction tools.

DiffusionForensics [79] is a dataset designed for evaluating
diffusion-generated image detectors. It includes 42,000 real images from
LSUN-Bedroom, 50,000 from ImageNet, and 42,000 from CelebA-HQ.
Generated images are produced by various models, with unconditional
models like ADM, DDPM, iDDPM, and PNDM generating 42,000
images each from LSUN-Bedroom. Text-to-image models LDM, SD-
v1, SD-v2, and VQ-Diffusion also generate 42,000 images each, while
IF, DALLE-2, and Midjourney produce fewer images. For ImageNet,
50,000 images each are generated by a conditional model ADM and
a text-to-image model SD-v1. CelebA-HQ includes 42,000 images
generated by SD-v2 and smaller sets by IF, DALLE-2, and Midjourney.

LSUN Bedroom [168] dataset contains images center-cropped to
256x256 pixels. Samples are either downloaded or generated using
code and pre-trained models from original publications. The dataset
includes samples from ten models (e.g. ProGAN, Diff-StyleGAN2, Diff-
ProjectedGAN, DDPM, IDDPM,LDM). For each model, 51,000 images
were sampled, and the real part is sourced from Isun bedroom dataset
[191].

DeepFakeFace (DFF) [169] is a dataset designed to evaluate
deepfake detectors, featuring 120,000 images, with 30,000 real images
sourced from the IMDB-WIKI dataset and 90,000 fake images. To
generate these fake images, three models were used: Stable Diffusion
v1.5, Stable Diffusion Inpainting, and InsightFace, each producing
30,000 images. The dataset includes high-resolution images of 512
x 512 pixels. Real images were matched by gender and age, using
prompts like "name, celebrity, age" for generation. Discrepancies in
facial bounding boxes were corrected using the RetinaFace detector to
ensure accuracy before generating deepfakes.

RealFaces [170] consists of 25,800 images generated using Stable
Diffusion, incorporating prompts for photorealistic human faces.
It includes 431 images filtered by an NSFW filter, mainly depicting
women and young people.

Deepart Detection Database (DDDB) [171] is designed for
detecting deepfake art. It includes high-quality conventional art
from LAION-5B and deepfake art from models like Stable Diffusion,
DALL-E 2, Imagen, Midjourney, and Parti. Conart images are sourced
from LAION-5B, while deeparts are generated using state-of-the-
art models or collected from social media. DDDB consists of 64,479
conventional art images (conart) and 73,411 deepfake art images
(deepart). It supports research in deepart detection, continuously
updating to incorporate new deeparts and addressing privacy and
storage constraints.

SynthBuster [76]. Due to the scarcity of diffusion model-
generated images, SynthBuster addresses this by providing a new
dataset with images from models like Stable Diffusion 1.3, 1.4, 2, and
XL, Midjourney, Adobe Firefly, and DALL-E 2 and 3. While synthetic
images are generated from text, SynthBuster uses the existing Raise-
1k database of real images, which is a varied subset of the Raise [192]
dataset, as a guideline for the generated image. Original images are not
used as prompts to try to recreate or modify a similar image. They are
only used as a guideline to create the new prompt for the presentation,
to ensure that the resulting image is broadly in the same category
as the original image. For each of the 1000 images, descriptions are
generated using the Midjourney descriptor [3] and CLIP Interrogator
[193]. Then, these descriptions were used as the basis for manually
writing a text prompt to generate a photo-realistic image loosely based
on the original image.

DE-FAKE [172] is designed for detecting Al-generated images.
Real images are sourced from the MSCOCO and Flickr30k datasets.
To create a corresponding set of fake images, prompts from these real
images were used to generate 191,946 synthetic images through four
different image generation models: Stable Diffusion, Latent Diffusion,
GLIDE, and DALLE-2.

AI-Gen [173] dataset consists of 20,000 uncompressed 256 x 256
PG images from the ALASKA [194] database, which are used to
construct the T2I dataset. Specific spots and objects are extracted
from these Photographs (PG) images, and 5,000 prompts are generated
with ChatGPT. Two Al systems, DALL-E2 [195] and DreamStudio,
are used to generate four images per prompt, creating two databases:
DALL-E2 [195] and DreamStudio [196]. Each database contains 20,000
Photographs (PG) images and corresponding T2I images. The images
are resized to 256 x 256, 128 x 128, and 64 x 64, and JPEG compression
is applied with a quality factor between 75 and 95. The datasets are
divided into training (12,000 pairs), validation (3,000 pairs), and testing
(5,000 pairs).

AutoSplice [175] is a image dataset containing 5,894 manipulated
and authentic images, designed to aid in developing generalized
detection methods. The dataset consists of 3,621 images generated
by locally or globally manipulating real-world image-caption pairs
from the Visual News dataset. The DALL-E2 generative model was
used to create synthetic images based on text inputs. AutoSplice
construction involved pre-processing with object detection and text
parsing, human annotations to select and modify object descriptions,
and post-processing to filter out images with visual artifacts. The final
dataset includes 3,621 high-quality manipulated images and 2,273
authentic images, with versions in both lossless and gently lossy JPEG
compression formats.

ArtiFact [174] is a large-scale dataset designed to evaluate the
generalizability and robustness of synthetic image detectors by
incorporating diverse generators, object categories, and real-world
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impairments. It includes 2,496,738 images, with 964,989 real and
1,531,749 fake images. The dataset covers multiple categories such
as Human/Human Faces, Animal/Animal Faces, Places, Vehicles, and
Art, sourced from 8 source datasets (e.g., COCO, ImageNet, AFHQ,
Landscape) . It features images synthesized by 25 distinct methods,
including 13 GANSs (e.g., StyleGAN3, StyleGAN2, ProGAN), 7 Diffusion
models (e.g., DDPM, Latent Diffusion, LaMA), and 5 other generators
(e.g., CIPS, Palette). To ensure real-world applicability, images undergo
impairments like random cropping, resizing, and JPEG compression
according to IEEE VIP Cup 2022 standards.

CIFAKE [181] consists of 120,000 images, split evenly between real
and synthetic images. The real images are taken from the CIFAR-10
[197] dataset, comprising 60,000 32x32 RGB images across ten classes:
airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck,
with 50,000 images used for training and 10,000 for testing. The
synthetic images are generated using the CompVis Stable Diffusion
model (version 1.4), which is trained on subsets of the LAION-5B
[189] dataset. The generation process involves reverse diffusion from
noise to create 6,000 images per class, mimicking the CIFAR-10 [197]
dataset. Similar to the real images, 50,000 synthetic images are used for
training and 10,000 for testing, with labels indicating their synthetic
nature.

Genlmage [182] is designed to evaluate detectors’ ability to
distinguish between Al-generated and real images. It includes 2,681,167
images, with 1,331,167 real images from ImageNet and 1,350,000 fake
images generated using eight models: BigGAN, GLIDE, VQDM, Stable
Diffusion V1.4, Stable Diffusion V1.5, ADM, Midjourney, and Wukong.
The images are balanced across ImageNet’s 1000 classes, with specific
allocations for training and testing. Each model generates a nearly
equal number of images per class, ensuring no overlap in real images.
The dataset features high variability and realism, particularly in
animals and plants, providing a robust basis for developing detection
models.

Fake2M [183] dataset is a large-scale collection of over 2 million
Al-generated images. These images are created using three different
models: Stable Diffusion v1.5, IF, and StyleGAN3. The dataset aims to
investigate whether models can distinguish Al-generated images from
real ones.

DiFF [180] comprises over 500,000 images synthesized using
thirteen distinct generation methods under four conditions, leveraging
30,000 textual and visual prompts to ensure high fidelity and semantic
consistency. The dataset includes pristine images from 1,070 celebrities,
curated from sources like VoxCeleb2 and CelebA, totaling 23,661
images. Prompts, derived from these pristine images, include original
and modified textual prompts as well as visual prompts. The dataset
covers four categories of diffusion models: Text-to-Image (T2I), Image-
to-Image (I2I), Face Swapping (FS), and Face Editing (FE), employing
methods like Midjourney, Stable Diffusion XL, DreamBooth, DiffFace,
and others to generate the forged images.

WildFake [184] is designed to assess the generalizability and
robustness of fake image detectors. Developed with diverse content
from open-source websites and generative models, it provides a
comprehensive set of high-quality fake images. It includes images
from DMs, GANs, and other generators, with categories such as
"Early” and "Latest" models. The dataset also features nine kinds of
DMs generators and various fine-tuning strategies for SD-based
generators. Images were collected using a generation pipeline from
platforms like Civitai and Midjourney, ensuring a representative
sample of real-world quality. Real images were sourced from datasets
like COCO, FFHQ, and Laion-5B. WildFake contains 3,694,313 images,
with 1,013,446 real and 2,680,867 fake images, split into training and
testing sets in a 4:1 ratio.

B. Video Datasets

In this section, we review key video datasets that have been pivotal
in advancing state-of-the-art AI models. These resources Offer diverse
video-text pairs, high-resolution clips, and specialized content, each
contributing uniquely to the progress of Al-driven video technology.
For a detailed comparison, refer to Table VII, which summarizes the
characteristics and scope of these datasets.

YT-Tem-180M [198] was collected from 6 million public YouTube
videos, totaling 180 million clips, and annotated by ASR. It includes
diverse content such as instructional lifestyle vlogs, and auto-
suggested videos on topics. Videos were filtered to exclude those an
English ASR track, over 20 minutes long, in 'ungrounded” categories, or
with thumbnails to contain objects. Each video was split into segments
of an image frame and corresponding spoken words, resulting in 180
million segments.

WebVid-2M [199] is a large-scale video-text pretraining dataset
consisting of 2.5 million video-text pairs. The average length of each
video is 18.0 seconds, and the average caption length is 12.0 words.
The raw descriptions for each video are collected from the Alt-text
HTML attribute associated with web images. This dataset was scraped
from the web using a method similar to Google Conceptual Captions
(CC3M), which includes over 10% of images that are video thumbnails.
WebVid-2M captions are manually generated, well-formed sentences
aligned with the video content, contrasting with the HowTo100M
[105] dataset, which contains incomplete sentences from continuous
narration that may not be temporally aligned with the video.

CATER-GEN-v1 [151] is a synthetic dataset set in a 3D
environment, derived from CATER [210], featuring two objects (cone
and snitch) and a large table plane. It includes four atomic actions:
"rotate", "contain", "pick-place”, and "slide", with each video containing
one or two actions. Descriptions are generated using predefined
templates, with a resolution of 256x256 pixels. The dataset includes

3,500 training pairs and 1,500 testing pairs.

CATER-GEN-v2 [151] is a more complex version of CATER-
GEN-v1, containing 3 to 8 objects per video, each with randomly chosen
attributes from five shapes, three sizes, nine colors, and two materials.
The actions are the same as in CATER-GEN-v1, but descriptions are
designed to create ambiguity by omitting certain attributes. The video
resolution is 256x256 pixels, and the dataset includes 24,000 training
pairs and 6,000 testing pairs.

Internvid [202] is a video-centric multimodal dataset created
for large-scale video-language learning, featuring high temporal
dynamics, diverse semantics, and strong video-text correlations. It
includes 7 million YouTube video-text correlations. It includes 7 million
YouTube videos with an average duration of 6.4 minutes, covering
16 topics. Videos were collected based on popularity and action-
related queries, ensuring diversity by including various countries
and languages. Each video is segmented into clips, resulting in 234
million clips from 2s to more than 30s duration, which were captioned
using a multiscale method focusing on common objects and actions.
InternVid emphasizes high resolution, with 85% of videos at 720P, and
provides comprehensive multimodal data including audio, metadata,
and subtitles. The dataset is notable for its action-oriented content,
containing significantly more verbs compared to other datasets, and
includes 7.1 million interleaved video-text data pairs for in-context
learning.

FlintstonesHD [153] is a densely annotated long video dataset
created to promote the development of long video generation. The
dataset is built from the original Flintstones cartoon, containing
166 episodes with an average of 38,000 frames per episode, each at
a resolution of 1440 x 1080 pixels. Unlike existing video datasets,
FlintstonesHD addresses issues such as short video lengths, low
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TABLE VII. ViDEO DATASETS. DATASETS WITH GREY BACKGROUND ARE USED IN A AI-GENERATED VIDEOS DETECTION

Avglen Duration

Dataset Year Source Size Domain Resolution Text Unique Features
(sec) (hrs)
. Filters to exclude non-English
YT-Tem-180M YouTube, 180M Videos -
[198] 2021 HowTol00M 180M Text Open ASR ASR and visuall «1.1ngrounded»
categories
. 2.5M Videos Manually generated captions,
WebVid-2M [199] - 2021 Web 2.5M Text Open 360p Manual 180 13K aligned with video content
WebVid-10M 10M Videos g Manually generated captions,
[199] 2021 Web 10M Text Open 360p Alt-Text 18.0 52K aligned with video content
. ~ K Vi Predefi ic, simpl i
CATER-GEN-v1 2022  Synthetic 3D objects 5K Video Geometric 256p redefined - - Synthetic, s1r.np ¢ §cenes with
[151] 5K Text template atomic actions
CATER-GEN-v2 . . 30K Video . Predefined Increased complexity with more
[151] 2022  Synthetic 3D objects 30K Text Geometric 256p Template objects and attributes
. 35,666 High-quality, detailed text
CelebV-HQ [200] 2022 Web Videos Face 512p Manual ~ 3to 20 65 descriptions
HD-VILA-100M 5457 YouTube 103MVideos () 720p ASR 134 3715K High-quality alignment of
[201] 103M Text videos and transcriptions
71M Videos 360p Action-oriented, diverse
Internvid [202] 2023 YouTube 2 34M clips Open 512p Generated 11.7 760.3K languages, and high video-text
P 720p correlation
FlintstonesHD 2023  Flintstones cartoon 166 episodes ~ Cartoon  1440x1080  Generated - - DenselAy annotated.for long
[153] video generation
o 70K Videos Semi-Auto High-quality, detailed text
Celebv-text [203] 2023 Web 1.4M Text Face >12p+ Generated <58 279 descriptions
HD-VG-130M 5095 YouTube 130M Videos Open 720p Generated ~ ~5.1 184K ngh—def1n1thn, single-scene
[204] 130M Text clips
Youku-mPLUG 10M Videos Focused on advancing Chinese
202 Y latf - - 4.2 150K
[205] 023 ouku platform 10M Text Open > 50 multimodal LLMs
L6TM Extensive prompts with
VidProM [206] 2024 Pika Discord prompts Open - Manual - . .
6.69M Videos semantic uniqueness
YouTube, Videvo, . . . .
MiraData [207] 2024  Pixabay, Pexels HD- Open 720p Generated 72.1 16K High Vlsuiqzil:ltsy’ detailed
VILA-100M P
Kinetics-400 Youku- .
GenVideo [162] 2024 mPLUG MSR-VTT - 2.'31M Open ° Automatic 2to6 Leellrs ! re?l il e
. Videos across diverse scenes
Video Gen Methods
ExposingAl- 2004 -MSVD, Potat1 Ali- 9K Videos Open . P — : ) H. 265 compression and .qua.hty
Video [160] vilab,ZScope T2V-zero degradation simulation
Synth-vid-detect MIT, Video-ACID Gen . } . } _ H. 265 compression Out-of-
[159] 2024 Video Methods L Vit ;22 o distribution test set
GOT, Youtube_vos2 . Collection from various SOTA
GVD [163] 2024 Gen Video Methods Open Automatic models
MSVD, MSR-VTT 964 Videos . Diversity in forgery targets,
GVF [164] 2024 Gen Video Methods 964 Text Cpe LTI scenes, and behaviors
InternVid, HD-VG- 256p .
GenVidDet [165] 2024 130M Gen Video 2.'66M Open 512p Automatic - 4442 R e
Videos content
Methods 720p
A , SVD-XT ~2.826K . Out-domain testing with various
TOINR [167] 2024 YouTube Videos Open - Automatic - e ks
SORA, Pika, GEN-2 g
70.8M Videos . High-quality captions with
Panda-70m [208] 2024 HD-VILA-100M 70.8M Text Open 720p Automatic 8.5s 166.8K significant improvements in
: downstream tasks
) Comprehensive with vision
27M Videos 5 to 30 . . .
VAST-27M [209] 2024 HD-VILA-100M 997M Text Open - Generated sec - audio, and omni-modality

captions
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resolution, and coarse annotations. The image captioning model
GIT2 [211] was used to generate dense captions for each frame, with
manual filtering to correct errors, thus providing detailed annotations
that capture movement and story nuances. This dataset serves as a
benchmark for improving long video generation.

Celebv-text [203] is a large-scale facial text-video dataset aimed
at providing high-quality video samples with relevant, diverse text
descriptions. Constructed through data collection and processing,
data annotation, and semi-auto text generation, it features 70, 000
video clips totaling around 279 hours. Videos were sourced from the
internet, using queries like human names and movie titles, excluding
low-resolution and short clips, and processed to maintain high
quality without upsampling or downsampling. Annotations include
static attributes like general appearance and light conditions, and
dynamic attributes like actions and emotions, with both automatic
and manual methods used for accuracy. Texts were generated using
a combination of manual descriptions and auto-generated templates
based on common grammar structures, resulting in longer and more
detailed text descriptions compared to other datasets. CelebV-Text
surpasses existing datasets like MM-Vox [212] and CelebV-HQ [200] in
scale, resolution, and text-video relevance, offering a comprehensive
resource for facial video analysis.

VidProM [206] is a large-scale dataset for text-to-video diffusion
models, collected from Pika Discord channels between July 2023 and
February 2024.It includes 1,672,243 unique text-to-video prompts,
embedded with 3072-dimensional embeddings using OpenAl’s text-
embedding-3-large API. The dataset includes NSFW probabilities
assigned using the Detoxify model, with less than 0.5% of prompts
flagged as potentially unsafe. It features 6.69 million videos generated
by Pika, VideoCraft2, Text2Video-Zero, and ModelScope, involving
significant computational resources. After filtering for semantic
uniqueness, VidProM retains 1,038,805 unique prompts. Compared to
DiffusionDB, VidProM has 40.6% more semantically unique prompts
and supports longer, more complex prompts due to its advanced
embedding model. VidProM includes videos generated by four state-
of-the-art models, resulting in over 14 million seconds of video content.
VidProM’s extensive video content and complex prompts, requiring
dynamic and temporal descriptions, make it a valuable resource for
developing text-to-video generative models.

MiraData [207] is a large-scale text-video dataset with long
durations and detailed structured captions. The dataset, finalized
through a five-step process, sources videos from YouTube, Videvo,
Pixabay, and Pexels to ensure diverse content and high visual quality.
From YouTube, 156 high-quality channels were selected, resulting in
68K videos and 173K clips post-processing. Additional videos were
sourced from HD-VILA-100M, Videvo (63K), Pixabay (43K), and Pexels
(318K). Video clips were split and stitched using models like Qwen-
VL-Chat and DINOv2, ensuring semantic coherence and content
continuity. MiraData provides five versions of filtered data based on
video color, aesthetic quality, motion strength, and NSFW content,
with 788K to 9K clips. Captions were generated using GPT-4V,
resulting in dense and structured descriptions with average lengths of
90 and 214 words respectively. MiraData surpasses previous datasets
in visual quality and motion strength, making it ideal for text-to-video
generation tasks.

GenVideo [162] is a large-scale dataset developed to evaluate
the generalizability and robustness of Al-generated video detection
models. The training set contains 2, 294, 594 video clips, including 1,
213, 511 real and 1, 081, 083 fake videos, while the testing set includes
19, 588 video clips, with 10, 000 real and 8, 588 fake videos. The dataset
features high-quality fake videos sourced from open-source websites
and various pre-trained models, covering a wide range of scenes
such as landscapes, people, buildings, and objects. Video duration’s

range from 2 to 6 seconds, with diverse aspect ratios. Real videos are
sourced from datasets like Kinetics-400, Youku-mPLUG, and MSR-
VTT [213]. Fake videos are generated using diffusion-based models,
auto-regressive models, and other methods such as VideoPoet, Emu,
Sora, VideoCrafter, latent flow diffusion models, masked generative
video transformer, and autoregressive models. Additionally, sources
include external web scraping and service-based methods like the Pika
website. This diverse and comprehensive collection aims to enhance
the understanding and detection of Al-generated videos across
numerous real-world contexts.

ExposingAl-Video [160] is composed of 1,000 natural videos
sourced from the MSVD [214] dataset, paired with 1,000 fake videos
generated using four advanced diffusion-based video generators,
resulting in 96,000 fake frames. The dataset offers diverse content
driven by text prompts, featuring rich motion information distinct from
static images. It includes videos generated by models such as ali-vilab,
zeroscope, potatl, and a zero-shot text-to-video model, each providing
unique configurations. Additionally, the dataset incorporates three
video post-processing operations—H.265 ABR compression, H.265
CRF compression, and Bit Error—to simulate quality degradation for
robustness evaluation.

Synth-vid-detect [159] consists of both real and synthetic videos
for training and evaluation. It includes 7,654 real videos for training,
784 for validation, and 1,661 for testing, sourced from the Moments
in Time (MIT) [215] and Video-ACID [216] datasets. The synthetic
videos, totaling 6,197 for training, 624 for validation, and 1,429 for
testing, were generated using Luma, VideoCrafter-v1l, CogVideo, and
Stable Video Diffusion, with diverse scenes and activities represented.
All videos were compressed using H.264 at a constant rate factor of 23.
For testing, an exclusive set of prompts and videos was used to avoid
overlap with the training data. Additionally, the dataset includes an
out-of-distribution, test-only set of 401 synthetic videos generated by
Sora, Pika, and VideoCrafter-v2.

Generated Video Dataset (GVD) [163] includes 11,618 video
samples produced by 11 different state-of-the-art generator models.
These models generate videos using either T2V or 12V techniques. The
dataset was primarily collected from the Discord platform, where users
share videos generated by various models. For training and validation,
550 T2V-generated videos from Moonvalley [217] and 550 real videos
from the YouTube_vos2 [218] dataset were used. All generated videos
not used in training and validation are designated for testing, with real
test videos sourced from the GOT [219] dataset.

GeneratedVideoForensics (GVF) [164] dataset consists of 964
triples, each containing a real video, a corresponding text prompt, and
a video generated by one of four different open-source text-to-video
generation models: Text2Video-zero, ModelScopeT2V, ZeroScope,
and Show-1. These models cover various forgery targets, scenes,
behaviors, and actions, ensuring the dataset’s diversity. The real
videos and prompts were collected from MSVD [214] and MSR-VTT
[213] datasets, with a focus on simulating realistic video distributions
across spatial and temporal dimensions. It also includes vidoes from
most popular commercial models like OpenAI’s Sora, Pika, Gen-2 and
Google’s Veo.

GenVidDet [165] is a large-scale video dataset created for Al-
generated video detection, comprising over 2.66 million clips with
more than 4442 hours of content. It includes real videos sourced from
the InternVid [202] and HD-VG-130M [204] datasets, totaling over
1.46 million clips, and Al-generated videos from the VidProM dataset
using four different models, adding approximately 1.12 million clips.
Additionally, new Al-generated videos were created using the latest
models like Open-Sora, StreamingT2V and DynamiCrafter to enhance
the dataset’s diversity.
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Fig. 11. Overview of trends and challenges in the generation and detection of Al-generated image and video samples.

Turns Out ’'m Not Real (TOINR) [167] dataset was constructed
to evaluate a method using public video generation tools, including
Stable Video Diffusion (SVD), Pika, Gen-2, and SORA. The dataset
includes 1,000 real video clips from the ImageNet Video Visual
Relation Detection (VidVRD) [220] dataset and 1,000 fake video clips
generated with SVD-XT [89]. It also comprises an additional real and
fake clips for out-domain testing: 107 real (VidVRD) and 107 fake clips
generated with Pika, 107 (VidVRD) real and 107 fake clips generated
with Gen-2, and 207 real and 191 fake clips sourced from YouTube and
SORA website.

HD-VILA-100M [201] is a high-resolution and diversified video-
language dataset designed to overcome limitations in existing datasets.
Introduced to aid tasks such as Text-to-video retrieval and video
QA, it comprises 103 million video clip and sentence pairs from 3.3
million videos, totaling 371.5K hours. Sourced from diverse YouTube
content, including professional channels like BBC Earth and National
Geography, HD-VILA-100M emphasizes quality and alignment
of videos and transcriptions. Only videos with subtitles and 720p
resolution were included, resulting in a final set of 3.3 million videos,
balanced across 15 categories. For video-text pairing, the dataset
utilizes video transcriptions instead of manual annotations, offering
richer information. Subtitles, often generated by ASR, were split into
complete sentences using an off-the-shelf tool. Sentences were aligned
with video clips using Dynamic Time Warping, producing pairs
averaging 13.4 seconds in length and 32.5 words per sentence.

HD-VG-130M [204] is a large-scale dataset for Text-to-video
generation, comprising 130 million text-video pairs from the open
domain. Created to address limitations in existing datasets, it
features high-definition (720p), widescreen, and watermark-free
videos. Collected from YouTube, the videos were processed using
PySceneDetect for scene detection, resulting in single-scene clips of less
than 20 seconds each. Captions were generated using BLIP-2, ensuring
that descriptions, typically around 10 words, are representative of the
visual content. Covering 15 categories, HD-VG-130M provides diverse
and high-quality data for training video generation models.

Youku-mPLUG [205] is the first Chinese video-language
pretraining dataset, released in 2023 and collected from the Youku
video-sharing platform. It comprises 10 million high-quality Chinese
video-text pairs filtered from 400 million raw videos, covering 45
diverse categories with an average video length of 54.2 seconds. This
dataset was created to advance Vision-language pre-training (VLP)
and multimodal Large language models (LLMs) within the Chinese

community. Strict criteria for safety, diversity, and quality were
applied, involving multi-level risk detection to eliminate high-risk
content and video fingerprinting to ensure a balanced distribution.
Additionally, the dataset includes 0.3 million videos for downstream
benchmarks, designed to assess video-text retrieval, video captioning,
and video category classification tasks.

Panda-70m [208] is a large-scale video dataset created for video
captioning, video and text retrieval, and text-driven video generation.
It consists of 70 million high-resolution, semantically coherent video
clips with captions. The dataset was developed from 3.8 million long
videos collected from HD-VILA-100M [201]. To generate accurate
captions, a two-stage semantics-aware splitting algorithm was
used, followed by multiple cross-modality teacher models to predict
candidate captions. A subset of 100,000 videos was manually annotated
to fine-tune a retrieval model, which then selected the best captions
for the entire dataset. Panda-70M addresses the challenge of collecting
high-quality video-text data and shows significant improvements in
downstream tasks. The dataset primarily contains vocal-intensive
videos such as news, TV shows, and documentaries.

VAST-27M [209] consists of a total of 27 million video clips
covering diverse categories, each paired with 11 captions (5 vision,
5 audio, and 1 omni-modality). The average lengths of vision, audio,
and omni-modality captions are 12.5, 7.2, and 32.4 words respectively.
The dataset bridges various modalities including vision, audio, and
subtitles in videos. The clips were selected from the HD-VILA-100M
dataset [201], ensuring each clip is between 5 and 30 seconds long and
contains all three modalities. Vision captions were generated using a
model trained on corpora such as MSCOCO, VATEX, MSRVTT, and
MSVD [214], while audio captions were generated using VALOR-1M
and WavCaps datasets. An LLM, Vicuna-13b, was used to integrate
these captions into a single omni-modality caption. VAST-27M spans
over 15 categories, including music, gaming, education, entertainment,
and animals. its comprehensiveness, the dataset may inherit biases
from the corpora and models used in its creation, highlighting the
need for more diverse and larger-scale omni-modality corpora.

VI. CHALLENGES AND FUTURE TRENDS

Throughout this state-of-the-art review we have analysed the most
recent approaches and methodologies for the generation and detection
of synthetic video and image samples. This has given us a global view
of the area, as well as a glimpse of current research trends and the
challenges researchers will have to face in the coming years, see Fig. 11.
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First of all, we will focus on analysing the trends that will drive

research in the area in the coming years, based on the results obtained
from this analysis.

1.

Sample generation with diffusion models, where the diffusion
process in these models involves iterating over the input data
and gradually refining the generation to fit a target distribution
or to achieve the desired effect. As we have been able to observe
throughout the different sections related to the generation of
samples, whether video or image, the diffusion models seem to
be predominating over the rest of the generation techniques, such
as autoencoders or GANs. Taking into account all the research
being carried out in this domain, it would not be surprising to see
it monopolises multimedia content generation techniques in the
coming years.

Zero-Shot Learning. This learning approach is a game changer,
as it allows generative models to create content in new domains,
even with entirely new features, without needing to be trained with
data from those exact situations. This makes it possible, within
generative techniques, to generate a wide range of content, even
when a large amount of labelled data is not available. But it remains
difficult to develop models capable of accurately understanding
and generating content in completely new contexts. Regarding
detection, zero-shot learning has the potential to help identify AI-
generated content in many different data types and formats, even
in the absence of huge curated datasets. However, the wide variety
of synthetic content creation methods makes it difficult to create
perfectly adapted detection models. Further research is needed to
determine how to improve the generalisability of these models.

Interpretability and Transparency. As the content generated
by AI becomes more sophisticated, it becomes increasingly
important to ensure that detection models are not only effective,
but also easy to understand. Users need to be convinced that the
model is making the right decisions, which means that the model
needs to provide clear and understandable reasons for why it has
identified something as synthetic. In addition, these techniques
allow us to understand whether the features that the models
are using to achieve at the output are adequate or whether the
system has deficiencies or biases. Therefore, the application of
explainability techniques has many advantages.

Multimodal data generation. As we have seen in Section V,
multimodal sample generation techniques are the least explored
of all. The main reason may be their complexity, as a very precise
synchronisation between video and audio has to be achieved.
However, it is quite possible that this approach will start to become
more relevant, due to the opportunities it presents. Regarding
synthetic multimodal data detection techniques, research will
be extremely limited until quality datasets are available to train
robust models, capable of being applied to real situations.

Model robustness. Detection models must be able to robustly
withstand various transformations and adversarial attacks, such
as image compression, blurring or text paraphrasing, which
can significantly degrade detection performance. The ability
to withstand such manipulations is crucial for the reliable
identification of synthetic content in various real-world scenarios.
These types of distortions can effectively compromise a model’s
ability to correctly identify synthetic content. So being able to
overcome these challenges is essential to ensure that the model
works reliably in all kinds of scenarios.

Finally, we are going explore the different challenges that the

field of video and image generation is likely to face. This review
has highlighted several weaknesses that must be addressed, as they
represents significant obstacles for future research in this domain.

1. Temporal Consistency. One of the main problems in the
generation of synthetic video samples is the formation of
artefacts or inconsistencies between the created frames. Smooth
and realistic motion patterns are essential for video sequences,
however generative models may find it difficult to maintain this
from frame to frame. In addition, inconsistent frame transitions
can lead to visual artifacts such as flicker, which affect the realism
of the generated content. Although advances in techniques such
as Implicit Neural Representations (INR), interplacing of multiple
temporal attention layers, fully fine tuning on video datasets, as
well as hierarchical discriminators have shown promise, further
research is necessary to achieve smooth and realistic video
sequences.

2. Computational Requirements. Video generation and detection
involves processing high dimensional data, which significantly
increases the computational requirements for training and
inference, which can be an obstacle for small organizations.
Developing more efficient algorithms and parallelization
techniques for video generation is an ongoing challenge.

3. Constant adaptation: as we have seen in this survey, there are
two main lines of research: the generation of synthetic samples
and their detection techniques. Every day there are new, more
sophisticated generation techniques that generate more realistic
samples, so new detection models that are capable of distinguishing
these synthetic samples from the real ones have to be constantly
developed, i.e. it is a race. As well as the development of new
quality datasets that will be the starting point of the detection
systems. Another approach may be the periodic retraining of
models. Whether to simply re-train a model from scratch or
continue to update it through continuous learning is an ongoing
challenge that researchers are still working on.

4. Generalizability of Detection Models. A key challenge for
detection models is to be able to handle new data and new models.
Generative Al models (GAIMs) evolve rapidly and if a detection
model is too focused on the specific data it has been trained on,
it tends to struggle with new, unseen data and updated models.
To remain relevant and effective, detection models must be
able to generalise to different datasets and types of generative
architectures.

5. Ethical Aspects. The realistic nature of Al-generated content
raises serious ethical questions, particularly when it comes to
potential misuse. Deepfakes, fake news and other misleading
content can cause real harm. To combat this, it is not enough
to develop effective detection methods. We also need ethical
guidelines, regulations and access controls to prevent AI
technology from being used in harmful ways.

VII. CONCLUSIONS

Generative Al has witnessed exponential growth in recent years,
exemplified by tools like ChatGPT that showcase its advancing
capabilities. Multimedia content generation models have achieved
remarkable performance across a variety of tasks, offering
substantial benefits to domains such as entertainment, education,
and cybersecurity. However, these advancements also introduce risks
that cannot be ignored. Alongside the development of new generative
Al models for producing high-quality multimedia content, there is a
critical need to create detection systems that can be effectively applied
in real-world situations.

This review aims to address these dual objectives by providing a
comprehensive analysis of synthetic image and video generation
techniques, as well as the methods used for their detection. It also

_29_



International Journal of Interactive Multimedia and Artificial Intelligence

examines the principal datasets available in the current state of the art
and explores future trends and challenges faced by researchers in the
field. By critically evaluating the existing technologies for generating
and detecting multimedia content, we seek to define the research
directions that should be pursued in the coming years. The insights
gathered from this survey are intended to facilitate and stimulate
further research on generative Al techniques for multimedia content,
ultimately contributing to both the advancement of the field and the
mitigation of associated risks.
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