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Abstract

In the last couple of years, there has been an increasing need for Human-Computer Interaction (HCI) systems 
that do not require touching the devices to control them, such as ATMs, self service kiosks in airports, terminals 
in public offices, among others. The use of hand gestures offers a natural alternative to achieve control without 
touching the devices. This paper presents a solution that allows the recognition of hand gestures by analyzing 
three-dimensional landmarks using deep learning. These landmarks are extracted by using a model created 
with machine learning techniques from a single standard RGB camera in order to define the skeleton of the 
hand with 21 landmarks distributed as follows: one on the wrist and four on each finger. This study proposes 
a deep neural network that was trained with 9 gestures receiving as input the 21 points of the hand. One of 
the main contributions, that considerably improves the performance, is a first layer of normalization and 
transformation of the landmarks. In our experimental analysis, we reach an accuracy of 99.87% recognizing of 
9 hand gestures.
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I. Introduction

T here is a high interest in using LiDAR scanners (Light Detection 
and Ranging) which use beams of light to measure distance to 

objects, allowing to acquire a three-dimensional point cloud of the 
environment [1]. The information acquired by this type of scanner 
combined with object color information is interesting for several 
applications (e.g., construction of three-dimensional models from 
the scanning of real objects [2], identification of objects within an 
environment [3], or self-driving cars [4]). Devices that combine color 
information (standard RGB cameras) and the data obtained by LiDAR 
scanners are more often called depth cameras or D-RGB (Depth - Red 
Green Blue) sensors. Among them we can find Kinect for Windows, 
Leap Motion Controller o Intel RealSense, which can be found in offices 
and homes as they are affordable. However, they are not consumer 
devices, as RGB cameras are.

If we get into the topic of Human–Computer Interaction and the 
constant effort to incorporate increasingly natural interactions, we 
find the commands by voice or through gestures of the face, body or 
hands. Let’s focus on Computer Vision and the area of study related 
to hand gestures, particularly to one aimed at controlling Natural User 
Interfaces (NUI).

The identification of hand gestures can be interesting to create 
user interfaces with the aim of achieving better experiences, such as 
in augmented reality applications [5] overlapping virtual contents 
or digital information in an aligned way with the real image of the 
hand or applications to control devices. This identification of hand 
gestures is not trivial considering the hands and their fingers are, 
generally, occluded from each other, and their contours do not have 
high contrast.

In this work we propose the identification of 9 hand gestures by 
interpreting a cloud of 3D reference points obtained through a standard 
RGB camera. We introduce a neural network architecture which has 
the follow main advantages: a small number of hidden layers and high 
prediction hit rate of hand gestures. In this way, we achieve good 
results in predictions and the possibility of working on CPU not only 
to make predictions but also to train the network.

The rest of the paper is organized as follows: section II describes 
the Related Work, section III explains our Proposed Work, section IV 
explains the results and section V includes the conclusions.

A. Contributions
A deep learning model has been developed to recognize 9 hand 

gestures by analyzing a point cloud of sparse 3D landmarks of the 
hand. The network architecture has at its input a transformation and 
normalization layer that allows achieving very good classification hit 
rates, even when using third party datasets containing different user 
profiles and variable environments.
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II. Related Work

A. Point Cloud
A point cloud is a fancy name for a group of points in space (here 

we will refer to three-dimensional space, but the concept is extensible 
to any dimension). There are different ways to collect point clouds 
from the objects that exist in an environment, among the most 
common are LiDAR scanners, depth cameras or some models created 
with automatic learning to infer reference points for hands [6], faces 
[7] or skeletons of bodies [8].

Point clouds have been applied mainly in detecting objects as shown 
in the works described below. In [9] a framework called PointRCNN 
has been developed to detect 3D objects through point clouds. This 
framework consists of 2 phases: in the first one 3D bounding boxes 
are used to generate segmentation masks in a bottom-up architecture. 
The second phase is essential to improve the efficiency of this 
approach with the combination of semantic and local spatial features. 
In [10] VoxelNet is presented, which is a deep network to perform 
3D detections, with the particularity of joining the feature extraction 
processes and the prediction of 3D bounding boxes in one phase, 
unlike PointRCNN where they were carried out in 2 phases. One of the 
main advantages of VoxelNet is that it does not perform hand-crafted 
feature extraction, which can be understood as features extracted 
from separate images according to a certain manually predefined 
algorithm based on the knowledge of experts. Features extracted with 
Scale-Invariant Feature Transform (SIFT) and Histogram of Oriented 
Gradients (HOG) are commonly known examples of hand-crafted 
features. Although the previous cases allowed to perform object 
recognition in a generic way, studies have also been done to focus 
on the detection of a specific object, that is the case of this work [11] 
where point cloud data has been applied to perform a vehicle detection 
in order to integrate it into an autonomous driving system. To achieve 
this goal, the authors have proposed a 3D convolutional network to 
improve performance in the point cloud detection task. However, they 
have also been used in gesture recognition, i.e., in [12] a recognition 
of hand gestures based on 3D and 2D representations to control a 
virtual world in 3D was proposed. The 3D features are based on the 
finger position in the point cloud, while the 2D features come from 
the outline of the hand drawn from a series of images. This system has 
the outstanding characteristics that it can recognize both static and 
dynamic gestures, where the algorithm used to classify static gestures 
has been Support Vector Machine, while Dynamic Time Warping has 
been used for dynamic gestures. In addition, in the evaluation process 
of this work, a 95% success rate was obtained for static gestures and 
81.34% for dynamic gestures.

B. Classification and Segmentation of Point Cloud
Once a point cloud has been collected, it may be necessary to 

isolate the different objects, that is, to perform a segmentation, 
or also to classify each of those objects. Deep Learning has a good 
performance for classification of point clouds and this is demonstrated 
by the Multilayer Perceptron (MLP) called PointNet [13] that achieves 
an accuracy of between 80% and 90%for classification of point clouds 
using the dataset ModelNet40 [14] which contains 40 classes of objects 
such as chairs, desks, beds, tables and others. The point cloud of a 
chair is shown in Fig. 1.

PointNet has been applied in many studies, some examples are 
described then. This work [15] aims to improve PointNet to increase 
object classification performance which is the main use of this model. 
To achieve this objective, two actions have been carried out: one is 
to increase the number of hidden layers of the architecture and the 
other is to combine the softmax loss function with center loss. In this 
way, an accuracy of 89.95% has been obtained. In [16] the PointNet 

network has been trained in order to verify the performance of this 
deep network in the human body segmentation task. To perform the 
segmentation in PointNet, the SMPL model is used, which offers a 
realistic 3D model of the human body. In this work two types of tasks 
have been approached: a segmentation and a classification task. In 
each task a different simplification of the PointNet architecture has 
been used. In the segmentation task, the points that have been located 
on the surface of the body are obtained, while in the classification 
task a binary classification is carried out to identify the body of a man 
and a woman. On the assumption of gesture recognition, Ge et al [17] 
propose a PointNet that has the purpose of processing the 3D point 
clouds to obtain a representation of the pose of the hand in 3D. This 
system is based on analyzing the 3D point cloud to obtain an estimate 
of the joints of the hand in 3D and to get better results, the points have 
been normalized so that it is insensitive to the variations that may 
arise from the location of each one of them. Furthermore, it has been 
possible to improve the precision of the position of the fingertips using 
a PointNet that obtains the neighboring points of the estimation of the 
location of the fingertips, having as a consequence that the model is 
more robust.

Among jobs that address the challenge of unsupervised learning 
with point clouds, we can find FoldingNet [18] and PointCNN [19].

In the same line appears PointNet++ [20] that adds a neigh-borhood 
of points to capture features that allow to group close points.

There are also works, such as [21], that improve the segmenta-tion 
of the different objects in a point cloud by processing point clouds 
within a temporary space, that is, point clouds obtained from multiple 
instants of consecutive times.

Regarding the work that adjusts, aligns and superimposes a 3D 
model of a hand on the hand detected in a single image, we can find 
[22], which also proposes an approach to the automated collection of 
data from Youtube to incorporate them into the dataset in order to 
include data unrelated to the laboratory.

C. Deep Learning in Gesture Recognition
PointNet is a deep network that has been used in this work 

to perform gesture recognition, but there are other proposals in 
Deep Learning that have also been applied to perform this type of 
recognition. In [23] the aim was to develop a framework to recognize 
human actions applying the Convolutional Neural Network (CNN). 
This system consists of two phases. In the first one the activities that 
involve single-limb are separated from those that are multi-limb to 
perform the classification of said activities in the next phase. In the 
classification stage, two CNNs were used to detect the two types 
of activities that were identified in the previous phase, obtaining 
a 97.88% hit rate. Khari et al [24] use learning transfer to do static 
gesture recognition. In this study, the VGG19 model has been trained 
with RGB and RGB-D images to identify of 24 gestures from the ASL 
dataset. This proposal has been compared with other models such as 
VGG16, CaffeNet or Inception V3, being the presented proposal in this 
work the one with the highest hit rate with 94.8%.

Fig. 1. Point cloud of a chair.
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Another type of gesture recognition is based on using devices or 
sensors, which provide a set of data that are useful for such recognition 
[25]. deepGesture [26] is a methodology that recognizes gestures 
with the arm through the data it receives from the gyroscope and 
accelerometer of an arm band using Convolutional Neural Network 
and Recurrent Neural Network. In this process, the input data obtained 
from the arm band are entered in the Convolutional Neural Network 
to extract the characteristics and then in the layers of the Recurrent 
Neural Network to improve the performance of gesture recognition, 
which has improved the precision of each class by 6%.

III. Proposed Work

The aim of our work is to achieve a hand gesture detection model 
that allows developing solutions to control devices (such as a graphical 
user interface, virtual keyboard or mouse) in a natural and intuitive 
way. In the following we will detail the steps we follow in order to 
approach the solution. The steps we will detail below are the following: 
obtaining a point cloud of the hand, choosing the gestures to be used, 
creating the dataset, normalizing the data, defining the network 
architecture, training and obtaining the model for the predictions.

A. Inference of KeyPoints
This work implements the model Mediapipe hands [6] created with 

automatic learning techniques to infer 21 three-dimensional reference 
points of a hand from the processing of a single image. These 21 points 
(from now on KeyPoints) are located: one on the wrist and 4 more 
points on each finger (as shown in Fig. 2).
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Fig. 2. KeyPoints of a hand.

B. Gesture Selection
In order to make a selection of gestures that users can choose from, 

we have explored gestures from non-verbal communica-tion, sign 
language and related articles to Human-Computer In-teraction. A 
variety of hand gestures are used in natural user in-terfaces and it is 
common to find solutions that use: the tip of the index finger or the 
open palm of the hand to control the mouse; the closed hand (fist) 
followed by the open hand to drag & drop; the thumb up to accept or 
the thumb down to cancel.

We want to obtain a model that recognizes a set of gestures to be 
able to design solutions in the future where users can select one by 
one the gestures for different actions (such as clicking the mouse, 
scrolling, moving the mouse pointer, moving forward or backward in 
a presentation, accepting or canceling). Just by obtaining an identifier 
for each gesture, either a letter or a number, we explored different sign 
languages and selected the following (visualized in the Fig. 3):

• From International Sign language: 1, 4, 5
• From American Sign Language: 9, V, W
• From French Sign Language: A, L, S

Fig. 3. Gesture names: S - 1 - V - W - 4 - 5 - 9 - L - A.

C. Dataset
In order to create our dataset, we requested video recordings from 

10 volunteers. Each of them recorded a single video of approximately 3 
minutes performing the 9 gestures without interrupting the recording. 
All movements were executed under free style, speed and direction 
to the personal liking. Subsequently, all the videos were processed in 
order to extract a sequence of grouped and annotated images for each 
gesture. A total of 39,150 images were obtained in a balanced way 
between gestures and volunteers. The Mediapipe Hands [6] model was 
used to extract the 21 keypoints of the hands from the complete set 
of images. A couple of sample images of this dataset with its detected 
KeyPoints are shown in Fig. 4.

Fig. 4. Example of images to extract KeyPoints.

The dataset consists of a CSV (comma-separated values) file 
containing 39,150 records (4,350 for each of the 9 gestures) with 
the information shown in Fig. 5. Each record has 64 columns of 
information: the name of the gesture plus 21 KeyPoints (x, y, z).

gesture x0 y0 z0 x1 y1 z1 x20 y20 z20

S

1

V

21 KeyPoints

W 4 5

A

9
L

Fig. 5. Stored information.

This dataset is divided into a proportion of 80% for training and 
validation data (31,320 samples), and 20% for testing (7,830 samples).

In addition, we have downloaded 3 external datasets [27], [28] 
and [29] to test our model. Since these datasets do not contain our 9 
gestures, we have combined them to reach a set of 4,500 samples (500 
for each gesture).

D. Data Normalization
After generating the dataset of 39,150 images, data normal-ization 

is performed, which consists of several transformations (translation, 
rotation and scaling) so that KeyPoints are located at the origin of 
three-dimensional space and the middle finger aligned with Y-axis.

Following transformation matrices are used for normalization:

• Matrix (1) to translate to origin.

 (1)

where KeyPoint 0 is (x, y, z) = (kp0x, kp0y, kp0z)



Regular Issue

- 81 -

• Rotation matrix (2) around an arbitrary axis: To align the middle 
finger with Y-axis.

 (2)

where:

Here, u is a unit vector that is perpendicular to the plane formed 
by KeyPoint 9 vector and Y-axis. Knowing that two vectors are 
perpendicular (or orthogonal) when their dot product (or scalar 
product) is equal to zero, then we can calculate the vector u. Or 
it is also possible to use the vector product (or cross product) 
between KeyPoint 9 and Y-axis. To do this, we can use the Rule of 
Sarrus to calculate the 3×3 determinant and thus obtain a vector 
perpendicular to the plane between KeyPoint 9 and Y-axis. Finally, 
we divide it by the norm to obtain a unit vector which is the vector 
u of the previous expressions.

By Rule of Sarrus we obtain a vector (Eq. 3) that, in general, is not 
unitary. We consider that the vector on the Y-axis is unitary, that 
is, it is the vector (0, 1, 0):

 (3)

When we divide by its norm we get the unit vector u, as shown 
in Eq. 4.

 (4)

θ is the angle between the vector formed from the origin to the 
start of the middle finger (i.e. KeyPoint 9) and the unit vector on 
the Y-axis. It can be calculated as given in Eq. 5.

 (5)

• Matrix (6) to rotate palm on the Y-axis so it is aligned with plane 
z = 0.

 (6)

β is the angle on the plane y = 0  of the angle formed between 
KeyPoint 17 and X-axis. In this way, we align the palm with the 
plane z = 0 as shown in Eq. 7.

 (7)

• Rotation matrix on Y-axis to place the palm in a frontal way: we 
use the Ry matrix to rotate 180° over Y-axis as long as the palm is 

in the direction of the negative values of z. To know if the palm 
is facing forward or not, a simple calculation is done by detecting 
where fingertips are facing.

• Mirror with respect to the plane x = 0: Regardless of whether it is 
right or left hand, we want to mirror the hand in such a way that 
the thumb always remains towards positive values of x. It is easy 
to detect if the thumb is to the right or to the left by finding out x 
values of the KeyPoints belonging to the thumb.

• Scaling: The hand is scaled in order that the magnitude |kp0y −
kp9y| is equal to 100. The matrix (8) is used to solve it.

 (8)

To obtain normalized values, operations (shown in Eq. 9) are 
performed with these matrices with each of the 21 KeyPoints of each 
hand.

 (9)

where xn, yn and zn are the coordinates of the normalized KeyPoints.

Bear in mind that, depending on the case, the 180° rotation and/or 
the mirror with respect to the plane x = 0 is also carried out.

To carry out normalization of the KeyPoints, we developed a tool 
that allows visualizing the correct normalization of KeyPoints that 
make up our dataset. In Fig. 6, a hand is shown in its original position 
and in Fig. 7 it is displayed after normalization. Some KeyPoints were 
joined with lines for a clear visualization of the hand’s skeleton.

Fig. 6. Skeleton of a hand in its original position.

Fig. 7. Skeleton of a hand after normalization.
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E. PointNet Network Architecture
There is a type of neural network called PointNet [30], which 

receives in its input layer a point cloud for object classification. In 
general, point clouds are obtained from objects in an environment, 
and the challenge is to be able to classify and/or segment each one of 
them from this point cloud, which is just a bunch of isolated points 
that vaguely describe the structures and surfaces of the objects. The 
following is a brief discussion of some characteristics when classifying 
a point cloud:

• Invariance to permutation: a point cloud is a set of raw data, 
without additional information. It is a collection of (x, y, z) 
coordinates without structure. This makes the data invariant to 
permutations.

• Invariance to transformations: the classification of objects should 
not change if the point cloud undergoes translation and/or rotation 
transformations (not so with scaling).

• Importance between neighboring points: each point is not treated 
independently as the interaction between neighboring points 
contains useful information.

It is important to note that it is common to consider that a point 
cloud has a large number of points. The PointNet authors used in their 
work a cloud of 2048 points for each object, using the ModelNet10 
dataset [14], which contains objects belonging to 10 classes.

PointNet network architecture for classification of a point cloud 
can be visualized and analyzed in [30]. This network takes n entry 
points, each one with dimension 3 belonging to (x, y, z) coordinates. 
The authors propose 2048 points for each object, so it would have 
an input with dimension [2048, 3]. It has two groups of layer called 
T-Net which are also neural networks that perform transformations 
on the data without modifying its dimension. These T-Net subnets are 
composed of temporal convolutions (Conv1D) with ReLU activation, 
batch normalization, 1D Max Pooling and densely connected layers 
(Fully Connected).

After transformations with T-Net combined with the convolu-tion 
layers, a Max Pooling (GlobalMaxPooling1D) is performed, taking the 
global maximum value of the data, decreasing the di-mensionality. It 
is followed by Fully Connected Layers, Dropout layers and a last layer 
with softmax activation function to obtain the scores for k output 
classes. PointNet network uses optimiza-tion with Adam stochastic 
gradient descent method and cross en-tropy as loss function. We 
analyze this network architecture and propose some modifications 
which are discussed below.

F. Modified Network Architecture
T-Net subnets perform affine transformations in data and we 

propose to eliminate them, since our dataset already has different 
transformations that apply a normalization. We also propose to 
include new convolution layers and Fully Connected Layers, leaving 
an architecture as shown in Fig. 8, which was one of the best results. 
Note that the data normalization explained above is carried out 
beforehand.

G. Data Increment
While analyzing a graph of 21 KeyPoints of a hand it can be 

difficult, to the human eye, to identify to which gesture those points 
correspond. It can be considered that 21 KeyPoints are insufficient 
to represent the skeleton of a hand, so we can generate extra data 
by knowing that among certain KeyPoints there is a hand bone (in 
the palm the metacarpaql bones, in the beginning of the fingers the 
proximal phalanges, followed by the middle phalanges and at the tip 
of the fingers the distal phalanges).

In this regard, a new parameter is defined which allows to 
incorporate a certain amount of additional KeyPoints on the bones of 
the hand. This is achieved by calculating lines that join the KeyPoints 
that correspond to the ends of the bones mentioned above. In Fig. 9 
we can see KeyPoints of a hand with the addition of 10 KeyPoints on 
each bone.

H. Training
At this point we have the network architecture defined with the 

Keras library and the dataset with 31,320 samples for training and 
validation. We continue with the training in order to obtain a model 
(in HDF5 format) that allows us to make predictions.

Fig. 9. Hand with 10 extra KeyPoints on each bone.

Keep in mind that we have a total of 39,150 samples in our own 
dataset plus 4,500 samples obtained from third-party image datasets. 
From the 39,150 samples, we separated 31,320 for training and 
validation, and 7,830 for testing. Note that we have two sets of samples 
for testing, one of which was randomly sampled from our own dataset 
and the other has been generated from third-party images.

IV. Experiments and Evaluation

A. Performance of the Proposed Network
Several network trainings were performed modifying param-eters 

such as the number of epochs, learning rate of the Adam optimization 
method and the number of extra KeyPoints on each bone. In Table I are 

Layer Output Shape Param #

InputLayer (None, 21, 3) 0

Conv1D (None, 21, 32) 128

BatchNormalization (None, 21, 32) 128

Activation (None, 21, 32) 0

Conv1D (None, 21, 64) 2112

BatchNormalization (None, 21, 64) 256

Activation (None, 21, 64) 0

GlobalMaxPooling1D (None, 64) 0

Dense (None, 128) 8320

BatchNormalization (None, 128) 512

Activation (None, 128) 0

Dropout (None, 128) 0

Dense (None, 7) 903

Total params:   12,359
Trainable params:    11,911
Non-trainable params: 448

Fig. 8. Proposed network architecture.
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shown the results ordered according to suc-cesses in predictions made 
with the test dataset of KeyPoints be-longing to 7,830 hand samples 
and, in addition, 4500 samples of external datasets. The table shows 
the following: the amount of additional keyPoints added on each 
bone; the learning rate of Adam optimizer; the amount of epochs for 
training with batch size of 32 with a division of 80%/20% for training/
validation; the total of KeyPoints for each hand; the loss in the training 
set af-ter all the epochs; the accuracy with the training set; the loss 
in validation set after all epochs; the accuracy in validation set; the 
success rate in predictions made with a test set of 4,500 sam-ples of 
external datasets; and the success rate in predictions made with a test 
set of 7,830 own samples (independent of the train/val set). The time 
consumed to perform each prediction is 26 mil-liseconds on average 
on an Intel® Core™ i7-1165G7 Processor (without GPU).

B. Metrics
In order to observe the performance of the proposed architec-

ture we will resort to analysis of trained model number 1, 5 and 10 
presented in Table I.

• Model number 1: In order to have a quick approximation to the 
performance of this model, let’s analyze the confusion matrix in 

Fig. 10. Each column represents the number of predictions made 
by this model for each of the 9 gestures, while rows represent the 
true gesture. For these predictions, the own test set composed of 
7,830 samples (870 for each gesture) is used, which is independent 
of set used for training and validation.

tr
ue

 la
be

l

s 870 0 0 0 0 0 0 0 0

1 0 869 0 0 0 0 0 1 0

v 0 2 868 0 0 0 0 0 0

w 0 0 1 867 2 0 0 0 0

4 0 0 0 0 870 0 0 0 0

5 0 0 0 0 0 870 0 0 0

9 0 0 0 0 0 1 869 0 0

L 0 0 0 0 0 0 0 870 0

a 2 0 0 0 0 0 0 1 867

s 1 v w 4 5 9 L a
predited label

Fig. 10. Confusion matrix of model number 1.

By breaking down a little the information of the confusion matrix, 
we can observe the incorrect predictions in Table II where it is 
shown in the first column the gesture predicted by the model, 

TABLE I. 7,830 Predictions Made

#
Extra 

KeyPoints on 
each bone

Learning 
rate

Epochs
Total 

KeyPoints
training 

loss
training 

acc
validation 

loss
validation 

acc

Correct 
predictions (ext 

dataset)

Correct 
predictions (%) 

(ext dataset)

Correct 
predictions 

(own dataset)

Correct 
predictions (%) 
(own dataset)

1 0 0.0005 10 21 0.0068 99.84 % 0.0048 99.95 % 4336 of 4500 96.36 % 7820 of 7830 99.87 %

2 2 0.0005 30 61 0.0085 99.80 % 0.0056 99.89 % 4305 of 4500 95.67 % 7820 of 7830 99.87 %

3 10 0.001 50 221 0.0062 99.85 % 0.0094 99.89 % 4297 of 4500 95.49 % 7820 of 7830 99.87 %

4 0 0.0005 30 21 0.0055 99.88 % 0.0072 99.86 % 4305 of 4500 95.67 % 7819 of 7830 99.86 %

5 5 0.0005 30 121 0.0054 99.90 % 0.0038 99.92 % 4349 of 4500 96.64 % 7819 of 7830 99.86 %

6 0 0.001 30 21 0.0070 99.81 % 0.0027 99.92 % 4315 of 4500 95.89 % 7819 of 7830 99.86 %

7 5 0.001 20 121 0.0084 99.80 % 0.0035 99.92 % 4340 of 4500 96.44 % 7819 of 7830 99.86 %

8 5 0.001 30 121 0.0064 99.86 % 0.0039 99.94 % 4289 of 4500 95.31 % 7819 of 7830 99.86 %

9 10 0.001 30 221 0.0075 99.82 % 0.0073 99.90 % 4296 of 4500 95.47 % 7819 of 7830 99.86 %

10 0 0.0005 50 21 0.0058 99.85 % 0.0050 99.89 % 4320 of 4500 96.00 % 7818 of 7830 99.85 %

TABLE II. Number of Wrong Predictions by Model 1

Said... It was...
Number of wrong 

predictions

L 1 1

L A 1

5 9 1

V W 1

4 W 2

1 V 2

S A 2

TABLE III. Metrics for Training Number 1

gesture precision recall f1-score support

s 0.9977 1.0000 0.9989 870

1 0.9977 0.9989 0.9983 870

v 0.9988 0.9977 0.9983 870

w 1.0000 0.9966 0.9983 870

4 0.9977 1.0000 0.9989 870

5 0.9989 1.0000 0.9994 870

9 1.0000 0.9989 0.9994 870

L 0.9977 1.0000 0.9989 870

a 1.0000 0.9966 0.9983 870

accuracy = 0.9987  for 7830 predictions (870 each class)
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in the second column the true gesture and in the third column 
the number of times that there was confusion. In Table III are 
presented metrics that mean the following:

 - Precision: It provides information about false positives, as 
shown in Eq. 10. It is the ratio between well classified positive 
cases and the total number of predictions made.

 (10)

where:

TP is the number of true positives

FP is the number of false positives.

 - Recall: It indicates the ratio of positive classes that the model 
has been able to predict correctly. To exemplify, if the ratio is 
too low it means that the model missed too many positives. 
Being FN the number of false negatives, recall is defined in 
Eq. 11.

 (11)

 - F1-score: It combines precision and recall in a single value 
and allows to compare the performance between several 
models. F1-score is defined in Eq. 12.

 (12)

 - Support: Number of predictions made for each class.

 - Accuracy: It measures the ratio of cases that the model has 
succeeded, considering all the classes.

From this information we can mention that the model has a precision 
of 100% for the ‘W’, ‘9’ and ‘A’ gestures, which means that in none of 
the predictions made has resulted in the ‘W’, ‘9’ or ‘A’ gesture when 
they were not. This can be verified in the column ‘It was ...’ of Table 
II in which the ‘W’, ‘9’ and ‘A’ gestures do not appear.

On the other hand, in the column ‘Said ...’ of Table II the ‘S’, ‘4’, 
‘5’ and ‘L’ gestures do not appear, which means that they have a 
100% of recall. This means that all predictions made for the ‘S’, ‘4’, 
‘5’ and ‘L’ gestures have been accurate without having incorrect 
predictions.

In Fig. 11, the training metrics for each epoch were recorded, 
including accuracy and loss for training and validation sets. It is 
observed a correct learning of network parameters with the set of 
training with the passage of the epochs and with the validation 
set is observed that after the epoch number 6 does not improve 
performance significantly. It is worth mentioning that in this 
model was used a learning rate of 0.0005 for the optimizer Adam 
and that no extra KeyPoints were added on the hands.
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Fig. 11. Model accuracy and model loss for training number 1.

• Model number 5: For this model and in a comparative mode we 
will only analyze the metrics of Table IV and the graphs of Fig. 
12. We can observe some minimal differences between precision 
and recall with respect to model number 1. However, we can use 
the f1-score metric to make a comparison with which we can 
indicate that the model number 5 has more erroneous predictions 
but is still very close to the performance of the previous model. 
Regarding the metrics during the learning process of the network, 
a similar behavior to the previous model is observed, where the 
performance does not improve considerably after the epoch 
number 10. For this model a learning rate of 0.0005 was used for 
Adam optimizer and 5 extra KeyPoints were added to each bone, 
making a total of 121 KeyPoints for each hand.

TABLE IV. Metrics for Training Number 5

gesture precision recall f1-score support

s 0.9977 1.0000 0.9989 870
1 0.9977 1.0000 0.9989 870
v 0.9988 0.9977 0.9983 870
w 1.0000 0.9954 0.9977 870
4 0.9966 0.9989 0.9977 870
5 0.9977 1.0000 0.9989 870
9 1.0000 1.0000 1.0000 870
L 0.9989 0.9989 0.9989 870
a 1.0000 0.9966 0.9983 870

accuracy = 0.9986  for 7830 predictions (870 each class)
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Fig. 12. Model accuracy and model loss for training number 5.

• Model number 10: In Table V a similar performance to the 
previous models is observed. No noticeable differences in the 
metrics during the learning (Fig. 13).

TABLE V. Metrics for Training Number 10

gesture precision recall f1-score support

s 0.9977 0.9989 0.9983 870
1 0.9977 1.0000 0.9989 870
v 0.9977 0.9977 0.9977 870
w 1.0000 0.9954 0.9977 870
4 0.9966 1.0000 0.9983 870
5 0.9989 0.9989 0.9989 870
9 1.0000 1.0000 1.0000 870
L 0.9989 0.9989 0.9989 870
a 0.9988 0.9966 0.9977 870

accuracy = 0.9985  for 7830 predictions (870 each class)



Regular Issue

- 85 -

model accuracy model loss

epoch

ac
cu

ra
cy

lo
sstrain

val
train
val

0.93

0.94

0 10 20 30 40 50 0 10 20 30 40 50

0.95

0.96

0.97

0.98

0.99

1.00

0.00

0.05

0.10

0.15

0.20

0.25

epoch

Fig. 13. Model accuracy and model loss for training number 10.

The results in Table I show a high performance of the proposed 
network. We detect the extra KeyPoints added on each bone would be 
of little importance, giving an indication that these extra KeyPoints 
do not provide significant information. We consider it would be 
important to include other type of information to the input data, such 
as the flexion angle at each joint and a number that identifies each 
KeyPoint. That is, if we look at Fig. 2 we can see that each KeyPoint 
has a number that identifies it and also on some KeyPoints is defined 
a flexion angle (except in the KeyPoints of the wrist and fingertips 
that do not have a defined angle). In this way, the input data could be 
defined as ( x, y, z, number_kp, angle_joint ) .

C. Comparative Results
In order to compare the prediction accuracy of our model against 

other models, we have chosen our own test set (7,830 samples) and the 
external test set (4,500 samples). It is worth remembering that the own 
set is a random extraction of 20%of samples from our complete dataset 
(39,150 samples) and that the external test set is a collection of samples 
from third party works [27], [28], [29]. This set of external samples was 
made in order to obtain heterogeneous data, since they were extracted 
from images taken in other environments and by other people.

In addition to performing the predictions with our model (model 
number 1 in Table I) on the two test sets, we also use the PointNet 
model [13] trained with Adam optimizer with learning rate of 0.001 
and 20 epochs, and also with a model created from ours, but without 
the initial transformation and normalization layer.

One can appreciate in these results the importance of the 
transformation and normalization layer that is initially applied. It 
provides a significant increase in accuracy when predictions are made 
with widely varying samples from different third party sources.

D. Comparison With ROC and AUC
The Receiver Operating Characteristic (ROC) is a measure of a 

classifier's predictive quality that compares and visualizes the tradeoff 
between True Positive Rate ( ) and False Positive Rate  
( ). ROC curves are typically used in binary classification, 
but one of the ways it can be approached is by binarizing the output 
(per-class). A ROC curve displays the true positive rate on the Y axis 
and the false positive rate on the X axis. The ideal region is therefore 
the top-left corner of the plot, where false positives are zero and true 
positives are one. This leads to Area Under the Curve (AUC), which is 
a metric that relates false positives and true positives. The higher the 
AUC, in general, the better the model.

Fig. 14 presents the ROC curve of our model number 1 (from Table 
1) and shows the high success rate achieved in the predictions. All 
three models predict considerably well with our dataset, as shown in 
Table VI, and the ROC curves are very similar to the one presented in 
Fig. 14. We present the ROC curves of the three models performing the 
predictions with the external dataset. It can be observed that only our 
model with the normalization and transformation layer behaves in an 
acceptable performance. This is shown in Fig. 15, 16 and 17.
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Fig. 14. ROC curves and AUC for our model with own dataset.

TABLE VI. Comparison of Models

Model
Accuracy 

(our dataset)
Accuracy 

(external dataset)

Our model
7820 of 7830 

99.87 %
4336 of 4500 

96.36%

PointNet
7660 of 7830 

97.82 %
2155 of 4500 

47.89%
Our model without 

normalization
7760 of 7830 

99.11 %
1371 of 4500 

30.47 %
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Fig. 15. ROC curves and AUC for our model with external dataset.
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Fig. 16. ROC curves for PointNet model with external dataset.
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Fig. 17. ROC curves for our model without normalization.

V. Conclusion

In this work, we present a new network architecture for hand 
gesture recognition using point cloud. The study was focused on the 
cloud of 3D reference points obtained through a standard RGB camera. 
The new network (based on PointNet architecture) was trained with 
hand KeyPoints and thanks to a simple architecture with few hidden 
layers it is possible to work directly on the CPU. 

The results show an accuracy of 99.87% in our hand gesture dataset. 
It is interesting to extend this study by including new gestures in 
order to have a wider variety of options for device control, and also 
to experiment with end users to detect those gestures that are more 
appropriate to perform certain control commands.

It is important to notice that the transformation and normaliza tion 
layer allows us to maintain the good prediction performance of our 
model by using third-party datasets that contain a wide variety of 
users and physical spaces where samples are taken.
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