
Special Issue on Practical Applications of Agents and Multi-Agent Systems

- 85 -

* Corresponding author.

E-mail addresses: ivan.bernabe@urjc.es (I. Bernabé-Sánchez),
alberto.fernandez@urjc.es (A. Fernández), holger.billhardt@urjc.es
(H. Billhardt), sascha.ossowski@urjc.es (S. Ossowski).

Keywords

Complex Event
Processing, Intelligent
Agents, Internet Of
Things (IoT), Ontologies.

Abstract

Due to technological advances, Internet of Things (IoT) systems are becoming increasingly complex. They are
characterized by being multi-device and geographically distributed, which increases the possibility of errors
of different types. In such systems, errors can occur anywhere at any time and fault tolerance becomes an
essential characteristic to make them robust and reliable. This paper presents a framework to manage and
detect errors and malfunctions of the devices that compose an IoT system. The proposed solution approach
takes into account both, simple devices such as sensors or actuators, as well as computationally intensive
devices which are distributed geographically. It uses knowledge graphs to model the devices, the system’s
topology, the software deployed on each device and the relationships between the different elements. The
proposed framework retrieves information from log messages and processes this information automatically to
detect anomalous situations or malfunctions that may affect the IoT system. This work also presents the ECO
ontology to organize the IoT system information.

DOI: 10.9781/ijimai.2023.07.007

Problem Detection in the Edge of IoT Applications
Iván Bernabé-Sánchez, Alberto Fernández, Holger Billhardt, Sascha Ossowski *

CETINIA, Universidad Rey Juan Carlos, Madrid (Spain)

Received 5 May 2022 | Accepted 20 July 2023 | Published 26 July 2023

I. Introduction

According to [1], 2023 some 29.3 billion devices will be connected
to IP networks. This more than triples the world’s population. In

fact, there will be 3.6 devices per person, a considerable growth of over
50% compared to 2018. Half of these devices will make machine-to-
machine (M2M) connections, totalling 14.7 billion M2M connections.
This increase in the number of devices and connections will produce an
enormous amount of data and create new opportunities for innovative
applications in domains such as healthcare [2], environmental sciences
and industrialization [3], etc. The inclusion of IoT in these domains
requires caution in large-scale implementations because of the risks of
saturation of system resources and due to security issues. In many cases,
IoT devices are used to improve people’s daily activities or optimize
important processes in companies, which may expose data [4].

Albeit security of IoT is a major topic addressed in literature [5],
there are other important problems that condition the expansion
and implementation of IoT solutions. For example, managing
a large volume of devices requires dealing with problems like
communications interruptions (network connectivity) [6],
discontinuity of services, discharge of batteries (energy saving),
and problems with the operating environment (overheating, storage
management, cybercrime) [7]. All of these issues may apply to any
of the devices that integrate an IoT system.

Self-repair or self-healing is defined as a property of systems that
are able to identify and diagnose problems that appear during their
operation and to determine and propose solution strategies in an

autonomous way [8]. More specifically, self-healing provides reliability
to a system through responsibility and awareness of the environment.
This allows to automatically detect problems and to propose solutions
to unwanted situations. In order to do so, a self-healing IoT system
must incorporate monitoring, awareness, and knowledge to detect
unwanted states. When a problem is detected, the system generates
and executes plans with appropriate corrective actions [9], [10].

In this work, we propose a framework for the specification and
automatic detection of problems that may occur in an IoT system. This
framework consists of independent agents that are distributed on the
different devices that make up a system. Setting out from messages
stored in log registers, these agents extract information about the
operation of devices and the software deployed on them, and process
it to identify operating problems. The proposed framework uses
knowledge graphs (ontologies) to structure the information, event
stream processing to identify problems, and automatic reasoning to
infer additional knowledge related to the operation and potential
problems of a system. The edge-cloud ontology (ECO) has been
designed to structure the system information and possible problems.

The rest of the article is divided into the following sections.
Section II contains the state of the art. Section III shows the proposed
architectural solution. Section IV details how semantic technologies
are used to represent and process the information for identifying
existing problems. An example is presented in Section V. We conclude
the paper and point to some future lines of research in Section VI.
Table I shows the list of acronyms.

II. Related Work

Failures of system elements in IoT systems are usually considered
as something inevitable. It is important to consider this possibility
and to integrate mechanisms that ensure that the infrastructure will
continue to function without interruption, even if some elements fail.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº3

- 86 -

TABLE I. List of Acronyms and Abbreviations Used

Abbreviations Explanation
ASS Action Schedule Service
CEP Complex Event Processing
CLF Common Log Format
CMA Complex Management Agent
DIR Deployed Infrastructure Repository
DPR Detected Problem Repository
ECO edge-cloud ontology
ELFF W3C Extended Log File Format
DPR Detected Problems Repository
FD Fog Devices
IoT Internet of Things
IS Inference Service
KG knowledge graphs
LMA Lightweight Management Agent
LMS Log Management Service
MMS Middleware Management Service
OS operating system

SAREF
Smart Applications REFerence
Ontology

SD Simple Devices
SmD Smart Devices
SOSA/SSN Semantic Sensor Network ontology

Some works, like [11]–[13], propose fault-tolerant solutions to
recover IoT systems deployed in the cloud and edge computing. These
works are mainly focused on managing problems associated with
resource exhaustion and performance degradation. However, fault-
tolerant distributed systems must be able to go further and handle
finer-grained problems such as error management in applications
deployed in cloud and edge computing. To this respect, [14], [15]
and [16] propose solutions based on micro-services. These works put
forward mechanisms for system recovery, but do not describe the
previous error detection process. Still, information on the causes of
errors and the elements involved can greatly facilitate the generation
of potential solutions to a problem.

A starting point for troubleshooting is to know if errors exist and
when they appeared. Usually, applications write status information
in log files, which are analyzed manually or automatically to find
out if there are any problems. Normally, these logs have to be parsed
before their contents can be interpreted [17]. A common approach
to parse logs is to detect or match with specific error patterns [18],
[19]. Other solutions use data mining techniques such as SLCT [20],
and its extension LogCluster [21]. These works require a large data
set with a large log history to generate efficient log patterns. Still, in
recent and very specific or uncommon systems it is complicated to
apply these solutions, because there may not be enough information
to generate efficient patterns. Some works, such as [14], [15] and [16],
also consider mechanisms to recover systems from errors and bring
them to the desired operating status. These works use information
repositories and catalogues to have a record of the architecture of
services that make up an IoT systems. However, such repositories are
specifically designed for the proposed solutions and do not have a
formal specification of how their information is structured.

We claim that working with structured information can largely
facilitate error detection because it allows specifying explicitly
the relationships among the different information elements at
a conceptual level, and enables the reuse of information across
different systems. In particular, knowledge graphs and ontologies
can help structuring the failure-related information available in
an IoT system. Furthermore, inference based on ontologies may

even infer additional information that is not explicitly available.
As described in Noy and McGuiness [22], using ontologies
provides several benefits: (1) they share a common understanding
of information structure among software agents; (2) allow reuse
of domain knowledge; (3) domain assumptions are made explicit;
(4) domain knowledge can be analyzed. Taking advantage of all
these benefits is key to interoperability. As indicated by Bittner et
al. [23], as well as by Jasper and Uschold [24], ontologies facilitate
the semantic interoperability between humans, computers, and
systems. They consider them as a facilitating technologies to
achieve communication interoperability between software systems.

The use of ontologies in cloud systems [25] has already been
applied to different areas such as resource management [26],
service discovery [27], [28], security [29] or even to improve
system interoperability. In this line, mOSAIC [30] presents a cloud
ontology that provides a detailed description of cloud computing
resources. mOSAIC focuses on promoting transparency in accessing
multiple clouds. However, mOSAIC has not been updated since
its development more than 10 years ago, which implies that new
elements that have appeared in the area during this time are not
contemplated in this ontology. As a result, other works such as [31]
and [32] have appeared so as to try to address these limitations.
In [31], a solution for deploying applications on public and private
clouds is shown. The solution uses a set of rules to control the
deployment of applications. This rule set uses the CAMEL modeling
language1. ModaClouds [32] is another work that uses ontology-
based models to perform semi-automatic code transformations
allowing to obtain compatible implementations in public and hybrid
cloud provider platforms. The aforementioned works propose
mechanisms to improve the interoperability of services hosted by
different service providers, improve the description of existing
interfaces and even provide decision-making support. However,
these projects do not support a broad heterogeneous environment,
i.e., they are limited to resource management, hardware accelerators
and provide resource abstractions in the cloud. In general, these
works are not oriented to work with IoT devices such as sensors,
actuators, gateways, etc.

In this line, specific ontologies have been developed to model the
capabilities, characteristics and descriptions of systems that integrate
IoT devices. The Semantic Sensor Network Ontology (SOSA/SSN) [33]
is one of the most prominent efforts in this area. SOSA/SSN describes
sensor and actuator networks, their capabilities, features of interest,
and observations and serves as a starting point for the creation of
new ontologies that integrate these devices. Another effort similar
to SOSA is the Smart Applications REFerence Ontology (SAREF) [34]
developed by the ETSI’s SmartM2M technical committee. SAREF
allows the description of devices and their functions and is aligned
with the oneM2M ontology [35], which allows syntactic and semantic
interoperability between devices and external systems. SAREF and
SSN are ontologies that are widely used and there are works that
extend their scope of application to other more specific domains. For
example, CASO [36] and EEPSA [34] extend SAREF for its application
in agriculture and smart buildings domains, respectively. In the
case of the SSN ontology, the SSN System module allows modeling
systems, capabilities and things.

Still, despite the number of existing original ontologies and their
extensions, to the best of our knowledge, there are no ontologies
capable of providing mechanisms that integrate information from
systems in the cloud, at the edge computing with IoT devices. For
this reason, we created and present in this article an ontology for
this purpose.

1 https://camel-dsl.org/

Special Issue on Practical Applications of Agents and Multi-Agent Systems

- 87 -

III. Proposed Solution

Fig. 1 shows the type of infrastructures we aim at in this work. The
architecture depicts a generic IoT system made up of sensors and other
devices that allow the collection of information and interaction with
the physical world. In general, the information collected by IoT devices
in lower layers is processed, filtered out, and sent to higher levels for
further analysis. As we will present in this section, we propose the
inclusion of intelligent agents that will monitor the operation and
status of the different devices in the system.

Application
Layer
Cloud Layer

Network
Layer

Fog Layer
Routers/Gateways

4G 5G

Fog Devices

Smart Devices

Simple Devices

Edge Layer

Fig. 1. Typical layered architecture with the distribution of devices that form a
generic IoT system. Higher layers include devices with higher computational
resources. Green, red and orange arrows represent interactions within
different applications.

In the following, we begin with a description of the reference edge-
cloud architecture we focus on in this work. Then, we present our
architectural proposal for problem identification.

A. Reference Architecture
In the structure of the IoT system described in Fig. 1, there are

several types of devices distributed across different layers. A basic IoT
system is composed of IoT devices deployed at some physical location,
for example, collecting data from the environment and forwarding
them to some remote machine for their processing. With this basic
infrastructure, systems can become more complex by adding devices,
services or applications.

The basic architecture is composed of five layers, each of them
grouping different systems, devices and other computational
resources, which may involve different service, computation and
communication providers. These layers are common to different
IoT systems; in fact, Fig. 1 shows different IoT systems (identified
by red, green and orange arrows) that are extended across different
processing layers. The Edge Layer is composed of IoT devices such as
sensors, actuators, etc. It is the layer that interacts with the physical
world. The Fog Layer connects the devices at the Edge Layer with
upper layers and can provide basic processing services. The Network
Layer is in charge of managing communications with data centres
located in remote locations. Large-scale computational resources
are provided on the Cloud Layer. Finally, applications, typically
processing and producing high-level information, are running on the
Application Layer.

For the two lower layers, in this work, we focus on three types
of devices, namely simple, smart and fog devices. Their functionality
highly depends on their computational resources. Simple Devices
(SDs) are low-cost devices (e.g. sensors and actuators). SDs have low
computational resources and basic capabilities, for example, to take
measurements (depending on the type of physical sensor installed)
and send those values to other remote devices where that information
is processed. SDs usually use batteries and are typically deployed in
remote physical environments.

Smart Devices (SmDs) have functions similar to SDs, but with more
computing power, which allows them to process the information
collected on the same device. For example, in a cultivated field, devices
can be deployed to monitor the appearance of imperfections on plant
leaves. In that case, the device would have a camera to take pictures
of plant leaves, and a running algorithm to detect biological problems
(e.g. musty, dry, etc.), which would be forwarded to a processing node
in the upper layers.

Finally, Fog Devices (FDs) are located at the fog layer and have
some computing capacity deployed somewhere on a local network.
These devices receive information from SmDs and SDs and carry
out processing tasks such as aggregation, integration, filtering,
statistics, etc.

B. Proposed Architectural Solution
During normal operation, the software deployed on SDs, SmDs

and FDs might be subject to errors and malfunctioning. Intelligent
management techniques are required to deal with such errors and
to make the systems efficient and stable. For this purpose, in our
work we propose to use distributed intelligent agents with the aim
of monitoring and controlling the software deployed on each of the
devices. We focus on distributed systems where software is deployed
on lower-level devices as well as on data centres to perform the
assigned functions.

Usually, the software is installed and deployed on each device in
the traditional way. However, we recommend encapsulating such
software in software containers and then deploying such containers
on devices. Software containers are a type of lightweight virtualization
[37] that allows running multiple isolated software instances on a
single operating system (OS) without the need to have an OS for each
instance. This type of virtualization is also called containerization and
provides encapsulation for each container and resource management.
It makes this technology lighter and more efficient than traditional
virtualization technologies which require an operating system on each
instance. The encapsulation offered by containers does not affect the
normal operation of the software running inside them and facilitates
their deployment and management. Containers are managed
independently of other containers and the OS installed on the device.
Generally, a middleware (also called framework) is installed between
the OS and the containers. The middleware is responsible for the
management of containers and provides mechanisms and interfaces to
obtain information and control them.

Using software containers is not only an advantage in terms of ease
of management but also offers heterogeneity in terms of being able to
run the same container on different devices. As software containers
require to work a middleware placed between the device’s operating
system and the containers, the same container can be executed
on different devices if these devices have the middleware installed.
The container will be executed on the device regardless of the type
of OS and hardware that integrates the device. This is important for
the solution proposed in this work because it facilitates moving and
running software services between devices.

The container middleware provides mechanisms for starting,
stopping and deployment of containers regardless of the device

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº3

- 88 -

where it is deployed or the software it encapsulates. Fig. 2 shows our
proposal of a container-based software architecture that is to be used
on the devices deployed in the architecture of Fig. 1. Using makes it
easy to deploy software on any device in a system. This is because
most container frameworks can connect to remote repositories where
the software has been previously uploaded to easily download, install
and run the desired software on any particular device. This feature
facilitates the resolution of device failures since software from devices
with errors can easily be transferred to other devices.

deployOn

Containers
Basic Node Architecture

C1 C2 Cn

Middleware

Operating System

5G,
WiFi,
LoRa...

Fig. 2. Device architecture that manages installed software through software
containers.

In this paper, we propose two types of intelligent agents that
control the functioning of the system. The first one is the Lightweight
Management Agent (LMA), which is responsible for collecting
information about the software and device on which it is deployed.
LMAs send the collected information and can receive actions to apply
on the device. The second type of agent is the Complex Management
Agent (CMA). CMAs are able to carry out more complex reasoning
processes, including receiving information from LMAs, detecting
existing problems and generating local actions to alleviate existing
problems and bring the device operation back to a desired state.
CMAs are typically located in the fog or in the cloud. CMAs are
deployed at the fog layer to troubleshoot unwanted situations in local
device networks. CMAs can also be deployed in the cloud where the
CMA is responsible for managing problems that cannot be resolved

on the fog level. CMAs are prepared to operate with limited resources
but are also capable of dealing with complex problems by scaling the
computational resources of the CMA. A CMA deployed in the cloud
is capable of addressing problems using a large number of devices
and parameters.

Fig. 3 shows the integration of the solution proposed in this work
into the general architecture shown in Fig. 1. LMAs and CMAs are
described in more detail below and Fig. 4 shows their integration on
the different devices.

Application
Layer
Cloud Layer

Network
Layer

Fog Layer
Routers/Gateways

LMA

CMA
4G 5G

Fog Devices

Smart Devices

Simple Devices

Edge Layer

Fig. 3. Integration of the solution proposed in this paper into a generic IoT
system.

Simple devices

Smart Devices Fog Device

CMA

LMA LMA

T-BOX
(ECO Ontology)

Containers

Middleware
Framework

Containers

Middleware
Framework Detected

Problems
Repository

Inference
Service

Deployed
Infraestructure

Repository

Action
Schedule
Service

Complex
Events

Processing

Middleware
Management

Service

Log
Management

Service

Middleware
Management

Service

Log
Management

Service

Log
register

Log
register

Fig. 4. Disposition and connections of agents, devices, services and software of elements contained in Fig. 1.

Special Issue on Practical Applications of Agents and Multi-Agent Systems

- 89 -

1. Lightweight Management Agent
Lightweight Management Agents are deployed on IoT devices with

low computational resources, such as SmDs. They read information
about the operation and status of the device they control and, if
situations are detected that require attention, collect the related
information and send it to a CMA, which will process that information
and propose corrective actions. LMAs extract information from log
files generated by the deployed software, middleware (if installed) or
operating system (OS).

The LMA architecture is composed of two services: the Log
Management Service (LMS) and the Middleware Management Service
(MMS). The Log Management Service is responsible for extracting the
data provided from applications, middleware and OS. In addition, it
periodically extracts information related to the operating status of the
device (e.g. battery charge status, resource usage, etc.). This information
may indicate whether the device is operating within pre-established
security limits or may stop working when resources collapse. The LMS
structures all the collected information following the RDF data model
as a list of events using the ECO ontology (described below). Then, all
the events are sent to be analyzed by a CMA.

The LMA can also receive actions to be applied to the device. Most
actions are expected to be executed via the Middleware Management
Service.

2. Complex Management Agent
Complex Management Agents are more complex than LMAs and

they are typically deployed on devices located in the Fog layer of an
IoT system. These devices are usually advanced routers, gateways
or other network devices that, due to their computing power, can
provide additional services to the local network. CMAs are in charge
of processing the information obtained from LMAs, either related to
detected malfunctions or to any other events. A CMA consists of five
components: Complex Event Processing (CEP), Detected Problems
Repository (DPR), Inference Service (IS), Deployed Infrastructure
Repository (DIR) and Action Schedule Service (ASS).

The Complex Events Processing component introduces the events
received from LMAs into a stream of events. CEP [38] is a technology
that analyses continuous streams of events to identify complex
patterns. CEP systems use elements such as timestamps and sliding
windows. Several filters are continuously analyzing the stream in
order to identify critical operating states, which are registered in the
DPR. The DIR contains information about the local network topology
(e.g. connections among devices, dependencies among software, etc.).
The Inference Service inserts into the DIR additional information
which is inferred from the identified problems (available in the DPR)
and the current infrastructure status (available in the DIR). Finally, the
ASS is in charge of proposing actions with the aim of reducing the
impact of the identified problems.

IV. Semantic Technologies Supporting Problem
Identification

As mentioned above, we propose a solution to detect problems or
undesired operating states in distributed edge-to-cloud infrastructures
based on collaborative intelligent agents. Lightweight agents at the
edge collect basic pieces of information (raw events) that in correlation
may lead to the identification of problems or undesired operating states.
In this context, information about dynamic events and the system
topology (e.g. physical and/or logical connections among devices
and processes running on them) has to be represented and processed.
We opt for using knowledge graphs (KG) [39] to represent such
information. A knowledge graph is a way of describing information
in a graph structure where nodes represent entities (individuals or

types of elements) and edges represent relations between them. While
KGs have been used in AI for a long time (also known as semantic
networks), they have been gaining popularity in the last years [40].
A knowledge graph is a flexible and easy-to-extend representation
model, which can be endowed with a schema or ontological model
(aka T-Box), thus facilitating automatic inference processes.

In the rest of this section, we first (A) present an ontology for
representing the information about the topology of an edge-cloud
system and the problems that may occur during its operation. Then
(B), we describe how to extract and represent basic information
(events) about the status of devices while the IoT system is running.
Finally, we show (C) how the combination of the knowledge graph
and the generated events are used to identify existing problems in
the system.

A. The Edge-Cloud Ontology (ECO)
The proposed solution uses a KG and it requires advanced

mechanisms to manage that KG in a viable way. The KG organizes
data related to the devices connected to the IoT system, the network
topology that interconnects different devices, and the software
deployed on the devices. Instead of developing an ontology from
scratch, we have considered reusing existing ontologies and if
necessary adapting them to meet our needs. In particular, the ECO
ontology [41] is appropriate for the needs of the proposed system
because it provides concepts and properties to represent the state of
each of the devices that make up an IoT system.

Fig. 5 shows the main concepts and properties of the ECO ontology.
The ECO ontology is based on the SEAS ontology [42] and adds new
entities. These new entities allow for specifying the current state of
an IoT system thanks to events generated during the operation of
the integrated devices. When events are processed, it is possible to
identify problems or undesired operating states that are modelled into
the system by the eco:Problem entity.

The ontology classes and properties can be organised into three
main groups describing: (i) the connections among physical devices
forming the network topology,(ii) the software deployed on devices
and their logical dependencies, and (iii) the events representing
relevant states of devices and/or software, and the problems that define
critical situations. In the following, we describe the main elements of
each group.

The topology of the IoT infrastructure representing computational
systems and how they are interconnected can be represented with the
following classes:

• seas:System. This class describes systems that share connections
with other systems;

• seas:Connection. A connection describes potential interactions
between systems.

• seas:ConnectionPoint. This class models the connection between
systems.

• eco:ComputingNode. This class represents any device with
processing capability.

Knowing which software is deployed on each device and how
software components logically depend on each other can be important
in certain situations in which unexpected problems (e.g. connectivity
failures) on one device may affect the behaviour of others.

• eco:Software. This class represents any type of software and
can be instantiated through three different types of subclasses:
eco:Application, eco:Service and eco:Middleware.

• eco:Application. This class is a type of software that represents a
particular application. An application may be composed of one or
more services of type eco:Service.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº3

- 90 -

• eco:Service. The Service class represents software services that
are independent and have been designed to perform a specific
function.

• eco:Middleware. This class is a type of Software that may contain
applications or services. In practice, this class can refer to software
frameworks on which applications run. An example of frameworks
can be the Java virtual machine, the .NET framework, software
container frameworks such as Docker, etc.

Finally, the ECO ontology allows the representation of events and
problems that define critical situations.

• eco:Problem. This class models problems that may appear in the
system. Six types of problems have been identified in this work.

• eco:ConnectionFailed. The class represents problems related to the
connections between devices and refers to operating states related
to the lack of connection between devices or software.

• eco:DataCollectionFailed. The DataCollectionFailed class is expected
to be instantiated when a sensor has taken a measurement but
the result obtained is erroneous (non-consistent value or values
out of limits). The DataCollectionFailed class is oriented towards
simple sensors measuring attributes like temperature, humidity,
atmospheric pressure, etc.

• eco:DeviceInCriticalStatus. This class models a problem that
represents a device that is in a critical state (that could stop
working at any time). This situation can occur when the CPU is
saturated, the available RAM memory is low, the free disk space is
almost exhausted, the device battery is almost discharged or even
if the device temperature is relatively high. All these situations are
indicators that the device may not be working properly and may
affect its performance.

• eco:MechanismError. This class models a problem on an actuator
device, robot or any other device that has some physical
mechanism. The entity models a physical operating problem. i.e.
the device receives and processes the indicated actions, but cannot
carry them out due to mechanical problems of the device itself.

• eco:ProblemWithPhysicalEnviroment. This class models real-world
conditions that can adversely affect the functioning of specific
devices. It is used to model physical aspects of the environment
that may present a problem for specific devices. An example could

be the level of luminosity of the environment in which a sensor or
camera operates.

• eco:SoftwareMalfunction. This entity reflects problems related
to the normal operation of software. It may also indicate that a
software component is stopped.

• eco:Event. This entity represents an event that has been generated
during system operation. The event contains relevant information
that must be processed to evaluate whether the system is
functioning correctly or whether there is an associated problem.

B. Raw Events Generation
The proposed solution requires knowing the current status of

devices and software that is deployed in an IoT system. In this sense,
log registers can be an important source of information since they will
usually include information related to errors and operating status.
There have been some efforts to standardize log files such as Common
Log Format (CLF) [43], W3C Extended Log File Format2 (ELFF),
RFC5424 [44] or RFC3164 [45]. CLF and ELFF provide guidelines
for organizing the information contained in log files generated by
web servers and RFC5424 or RFC3164 are oriented to define the
transmission of messages generated by log systems. However, there
is no general standard nor guidelines for defining log messages or
how to structure them. This implies that developers are responsible
for designing the structure of the log messages generated by their
applications. To improve this situation, we propose some indications
to take into account when software has to generate log messages.
Basically, we propose to specify: i) what information will be introduced
in the log file. ii) how this information will be structured and iii) where
the log information will be available.

Specifying the information registered in each log message is
not easy. Ideally, the information should be as complete as possible
because it will describe in detail why the message was inserted in the
log register. However, the nature of applications is very varied and
this opens up a wide range of possibilities. We propose the use of a
limited set of parameters, grouped by field of application or category,
as shown in tables II, III and IV.

Table II contains parameters related to the operation of applications
and, whether or not an application is encapsulated on containers. The

2 https://www.w3.org/TR/WD-logfile.html

SEAS Ontology

ECO Ontology

eco:ConnectionFailed

eco:DataCollectionFailed

eco:DeviceInCriticalStatus

eco:MechanismError

eco:ProblemWithEnviromentPhisics

eco:So�wareMalfunction

rdfs:subC
lassO

f

eco:relatedTo

seas:connectedThrough

seas:connectedSystemThrough

seas:connectsSystemAt

seas:connectSystem

eco:contains

eco:contains

eco:hasProblem

eco:hasProblem

eco:deployedIn

eco:deployedIneco:isComposedOf

rdfs:subClassOf

rdfs:subClassOf

seas:Connection

seas:ConnectionPoint

eco:ComputingNode

eco:So�ware

eco:Serviceeco:Application eco:Middleware

seas:System
eco:Event

eco:Problems

eco:relatedTo

Problems

Topology

So�ware

Fig. 5. Main concepts and properties of the ECO ontology. Green concepts are reused from the SEAS ontology, whereas red nodes represent new concepts
defined in ECO.

Special Issue on Practical Applications of Agents and Multi-Agent Systems

- 91 -

table also presents some parameters related to the management of
these containers. This information is published in the log register by
the applications and by the container framework.

TABLE II. Parameters Registered by the Middleware

Params Description
softwareIsRunnig Whether the software is running.

actionsCarriedOut Last command executed in the Middleware
(e.g. stop, start, ...)

numContainersDeployed Number of containers deployed in the
framework.

numContainersRunning Number of containers running in the
framework.

Table III presents specific domain application parameters, usually
related to perception and actuation elements (e.g., sensors or actuators).
These parameters try to collect common problems that occur when
applications use such elements.

TABLE III. Parameters Registered by Domain Applications. They
Indicate Problems With Measurements or Actuation Orders

Params Description

errorDescription Error message generated by the software.

OutOfRangeReading This error indicates that the measurement
received from a sensor is outside specified
limits.

abnormalReading Measurement taken from a sensor is invalid.

highLightConditions There is too much light in the physical
environment.

lowLightConditions There is insufficient brightness in the
physical environment.

errorInPhysicalMechanism There was a failure to activate an actuator.
This error is usually associated with
actuators rather than sensors, since
actuators usually have physical mechanisms
to interact with the physical environment.

Table IV presents a set of parameters that represent the current
state of a device. Essentially, these parameters are intended to indicate
the availability of resources. In our proposed solution, these values are
obtained by the LMS by querying the operating system.

The proposed set of parameters is oriented to an IoT system (as
shown in Fig. 1) and is intended to cover potential unexpected
situations that may arise. The ECO ontology includes properties to
represent those parameters.

TABLE IV. Parameters Related to Device Operation

Params Description

connectedToTheNetwork Whether the device is connected to a
network.

droppedPackets Number of packets discarded per second.

receivedPackets Number of network packets received per
second.

sentPackets Number of network packets sent per second.

deviceTemperature Device temperature.

meanPercentageUseOfCPU Percentage of CPU usage.

batteryChargeLevel Battery charge percentage.

freeRAM It is the free RAM memory space. It is
measured in MBs.

freeDiskSpace It is the free disk space. It is measured in
MBs.

Normally, applications record log messages to dedicated log files.
However, in this paper, we propose using the log register provided by
the operating systems since it is possible to access all the information
about errors from a single point. Each log entry is organized into the
following ordered list of attributes:

• Time: when a message is generated in the log register.

• Machine: indicates the name of the machine.

• Application: refers to the application, service, process, or software
that generates the message

• Message: information regarding the event registered in the log.
The content is represented as key-value pairs in JSON format.

The structure formed by the fields of each log entry facilitates the
understanding of the information by humans and machines.

Table V shows an example extracted from a log register. In Linux the
log register is called Syslog and contains all the log entries generated
by the operating system. It has a semi-structured format where spaces
separate multiple segments (timestamp, machine name, application
name and message). Similarly, other operating systems have their own
log systems (e.g. logcat in Android).

Line 1 has been generated by a Tomcat application server that
shows, in the body of the message, information that the application
has been started. Line 2 corresponds to the execution of a task that
the OS had scheduled. Line 3 shows a message from the Docker
(middleware) framework, structured as key-value parameters. This
line specifies that a deletion task has been performed ("topic= /tasks/
delete type=event.TaskDelete") on a container ("container=ad9c...").
Line 4 presents information that has been entered by the LMA (called
LMA1 in table V).

TABLE V. Parameters Related to Device Operation

Header entry
Time Machine Application Message entry

Messages
1 Jan 17 17:11:36 machine 1 tomcat[8944] 17-Jan-2023 14:17:29.850 INFORMATION [main]

org.apache.catalina.startup.Catalina.start Server startup in [560] milliseconds

2 Jan 17 17:17:01 machine 1 CRON[9184] (root) CMD (cd / && run-parts –report
/etc/cron.hourly)

3 Jan 17 17:19:39 machine 1 dockerd[751] time="2023-01-17T17:19:39.911663169+01:00"
level=info msg="ignoring event"
container=ad9c3e4f269aff56c60fb3558655de1c3703be4 8b86b848ba62d8510261e8ffe
module=libcontainerd namespace=moby topic=/tasks
type="*events.TaskDelete"

4 Jan 17 17:20:00 machine 1 LMA1 meanPercentageUseOfCPU="7.24", freeRAM="63.4", freeDiskSpace="86.5",
batteryChargeLevel="100.00"

5 Jan 17 17:25:00 machine 1 LMA1 errorInPhysicalMechanism

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº3

- 92 -

The LMA reads the log register and generates an event with the
necessary information and formats it in RDF triples according to the
ECO ontology. Listing 1 shows three events (event1, event2 ad event3)
in RDF format3 generated from lines 3, 4 and 5 of Table V, respectively.

Listing 1: Example of several events in RDF Turtle format
: event1 rdf : type eco : Event ;
 eco : date " Jan 17 17:19:39" ;
 eco : relatedToDevice : machine1 ;
 eco : relatedToSoftware : dockerd ;
 eco : actionsCarriedOutExecuted "* events . TaskDelete
 ".
: event2 rdf : type eco : Event ;
 eco : date " Jan 17 17:20:00" ;
 eco : relatedToDevice : machine1 ;
 eco : relatedToSoftware : LMA1 ;
 eco : freeRAM "63.4";
 eco : meanPercentageUseOfCP "9" ;
 eco : batteryChargeLevel "100" ;
 eco : freeDiskSpace "86.5".
: event3 rdf : type eco : Event ;
 eco : date " Jan 17 17:25:00" ;
 eco : relatedToDevice : machine1 ;
 eco : relatedToSoftware : LMA1 ;
 eco : errorInPhysicalMechanism " TRUE ".

In principle, ad-hoc parsers are needed for the different applications
and operating systems used. However, as we mentioned above,
in order to facilitate this task, we propose a key-value parameter
representation and a set of specific parameters (Tables II, III and
IV). LMAs can interpret those parameters as well as some popular
application formats such as docker and tomcat. Other log formats are
not considered. Thus, the systems that want to integrate our solution
approach in the future must follow our proposed log format.

C. Stream Processing
Event processing is mainly carried out by the CEP component,

which is responsible for analyzing the events and is able to identify
undesirable situations or system problems from the information
contained in an event stream. In the case of identifying any undesirable
situation, the CEP is able to classify the type of situation and to label
that situation with the corresponding problem entity from the ECO
ontology. Detecting problems is generally a complex task that may
depend on several parameters. Thus, the origin of a problem may be
associated with one or several pieces of evidence. In this work, an
evidence is an event; therefore, the information contained in the events
helps to identify problems. One of the main characteristics of systems
based on event processing is that events are not independent of each
other, but are related to each other. In the case of systems formed by
sensor devices, the data generated by the sensor network are usually
related in time and space. For example, in agro-IoT systems, the data
measured by a sensor is usually strongly related to the data of a nearby
sensor. In a similar way, the measures observed at a particular moment
in time are generally correlated to the measures taken in the next unit
of time. This is important because applications may not be interested
in measurements taken from a sensor at a particular time and place,
but in aggregated information in space and time [46].

The main task of event processing is to identify within event
streams those event patterns that are of interest in a particular domain.
For example, in an agro-IoT system consisting of sensors to measure

3 We use the Turtle RDF serialization. In short, each triple (subject predicate
object) is written in a line, ending in ’.’. A ’;’ can be used to avoid repeating the
same subject in consecutive lines.

the conditions of cropland, several sensors may emit events that must
be analyzed to discover patterns identified with problems related to
plant health. In the context of the work presented in this paper, the
events generated from the log messages would also be analyzed in
order to discover problems related to software or devices. It will even
be possible to predict problems before they actually happen such that
corrective actions could be applied before a particular problem appears.

The LMA is responsible for generating the corresponding events
and sending them to the CMA. Then, the CEP component located in
the CMA filters the events trying to identify problems. This process
is done through queries. Each implemented filter returns a problem
instance according to the ECO ontology, which is inserted into the
Detected Problem Repository (DPR). For example, the

DeviceInCriticalStatus problem instance could be triggered in those
cases where a device has a battery below 15% in addition to having
high CPU and RAM consumption. This situation could cause a device
to consume its low battery power in a short period of time.

For stream processing, we use C-SPARQL [47], a continuous query
language that extends SPARQL [48] to work with RDF data streams such
as the example shown in listing 1. C-SPARQL queries are continuously
monitoring recent events/triples (time windows are specified) to detect
particular patterns that correspond to identified problems. When the
query is matched, it generates a result as RDF triples.

Listing 2: C-SPARQL query that identifies a problem that a device
is in a critical state (CPU and RAM usage higher than 90% and battery
charge lower than 15%)
CONSTRUCT {
 _: prob rdf : type eco : DeviceInCriticalStatus .
 _: prob eco : relatedTo ? device .
}
FROM STREAM : streamExample1
 [RANGE 60s STEP 30s]
FROM < instancesTopology .owl >
WHERE {
 ? event rdf : type eco : Event .
 ? event eco : relatedTo ? device .
 ? event eco : percentCPUUsage ? cpuL .
 ? event eco : freeRAM ? ram .
 ? event eco : batteryChargeLevel ? batt .
FILTER (? percentCPUUsage > 90
 && ? freeRAM < 10
 && ? batteryChargeLevel < 15)
}

Listing 2 shows an example of a query that returns the instance
of eco:DeviceInStatusCritical problem, with its associated device. The
query checks the value of several parameters such as CPU, RAM
consumption and the battery charge level of a specific device. The
query only takes into account events occurring in the specified time
window (60 seconds).

V. Use Case

This section presents a use case that shows the potential of the
error detection framework proposed in this work. We consider a
scenario composed of two local Wi-Fi networks, each containing two
sensors deployed on SmartDevices (e.g., Smartphones), a computing
device (Raspberry Pi4 model B equipped with 4GB of RAM) that
acts as a Fog Device and a router that provides the Wi-Fi network
to which each of the devices is connected. Fig. 6 shows the example

Special Issue on Practical Applications of Agents and Multi-Agent Systems

- 93 -

infrastructure. The devices host software services and could provide
data to other services. This data is processed by services to generate
reports, propose actions or generate new information. According to
Fig. 6, S1, S2, S5, S6 retrieve data from the sensors integrated with
them. S1, S2, S5, S6 are distributed in geographic positions. S1 and S2,
located in local network 1, send data to S4 and S3 correspondingly (S3,
S4 and S11 are part of APP1). S11 sends to S9 information processed
from data received by S3. S9 is hosted in the cloud (machine7). It unifies
the information received by remote services and S10 runs high-level
tasks and provides results to end users. In the case of local network 2,
the disposition of the elements and their functions are similar to local
network 1.

The connections between the services as well as their relationships
are shown in Fig. 7. This figure represents the knowledge graph
contained in the Deployed Infrastructure Repository hosted in the
CMA.

LMAs are installed on machine1, machine2, machine4 and
machine5. LMAs monitor the software deployed on those devices
and, if necessary, generate the corresponding events. Listing 3 shows
an example of events generated by LMA1, located on machine1, and
which sends the events to CMA1 (deployed on machine3).

The events have parameters related to the operation of the
sensor connected to S1. The CEP component of CMA1 (at machine3)
continuously reads and processes the received events in order to
detect abnormal situations. If a sensor is damaged, it will produce
different types of errors that are reflected in the event stream. For
example, if the sensor generates errors of the type highLightConditions,
lowLightConditions, abnormalReading, OutOfRangeReading, etc. the
reason could be that the sensor is damaged. In this case, the CEP
will detect this situation and will generate a eco:DataColletionFailed
entity. In particular, event1 indicates that service S1 is notifying errors
related to measurements taken from a sensor. Event1 has active the
abnormalReading and OutOfRangeReading parameters, which indicate
some problem with the measurement taken from the sensor. Event1
also indicates that service S1 is generating the error and that S1 is
deployed on machine1.

Listing 3: Events generated by the use case shown in Fig. 7
: event1 rdf : type eco : Event ;
 eco : date " Jan 20 18:10:29" ;
 eco : relatedToDevice : machine1 ;
 eco : relatedToSoftware :S1 ;
 eco : abnormalReading " TRUE ";
 eco : OutOfRangeReading " TRUE ".
: event2 rdf : type eco : Event ;
 eco : date " Jan 20 18:11:41" ;
 eco : relatedToDevice : machine1 ;
 eco : relatedToSoftware :S1 ;
 eco : lowLightConditions " TRUE ".
: event3 rdf : type eco : Event ;
 eco : date " Jan 20 18:11:57" ;
 eco : relatedToDevice : machine1 ;
 eco : relatedToSoftware :S1 ;
 eco : batteryChargeLevel "10".
: event4 rdf : type eco : Event ;
 eco : date " Jan 20 18:11:41" ;
 eco : relatedToDevice : machine1 ;
 eco : relatedToSoftware :S1 ;
 eco : highLightConditions " TRUE ".

In addition to the detected problem of the sensor, the indications
that the battery is low (10%) contained in event3 might be relevant.
This event indicates that the sensor failure could be associated with
the fact that the sensor does not have enough battery.

The CEP component will evaluate the events and their implications
on the system depending on the information contained in the event
stream. For example, Listing 4 detects the eco:DataCollectionFailed
problem if the light conditions change between low and high in a short
period of time (60s) and the reported sensor values are out of range. In
that case, the eco:DataCollectionFailed entity is added to the Detected
Problems Repository.

S1

machine1
machine2

machine3

machine7 machine5

machine6

System1 System2
System3

System7
System4

System5

System6

Middleware1 Middleware2S2

S5
S6

C2

S11 S10

Local network 1 Local network 2

Instance
layer

Logical
layer

Physical
layer

S4S3 S7 S12S9

C1

S8

machine4

Fig. 6. Infrastructure and layout of the devices used in the use case.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº3

- 94 -

Listing 4: C-SPARQL query to identify data collection problems
CONSTRUCT {
 _: prob rdf : type eco : DataCollectionFailed .
 _: prob eco : relatedTo ? service
}
FROM STREAM
 : streamExample1
 [RANGE 60s STEP 30s]
FROM < instancesTopology .owl >
WHERE {
 ? event rdf : type eco : Event .
 ? event eco : relatedTo ? machine .
 ? event eco : lowLightConditions " TRUE ".
 ? event eco : highLightConditions " TRUE ".
 ? event eco : OutOfRangeReading " TRUE ".
}

The Inference Service tries to find other elements of the IoT
system that might be affected by the problems registered in the DPR.
For this, the IS analyses the system architecture described in the
Deployed Infrastructure Repository. As a result, the IS infers that S4
is affected since it is connected to S1. Thus, the software application
APP1 is also affected. Furthermore, the problem could be propagated
to S9, because S11 (S11 forms part of APP1) is connected to S9 (by
eco:remoteConnecionTo property), and this could affect APP3. The
affected software components can be detected with standard SPARQL
queries. Listing 5 shows an example query to retrieve the applications
affected by the malfunction of S1.

The query considers four cases: (1) the problematic service is
directly part of an application, (2) an application contains a service that

is remotely connected to a problematic service (APP1 is identified), (3)
an application is remotely connected to an application that contains
the problematic service, and (4) an application is remotely connected
to another application that includes a service connected to the
problematic service (APP3 is identified).

Listing 5: Query identifying applications affected by remote
unconnected services
SELECT ? affectedApp
WHERE {
 ? faultServ eco :id "S1" .
 { # Case 1
 ? affectedApp eco : isComposedOf ? faultServ .}
UNION { # Case 2
 ? affectedApp eco : isComposedOf ? servAux .
 ? faultServ eco : remoteConnectionTo + ? servAux .}
UNION { # Case 3
 ? appAux eco : isComposedOf ? faultServ .
 ? appAux eco : isComposedOf ? serv .
 ? serv eco: remoteConnectionTo + ? serviceAux2 .
 ? affectedApp eco : isComposedOf
 ? serviceAux2 .}
UNION { # Case 4
 ? faultServ eco : remoteConnectionTo +
 ? serviceAux4 .
 ? appAux eco : isComposedOf ? serviceAux4 .
 ? appAux eco : isComposedOf ? serv .
 ? serv eco: remoteConnectionTo + ? servAux .
 ? affectedApp eco : isComposedOf ? servAux .}
}

S1

machine1

machine2

machine3

machine7

eco:Connection

eco:ComputingNode

seas:System

eco:Middleware

eco:Application

eco:Service

machine5
machine6

System1

System2

System3

System7

System4

System5 System6

Smart Devices Fog Devices Cloud Computing

Middleware1

Middleware3

Middleware2

S2

S5

S6

C2

S11

S10
APP1

APP3

APP2

S4

S3

S7 S12

S9

C1

S8machine4

Fig. 7. Knowledge graph representing the deployed architecture. The colour of a node indicates the ontological concept (on the right side of the figure) it
instantiates. E.g. S1 is an instance of eco:Service.

Special Issue on Practical Applications of Agents and Multi-Agent Systems

- 95 -

Once a problem and its scope have been identified, the Action
Schedule Service (ASS) will decide what actions should be taken to
resolve or alleviate the problem. The possible solutions to problems
will be context dependent. For the above case, for example, the ASS
may decide whether or not to stop APP1 and APP3 until the problem
with the sensor connected to S1 is solved. Alternatively, it may
replace some of the services that are affected by the problem. For
example, S4 could be replaced by another service that does not require
the information from S1. In this way, APP1 could adapt to the new
situation and operate consistently. If APP1 works correctly then APP3
would also not be affected by the problem with S1 and would also
work correctly.

The ASS is an independent component that takes information from
the DIR, interprets it and proposes corrective actions. The architecture
has been designed with the objective that the ASS has a low coupling,
this allows to have several implementations of the ASS with different
AI mechanisms facilitating to experiment with different AI techniques.
The complete design of the ASS is part of our future work. In this
work, we propose using the Jena4 rule-based system, which allows
easy integration of ontologies and rules. The proposed rules are
activated depending on the information about the current status of the
infrastructure (especially malfunctioning issues) contained in the DIR.
When a rule is fired the specified actions are executed, which typically
define the changes to be applied in the system.

VI. Conclusion

In this work, we have proposed a solution approach that aims
at detecting and eventually resolving anomalous situations or
malfunctions in IoT systems. The approach uses several mechanisms
distributed on independent intelligent agents that collaborate with
each other. These agents process the log registers generated by
software installed in IoT devices and detect problems and malfunctions
that may compromise the operation of the IoT system. The ability to
understand messages contained in a log register is complex. For this
reason, we propose using a list of parameters that help to identify
and describe undesired situations of the elements that compose an
IoT system. The Lightweight Management Agent generates events
from messages contained in log registers and each event contains
information about the status of an IoT device. LMAs send those events
to Complex Management Agents, which process them in order to
identify problems. CMAs use knowledge graphs (based on the ECO
ontology) to structure the system information such as the topology, the
deployed software and possible problems (undesired situations). They
use this knowledge to infer new information, in particular, to identify
the scope to which an identified problem affects the entire IoT system.
Based on this information, corrective actions can be carried out to bring
back the IoT system to a desired state. All these mechanisms provide a
viable solution for the auto-maintenance of IoT systems. The proposed
approach can be deployed in conjunction with third-party IoT systems
since it can be adapted and integrated with existing solutions that have
been designed and deployed for specific tasks.

Our work is subject to some limitations that we plan to address
in future work. In a first step, we will extend the list of parameters
proposed in this work. We will also apply our solution to more
complex real-world environments so as to further back its versability
and analyse its performance. To this end, we rely on the Mininet5
simulator for large-scale experiments. Also, in this work, we focused
on problem detection. As a next step, we will concentrate on analysing
the automatic execution of corrective actions to resolve detected
problems (Action Schedule Service in our architecture).

4 https://jena.apache.org

Acknowledgment

This work has been supported by grant VAE: TED2021-
131295B-C33 funded by MCIN/AEI/ 10.13039/501100011033 and by
the “European Union NextGenerationEU/PRTR”, by grant COSASS:
PID2021-123673OB-C32 funded by MCIN/AEI/10.13039/501100011033
and by “ERDF A way of making Europe”, and by the AGROBOTS
Project of Universidad Rey Juan Carlos funded by the Community of
Madrid, Spain. Iván Bernabé has been funded by the Spanish Ministry
of Universities through a grant related to the Requalification of the
Spanish University System 2021–23 by the University Carlos III of
Madrid.

References

[1] U. Cisco, “Cisco annual internet report (2018–2023) white paper,” Cisco:
San Jose, CA, USA, vol. 10, no. 1, pp. 1–35, 2020.

[2] S. Qiu, K. Cheng, T. Zhou, R. Tahir, L. Ting, “An eeg signal recognition
algorithm during epileptic seizure based on distributed edge computing,”
International Journal of Interactive Multimedia and Artificial Intelligence,
vol. 7, no. 5, pp. 6–13, 2022, doi: 10.9781/ijimai.2022.07.001.

[3] S. Pan, X. Gu, Y. Chong, Y. Guo, “Content-based hyperspectral image
compression using a multi- depth weighted map with dynamic receptive
field convolution,” International Journal of Interactive Multimedia
and Artificial Intelligence, vol. 7, no. 5, pp. 85–92, 2022, doi: 10.9781/
ijimai.2022.08.004.

[4] M. M. Ogonji, G. Okeyo, J. M. Wafula, “A survey on privacy and security
of internet of things,” Computer Science Review, vol. 38, p. 100312, 2020,
doi: https://doi.org/10.1016/j.cosrev.2020.100312.

[5] H. Mrabet, S. Belguith, A. Alhomoud, A. Jemai, “A survey of iot security
based on a layered architecture of sensing and data analysis,” Sensors, vol.
20, no. 13, p. 3625, 2020.

[6] K. Gulati, R. S. K. Boddu, D. Kapila, S. L. Bangare, N. Chandnani, G.
Saravanan, “A review paper on wireless sensor network techniques in
internet of things (iot),” Materials Today: Proceedings, vol. 51, pp. 161–
165, 2022.

[7] S. Rani, A. Kataria, V. Sharma, S. Ghosh, V. Karar, K. Lee, C. Choi, “Threats
and corrective measures for iot security with observance of cybercrime:
A survey,” Wireless communications and mobile computing, vol. 2021, pp.
1–30, 2021.

[8] J. Seeger, A. Bröring, G. Carle, “Optimally self-healing iot choreographies,”
ACM Transactions on Internet Technology (TOIT), vol. 20, no. 3, pp. 1–20,
2020.

[9] D. Weyns, Software Engineering of Self-adaptive Systems, pp. 399–443.
Cham: Springer International Publishing, 2019.

[10] O. Gheibi, D. Weyns, F. Quin, “Applying machine learning in self-
adaptive systems: A systematic literature review,” ACM Transactions on
Autonomous and Adaptive Systems (TAAS), vol. 15, no. 3, pp. 1–37, 2021.

[11] C. Zhu, G. Pastor, Y. Xiao, Y. Li, A. Ylae-Jaeaeski, “Fog following
me: Latency and quality balanced task allocation in vehicular fog
computing,” in 2018 15th Annual IEEE international conference on sensing,
communication, and networking (SECON), 2018, pp. 1– 9, IEEE.

[12] Z. Liu, X. Yang, Y. Yang, K. Wang, G. Mao, “Dats: Dispersive stable task
scheduling in heterogeneous fog networks,” IEEE Internet of Things
Journal, vol. 6, no. 2, pp. 3423–3436, 2018.

[13] G. Zhang, F. Shen, N. Chen, P. Zhu, X. Dai, Y. Yang, “Dots: Delay-
optimal task scheduling among voluntary nodes in fog networks,” IEEE
Internet of Things Journal, vol. 6, no. 2, pp. 3533–3544, 2018.

[14] L. Sun, Y. Li, R. A. Memon, “An open iot framework based on microservices
architecture,” China Communications, vol. 14, no. 2, pp. 154–162, 2017.

[15] A. Celesti, L. Carnevale, A. Galletta, M. Fazio, M. Villari, “A watchdog
service making container- based micro-services reliable in iot clouds,”
in 2017 IEEE 5th international conference on future internet of Things and
Cloud (fiCloud), 2017, pp. 372–378, IEEE.

[16] A. Krylovskiy, M. Jahn, E. Patti, “Designing a smart city internet of
things platform with microservice architecture,” in 2015 3rd international
conference on future internet of things and cloud, 2015, pp. 25–30, IEEE.

[17] S. He, J. Zhu, P. He, M. R. Lyu, “Experience report: System log analysis
for anomaly detection,” in 2016 IEEE 27th international symposium on

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº3

- 96 -

software reliability engineering (ISSRE), 2016, pp. 207–218, IEEE.
[18] S. Zhang, W. Meng, J. Bu, S. Yang, Y. Liu, D. Pei, J. Xu, Y. Chen, H. Dong, X.

Qu, et al., “Syslog processing for switch failure diagnosis and prediction
in datacenter networks,” in 2017 IEEE/ACM 25th International Symposium
on Quality of Service (IWQoS), 2017, pp. 1–10, IEEE.

[19] S. Messaoudi, A. Panichella, D. Bianculli, L. Briand, R. Sasnauskas,
“A search-based approach for accurate identification of log message
formats,” in Proceedings of the 26th Conference on Program Comprehension,
2018, pp. 167–177.

[20] R. Vaarandi, “A data clustering algorithm for mining patterns from
event logs,” in Proceedings of the 3rd IEEE Workshop on IP Operations and
Management (IPOM 2003) (IEEE Cat. No. 03EX764), 2003, pp. 119–126, Ieee.

[21] R. Vaarandi, M. Pihelgas, “Logcluster-a data clustering and pattern
mining algorithm for event logs,” in 2015 11th International conference on
network and service management (CNSM), 2015, pp. 1–7, IEEE.

[22] N. F. Noy, D. L. McGuinness, et al., “Ontology development 101: A guide
to creating your first ontology,” 2001.

[23] T. Bittner, M. Donnelly, S. Winter, “Ontology and semantic
interoperability,” in Large-scale 3D data integration, CRC Press, 2005, pp.
139–160.

[24] R. Jasper, M. Uschold, et al., “A framework for understanding and
classifying ontology applications,” in Proceedings 12th Int. Workshop on
Knowledge Acquisition, Modelling, and Management KAW, vol. 99, 1999,
pp. 16–21, Citeseer.

[25] J. Agbaegbu, O. T. Arogundade, S. Misra, R. Damaševičius, “Ontologies
in cloud computing—review and future directions,” Future Internet, vol.
13, no. 12, p. 302, 2021.

[26] S. Jaskó, A. Skrop, T. Holczinger, T. Chován, J. Abonyi, “Development
of manufacturing execution systems in accordance with industry 4.0
requirements: A review of standard- and ontology-based methodologies
and tools,” Computers in Industry, vol. 123, p. 103300, 2020, doi: https://
doi.org/10.1016/j.compind.2020.103300.

[27] A. Heidari, N. Jafari Navimipour, “Service discovery mechanisms in
cloud computing: a comprehensive and systematic literature review,”
Kybernetes, vol. 51, no. 3, pp. 952–981, 2022.

[28] M. M. Al-Sayed, H. A. Hassan, F. A. Omara, “Cloudfnf: An ontology
structure for functional and non- functional features of cloud services,”
Journal of Parallel and Distributed Computing, vol. 141, pp. 143–173, 2020,
doi: https://doi.org/10.1016/j.jpdc.2020.03.019.

[29] V. Singh, S. Pandey, “Cloud security ontology (cso),” Cloud Computing for
Geospatial Big Data Analytics: Intelligent Edge, Fog and Mist Computing,
pp. 81–109, 2019.

[30] F. Moscato, R. Aversa, B. Di Martino, T.-F. Fortiş, V. Munteanu, “An
analysis of mosaic ontology for cloud resources annotation,” in 2011
federated conference on computer science and information systems
(FedCSIS), 2011, pp. 973–980, IEEE.

[31] K. U. Sri, M. B. Prakash, J. Deepthi, “A frame work to dropping cost in
passage of cdn into hybrid cloud,” Int.J. Innov. Technol. Res, vol. 5, no. 2,
pp. 5829–5831, 2017.

[32] E. Di Nitto, G. Casale, D. Petcu, et al., “On modaclouds’ toolkit support
for devops,” in 4th European Conference on Service Oriented and Cloud
Computing Workshops (ESOCC), 2016, pp. 430–431.

[33] K. Taylor, A. Haller, M. Lefrançois, S. J. Cox, K. Janowicz, R. Garcia-
Castro, D. Le Phuoc, J. Lieberman, R. Atkinson, C. Stadler, “The semantic
sensor network ontology, revamped.,” in JT@ ISWC, 2019.

[34] L. Daniele, F. den Hartog, J. Roes, “Created in close interaction with the
industry: the smart appliances reference (saref) ontology,” in Formal
Ontologies Meet Industry: 7th International Workshop, FOMI 2015, Berlin,
Germany, August 5, 2015, Proceedings 7, 2015, pp. 100–112, Springer.

[35] B. Ontology, “onem2m technical specification: Ts-0012- v3.7.3..”
[36] Q.-D. Nguyen, C. Roussey, M. Poveda-Villalón, C. de Vaulx, J.-P. Chanet,

“Development experience of a context-aware system for smart irrigation
using caso and irrig ontologies,” Applied Sciences, vol. 10, no. 5, p. 1803,
2020.

[37] S. R. U. Kakakhel, L. Mukkala, T. Westerlund, J. Plosila, “Virtualization at
the network edge: A technology perspective,” in 2018 Third International
Conference on Fog and Mobile Edge Computing (FMEC), 2018, pp. 87– 92.

[38] D. Luckham, The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems. Boston, MA: Addison-
Wesley, 2002.

[39] A. Hogan, E. Blomqvist, M. Cochez, C. D’amato, G. D. Melo, C. Gutierrez,
S. Kirrane, J. E. L. Gayo, R. Navigli, S. Neumaier, A.-C. N. Ngomo, A.
Polleres, S. M. Rashid, A. Rula, L. Schmelzeisen, J. Sequeda, S. Staab, A.
Zimmermann, “Knowledge graphs,” ACM Computing Surveys, vol. 54, pp.
1–37, jul 2021, doi: 10.1145/3447772.

[40] N. Noy, Y. Gao, A. Jain, A. Narayanan, A. Patterson, J. Taylor, “Industry-
scale knowledge graphs: Lessons and challenges,” Communications of the
ACM, vol. 62 (8), pp. 36–43, 2019.

[41] I. Bernabé, A. Fernández, H. Billhardt, S. Ossowski, “Towards semantic
modelling of the edge-cloud continuum,” in Highlights in Practical
Applications of Agents, Multi-Agent Systems, and Complex Systems
Simulation. The PAAMS Collection, Cham, 2022, pp. 71– 82, Springer
International Publishing.

[42] M. Lefrançois, J. Kalaoja, T. Ghariani, A. Zimmermann, The SEAS
Knowledge Model. PhD dissertation, ITEA2 12004 Smart Energy Aware
Systems, 2017.

[43] G. Salgueiro, V. Gurbani, A. Roach, “Format for the session initiation
protocol (sip) common log format (clf),” 2013.

[44] R. Gerhards, “Rfc 5424: The syslog protocol,” 2009.
[45] C. Lonvick, “The bsd syslog protocol,” 2001.
[46] S. R. Jeffery, G. Alonso, M. J. Franklin, W. Hong, J. Widom, “A pipelined

framework for online cleaning of sensor data streams,” in 22nd
International Conference on Data Engineering (ICDE’06), 2006, pp. 140–
140, IEEE.

[47] D. F. Barbieri, D. Braga, S. Ceri, E. D. Valle, M. Grossniklaus, “Querying
rdf streams with c- sparql,” ACM SIGMOD Record, vol. 39, no. 1, pp. 20–26,
2010.

[48] B. DuCharme, Learning SPARQL: querying and updating with SPARQL 1.1.
“ O’Reilly Media, Inc.”, 2013.

Iván Bernabé-Sánchez

Iván Bernabé-Sánchez received a degree in information
technology engineering from the Carlos III University
of Madrid, Leganés, Spain, in 2007 and a PhD degree in
2021. His research interests include the virtualization of
devices and infrastructures defined through code, cloud
and edge computing architectures, and self-configuration
systems mechanisms based on knowledge representation

and semantic technologies. He has participated in several nationally or
internationally funded research projects.

Alberto Fernández

Alberto Fernández is a full professor at the University Rey
Juan Carlos (URJC) in Madrid, where he is a member of
the Artificial Intelligence Group of the CETINIA research
centre. He obtained a PhD in Computer Science from the
URJC. His main research lines are multi-agent systems,
knowledge representation, semantic technologies, open
systems, etc. He is especially interested in the application

of previous technologies in domains such as intelligent transportation systems,
fleet management, etc. He has participated in many national and international
projects on the above topics and has published more than 80 articles in
international journals, books and conferences.

Holger Billhardt

Holger Billhardt received his M.Sc. in computer science
from the TH Leipzig, Germany, and his PhD in computer
science at the Universidad Politécnica in Madrid. He is
currently a full professor of computer science at Universidad
Rey Juan Carlos in Madrid, where he is a member of the
Artificial Intelligence Group at the Centre for Intelligent
Information Technologies (CETINIA). His research is

concerned with multi-agent systems, especially with the coordination of agents
in distributed, open and dynamic environments. He is the author or co-author
of more than 100 research papers and has participated in several nationally or
internationally funded research projects.

Special Issue on Practical Applications of Agents and Multi-Agent Systems

- 97 -

Sascha Ossowski

Sascha Ossowski is a full professor of computer science
and director of the CETINIA research centre at the
University Rey Juan Carlos in Madrid. He received a
MSc degree in informatics from U Oldenburg (Germany)
and a PhD in artificial intelligence from TU Madrid
(Spain). The main themes of his research refer to models
and mechanisms for coordination in all sorts of agent

systems and environments. He was co-founder of the European Association
for Multiagent Systems (EURAMAS), chaired the European COST Action on
Agreement Technologies, and is an emeritus board member of the International
Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS).

