
- 1 -

* Corresponding author.

E-mail address: hichem.debbi@univ-msila.dz

Please cite this article in press as:
H. Debbi. Explaining Query Answers in Probabilistic Databases, International Journal of Interactive Multimedia and Artificial Intelligence, (2023),
http://dx.doi.org/10.9781/ijimai.2023.07.005

Keywords

Causality, Conjunctive
Queries, Explanation,
Probabilistic Databases,
Query Answers.

Abstract

Probabilistic databases have emerged as an extension of relational databases that can handle uncertain data
under possible worlds semantics. Although the problems of creating effective means of probabilistic data
representation as well as probabilistic query evaluation have been addressed so widely, low attention has been
given to query result explanation. While query answer explanation in relational databases tends to answer the
question: why is this tuple in the query result? In probabilistic databases, we should ask an additional question:
why does this tuple have such a probability? Due to the huge number of resulting worlds of probabilistic
databases, query explanation in probabilistic databases is a challenging task. In this paper, we propose a causal
explanation technique for conjunctive queries in probabilistic databases. Based on the notions of causality,
responsibility and blame, we will be able to address explanation for tuple and attribute uncertainties in a
complementary way. Through an experiment on the real-dataset of IMDB, we will see that this framework
would be helpful for explaining complex queries results. Comparing to existing explanation methods, our
method could be also considered as an aided-diagnosis method through computing the blame, which helps to
understand the impact of uncertain attributes.

DOI: 10.9781/ijimai.2023.07.005

Explaining Query Answers in Probabilistic Databases
Hichem Debbi*

Department of Computer Science, University of M’sila, M’sila (Algeria)

Received 8 August 2021 | Accepted 13 January 2023 | Early Access 24 July 2023

I. Introduction

RECENT applications in different domains are producing a huge
volume of imprecise or uncertain data. Applications such as RFID

and sensor networks are reporting frequently imprecise information,
which is due mainly to measurement errors. In other applications
such as information extraction from text or web pages, the extraction
process yields automatically probabilistic results, due to the imprecise
data source, or ambiguity in natural language text. A most known
example is NELL [1], the Never Ending Language Learner that learns
over time by reading the web [2]. It produces a set of facts, each one
is assigned a probability score representing the confidence of the fact
extracted. Business analysis, data cleaning, and integration are also
quite active domains for dealing with uncertain data.

Due to the high importance of dealing with uncertain data, and
since traditional databases do not have the ability to store and query
uncertain data, probabilistic databases have emerged to address this
issue. In probabilistic databases, the tuple may exist with a certain
probability, or the values of some attributes may be uncertain [3]. We
refer to both two types of uncertainty as tuple-level uncertainty and
attribute-level uncertainty. For modeling both types, we use the possible
worlds semantics [4]. It states that the real database is not known with
certainty, therefore we introduce a probability distribution on all
possible instances or worlds of this database.

Among major challenges in relational databases we find the
following related problems: consistent query evaluation, data repairs,
data cleaning, and explanation of unexpected query results. Consistent
query evaluation (CQA) refers to computing meaningful answers to

queries when dealing with an inconsistent database [5]–[7]. A database
is considered inconsistent if it does not satisfy a set of specifications
called integrity constraints. To restore consistency with regard to
these constraints, different database repairs semantics have been
proposed. The general idea is based on finding a consistent database
close to the inconsistent one with a minimal number of repairs, and
look for answers that are true in all repairs [8]. When we want to deal
with this inconsistency we can employee diagnostic approaches that
try to find the root causes for this inconsistency. Thus we face a matter
of causality. Similarly, in data diagnosis or in data cleaning [9], we
look generally for a set of causes. However, we face more a question
of causality when we try to explain unexpected query results. In this
regard, many approaches have been proposed leading to an interesting
subject, which is causality query answering. These approaches are
based mainly on analyzing the query result in the form of the query
lineage. Lineage is a standard and powerful tool that helps us to track
every output tuple in the query result to its origins or input tuples.

Although uncertain data representation as well as querying have
been addressed so widely [4], [10]–[12], low attention has been
given to query answer explanation comparing to classical databases.
Kanagal and Deshpande [13] addressed this issue into two dimensions:
the qualitative dimension, which refers to a classical question, why
such an output tuple is in the query result, thus they try to identify the
cause of the answer; the quantitative dimension: why does an output
tuple have a high probability, thus they try to identify the input tuples’
probabilities that significantly contributed to the output probability.
Measuring such contributions is based on measuring the probability
difference when altering the probabilities of these input tuples.

In probabilistic databases, depending only on lineage does not
provide enough explanation, since the context is quantitative and the
query result usually consists of multiple tuples. In this regard, Re and
Suciu [14] proposed two approximate lineage techniques, sufficient

- 2 -

International Journal of Interactive Multimedia and Artificial Intelligence

and polynomial lineages that provide a high compact representation
of lineage that only takes into account the influencing set of tuples.
Providing an efficient small lineage through these approximate
techniques helps to track down any derivations and provides better
explanations. While this work considers only conjunctive queries,
Kanagal et al. [13] addressed in addition aggregation and top-k queries.
One additional difference is that the first one addresses the creation of
lineage, the later build their algorithms on top of the lineage formula,
and then try to extract the most influential input tuples. In contrast
to looking for previous approaches that look for causes, Ceylan et
al. [15] have investigated the explanation of probabilistic queries
with the aim of finding the most probable database and the most
probable hypothesis for a given query. They studied these problems
with respect to both conjunctive and ontology-mediated queries, and
the complexity analysis results showed that it could be helpful for
applications in prediction and diagnosis tasks.

Causality plays an important role in explaining any phenomena.
Halpern and Pearl have introduced a causality model, which they refer
to as structural equations [16], [17]. This model of causality has been
successfully used in many research areas. Based on this definition,
Halpern and Chokler [18] introduced the definition of responsibility.
Responsibility extends the concept of all-or-nothing of the actual
cause X = x for the truth value of a Boolean formula ϕ in (M, u), where
u refers to a context, and M refers to the causality model. It measures
the number of changes that have to be made in u in order to make ϕ
counterfactually depends on X . When we have an uncertainty around
the context, we face in addition to the question of responsibility the
question of blame.

In this paper, we employ these definitions: causality, resposnbility
and blame to provide explanations for query answers in probabilistic
databases. We take the lineage produced as input, and then try to
identify the most responsible tuples and the uncertain variables that
have the most blame for such an outcome. Our work for identifying and
ranking causes with their degree of responsibility is similar to previous
works [19], [20] in a way that it tries to identify the most responsible
tuples for such an outcome. However, we address them in an uncertain
setting, which leads us to propose an extended version of responsibility,
which is probabilistic responsibility. The second part of our work
aims to identify the attributes having the most blame. Although the
uncertainty in probabilistic databases is mainly associated with
uncertain attributes, to our knowledge, there has not been an attempt
before to address the contribution of uncertain attributes.

To clarify the role of such diagnostic information, we use in our
paper the form of U-relational databases [21] that are based on
attribute-uncertainty. A U-relational database is featured in many
probabilistic database management systems such as MayBMS [22].
MayBMS is considered one of the most successful probabilistic
systems, which is built on top of an existing relational database
management system [23].

Our technique is complete in a way that it could touch both
forms of probabilistic databases (tuple and attribute uncertainty) in
a complementary way. While probabilistic responsibility is used for
measuring the contribution of most responsible tuples, this same
measure is employed then to rank uncertain attributes with the most
blame. To our knowledge, this is the first attempt to employ all these
notions together: causality, responsibility and blame in probabilistic
databases. Our work is similar to Kanagal and Deshpande [13] in a
way that the algorithm proposed is built on top of lineage. To show the
effectiveness of our approach, we conducted two main experiments.
We first evaluate the execution time of the proposed algorithm by
varying a number of parameters. This experiment has been done on
synthetic data. Then, we show the usefulness of our approach on a real
probabilistic database, which is the IMDB database [24].

In the following we summarize the main contributions of the paper:

• We provide a causal-based explanation framework for analyzing
the query answers in probabilistic databases.

• It is the first time, where all the notions of causality, responsibility
and blame are combined together in a synergistic way.

• By performing extensive experiments, we will show that our
framework is scalable even for large databases, inducing millions
of causes.

• Although we do not have enough available real probabilistic
datasets for evaluation, we succeeded to get promising results by
executing our framework on a real-dataset, which is the IMDB
dataset. To our knowledge, explaining queries over IMDB dataset
has been addressed for the first time.

• Our method does not act just as an explanation method for query
answers, but also acts as an aided diagnostic method that helps to
understand the contribution of uncertain attributes.

• The experiment on IMDB has been executed on the top of one
of the successful probabilistic database management systems
MayBMS [23].

The rest of this paper is organized as follows. In Section 2 we
present some related works. We present some preliminaries and
definitions in Section 3. We introduce U-relational databases as well
as lineage in this section. In addition, we revise the definitions of
causality and responsibility in relational databases. In Section 4, we
present our definitions for causality, responsibility and blame in the
context of probabilistic databases. This section is ended by introducing
an algorithm for computing all the measures related to our definitions.
Experimental results are presented in Section 5. The last section
concludes the paper and outlines some future work.

II. Related Work

Meliou et al. [19], [25] have addressed causality in relational database
for the first time based on the definition of causality by Halpern and
Pearl [16]. Given a query output over a database instance, they try to
find the responsible tuples that cause this answer. A tuple t is considered
as a cause for a query answer, if there exists such a contingency that
represents a set of tuples called endogenous, in way that removing this
set from the database makes the query output counterfactually depends
on t, i.e, removing t will lead to a non-answer. This definition has been
related to lineage based on c-tables [26], [27]. The lineage formula is
introduced in Disjunctive Normal Form (DNF), in which, every tuple
is represented by a Boolean variable, then a cause is considered as a
tuple associated with a Boolean variable that is included in a minterm
of the lineage formula. This definition has been enhanced by another
quantitative measure called responsibility, which measures the degree
to which a tuple is considered as a cause [18]. Computing responsibility
of a tuple t is based on the size of its contingency, where the tuple with
the lower contingency is supposed to has the highest responsibility
and vice versa. In an extended work [25], they introduced a careful
complexity analysis of computing causality and responsibility in
databases for both why so and why no (non-answer) causality. A non-
answer query result refers to the question: why some tuples are missed
from the output ? In this regard, Diestelkämper et al. [28] addressed this
issue in the context of Big data, on queries of the data-intensive scalable
computing (DISC) Appach spark. Despite the application context of
Appach Spark, which is so novel and relevant, this work compared to
previous works on missing answers, addresses nested data, which lead
to rely on specific a nested data model and nested relational algebra
for bags as a query language . However, this work just like previous
works on missing answers analysis relies on lineage or provenance,
specifically the why-not provenance.

- 3 -

Article in Press

Some reported open problems by [19] [25] have been addressed
later by Salimi [29]. Among problems addressed are databases repairs
and consistent query answering, abductive reasoning in databases,
and the view-update problem. They argue that these famous
problems in databases have strong connections to the definition of
causality in databases. They showed that computing causes and their
responsibilities can be considered as a consistent query answering
problem, and in order to obtain repairs, they proposed algorithms
for computing causes and their responsibilities for queries as unions
of conjunctive queries [30]. Based on Hitting sets and vertex covers
problems in hyper-graphs, they introduced more details on the
complexity analysis of causality in databases, that is uncovering some
complexity issues that have not been addressed by Meliou et al. [25].
They also showed the connection between query answer causality and
abductive diagnosis as well as view-update problem, particularly, the
delete-propagation problem where only tuple deletions are allowed
from views [20]. Delete-propagation process tries to minimize the
side-effect on views, thus, looking for a minimal set of tuples deletion.
This issue has been related to a minimal contingency set of a causes
to establish the connection between the two concepts. In addition, for
establishing this connection, they adapted conditioning causality [31]
that states that computing causes for an unexpected answer should be
guided or conditioned on some prior knowledge of the correctness of
another set of outputs. As a result, a measure for a tuple contribution
to different outputs may be obtained. They also showed the connection
between abductive diagnosis and query answering causality in the
context of Datalog queries.

Another interesting work that employs causality and responsibility
has been done by Lian and Chen [32]. They addressed the problem
of probabilistic nearest neighbor (PNN), which is related the context
of moving objects such as RFID, sensor networks and location-based
services that introduce usually imperfect estimations of objects
positions. In this work, responsibility is assigned to an object. This
object is considered as a cause for other objects to be or not to be
included in PNN query answers.

In addition to relational databases, causality and responsibility
have been implemented in knowledge based systems. Mu [33] has
addressed the inconsistency of knowledge bases through affecting a
degree of responsibility for each formula, starting from the hypothesis
that this responsibility should be explained from a causal perspective.
In this setting, computing the degree of responsibility of a formula for
inconsistency is based on identifying the minimal number of formulas
that have to be removed from the knowledge base in order to break all
the minimal inconsistent subsets not containing the formula, where
the formula is declared not responsible if it does not belong to any
minimal inconsistent subset.

In contrast to all previous works adopting lineage for both
traditional and probabilistic databases, Miao et al. [34] proposed
CAPE (Counterbalancing with Aggregate Patterns for Explanations)
for explaining aggregation queries that does not rely on lineage or
provenance at all. They consider that in the presence of outliers in
data, relying on lineage only could be misleading. Therefore, they
look for some patterns that hold on the data to provide explanations
counterbalancing the user’s observation. That is, outliers contradicting
some pattern related to the user question might be easily identified.

III. Preliminaries

A. Probabilistic Databases
In probabilistic databases, a database instance could be in several

states, where each state has a degree of uncertainty. That is, we could
have several possible instances, called worlds, each of which has a

probability. To model these instances under uncertainty we use the
possible worlds semantics [4]. It states that a probabilistic database is
represented as a finite set of possible worlds with some weights, and
these weights sum up to 1. We refer to such a finite set of structures an
incomplete database [2].

Let us fix a relational schema that consists of k relation names R1,
R2, ..., Rk. We refer to an incomplete database as W = {W 1, W 2, ...,W n},
where each is a database instance. Now we define
a probabilistic database as follows:

Definition 1. Probabilistic Database. A Probabilistic database is a
probabilistic space D = (W, P) over an incomplete database W, where P:W
→ [0,1] is a probability distribution function such that ∑W∈W P(W) = 1.

In probabilistic databases, relations instances are supposed to be
different from a world to another. We call a relation Rj certain or
deterministic, if . Relations are different in the way
that each relation instance Rj in a world W i contains different tuples
from an instance of the same relation in another world. These tuples
are considered as probabilistic events because we are not sure that
they represent certain data. Therefore, we define for each tuple a
probability called marginal probability or confidence. The probability
of a tuple t ∈ Rj is defined as follows:

 (1)

The question that arises now is how to evaluate a query Q on
a probabilistic database. For doing so, two semantics have been
considered so far. The fist is possible answer sets semantics, where the
query is evaluated on every possible world, this returns a set of tuples
for each world. Since the representation of all answers in not practical,
we instead use the second semantics, which is called possible answers
[2]. As in the first semantics, the query is evaluated on all possible
worlds, however, the result is returned as a list of tuples annotated
with probabilities. We can say that such a tuple t is a possible answer
to a query Q, if ∃W ∈ W such that t ∈ Q(W). We can say that a tuple
is certain if ∀W ∈ W, t ∈ Q(W). Given a query Q and a probabilistic
database D = (W, P), the marginal probability of a tuple t ∈ Q is
P(t ∈ Q) = ∑W∈W:t∈Q(W) P(W). That is, the marginal probability of a tuple
t is computed by summing up the probabilities of worlds in which
the tuple t is returned as an answer for the query Q. So, the possible
answers for a query Q with their probabilities are represented as
Q(D) = {(t1, p1),(t2, p2), ...}. We can easily notice that two variants of
tuple answer semantics can be defined, possible and certain. These
sets are defined as follows :

 (2)

 (3)

B. BID Database
Probabilistic databases can be obtained through two types of

uncertainties, either on the level of tuples, this type is called tuple-level
uncertainty, or on the level of attributes, and this is called attribute-level
uncertainty. In the first type, a tuple is considered as a random variable,
so given a database instance, we are not sure if this tuple really exists.
In the second type, the values of specific attributes are uncertain for
each tuple, that is, the attribute is considered as a random variable, its
domain is all the values that the attribute may take. During the query
evaluation process, attribute-level uncertainty is usually transformed
to a tuple-level uncertainty. Based on these types of uncertainty, we
have two types of probabilistic databases: tuple-independent database,
where the tuples are independent probabilistic events, and block
independent-disjoint probabilistic database, where the tuples are
partitioned into blocks according to an uncertain attribute, such that

- 4 -

International Journal of Interactive Multimedia and Artificial Intelligence

tuples in the same block are disjoint and their probabilities sum up to 1,
and tuples from different blocks are independent. So, in BID database,
it is not possible for a world to contain more than one tuple from the
same block. This representation is very effective and considered as
a complete representation system with conjunctive query views [2].
This representation has been featured in many probabilistic database
systems, such as MayBMS [22], [35], MystiQ [36] and Trio [37],[38]. It
can also help for capturing key violations in databases.

Consider the forms presented in Fig. 1. It corresponds to 3 survey
forms filled by three persons: Smith, Brown and John. Each form
contains as information: social security number (SSN), name, and
marital status (M). While both attributes ID and name have evident
values, it is not the same case for SSN and M. For instance, one could
be mistaken for the values of SSN in form 1, whether it is 185 or 785,
and also in form 2 (185/186). One could be also mistaken for the value
of M in form 1, weather its value is "single" or married", because it
seems that Smith first checked "single" mistakenly, then he checked
"married", but it could also be the contrary. In the second form, John
did not check any status, hence, we have have four possible values. An
example of BID database regarding these forms is presented in Fig 2.
By taking exactly one value of each uncertain variable, this could result
in 2 × 2 × 2 × 3 = 24 possible readings of the three forms. Suppose
that we have millions of forms filled with this uncertainty, it would
be a very challenging task to represent and process all these possible
readings.

FId SSN P FId M P

1 185 0.4 1 1 0.7

1 785 0.6 1 2 0.3

2 185 0.7 2 1 0.25

2 186 0.3 2 2 0.25

3 186 0.75 2 3 0.25

3 188 0.25 2 4 0.25

3 1 1

Fig. 2. An example of BID database.

C. U-Relational Database
U-relational database [11] is based on BID representation, and it

is also considered as a probabilistic extension of classical conditional
tables (C-tables) [39]. In a c-table, each tuple is annotated with a
propositional formula over random variables. Using the logical
operations And (∧), OR (∨) and NOT (¬), the propositional formula
is obtained. In a U-relational database, the schema of each U-relation
consists of: a tuple id column, a set of column pairs (Vi, Di) that
represent variable assignments or valuations, and finally a set of value
columns. The probabilities of the assignments are stored in a separate
table W(V, D, P), called the world table.

Definition 2. U-relation Schema. A U-relation schema is a represented
as S = (V1, D1, ..., Vk, Dk, A1, ..., Am), where k refers to the number of pairs
of variable assignments (distinguished attributes), and m refers to the
number of value columns. A U-relational database consists of U-relations.

A U-relational database is an efficient and complete representation
system that could provide a compact representation of the exponential
number of possible worlds, and could also allow the representation of
the result of any query [21]. Given U-relation database, the result of a
query can be also returned in the same representation. A U-relational
database for the example presented in Fig. 1 is presented in Fig. 3

In U-relational databases, each world W is defined by an assignment
θ that assigns one possible value to each variable. Then, the
probability or weight of this possible world is computed as the product
of the probabilities associated to these valuations. For instance the
probability of the world W = {x ↦ 1, y ↦ 3, z ↦ 4, u ↦ 1, v ↦ 3, w ↦ 1} is
0.4 × 0.3 × 0.25 × 0.7 × 0.25 × 1 = 0.0056.

D. Lineage and Conjunctive Queries
Lineage is defined as propositional formula over input tuples in

a database in order to explain how such an output query has been
derived. Hence, each output tuple has a Boolean formula that states
the input tuples responsible for its occurrence. Lineage is considered
as a powerful tool for explaining query results. However, projection
of million tuples on a single output tuple could result in a huge
lineage formula. By considering uncertain context, i.e, probabilistic
databases, the interpretation of lineage is more challenging. Lineage

Fig. 1. Survey Forms.

- 5 -

Article in Press

in probabilistic databases is defined in a similar way comparing
to relational databases, furthermore, query evaluation reduces to
computing the lineage of output tuples, and then computing the
probabilities of the lineage formulas.

Actually, all probabilistic database management systems use
lineage-based query evaluation [12]. Many techniques have been
proposed for computing the probability of propositional formulas in
an efficient way, such as read-once formulas [40], OBDD [41], and
d-DNNF [42].

Lineage formulas are written usually as DNF formulas. DNF
formulas are Boolean formulas in disjunctive normal form. Formally,
given a query Q and a probabilistic database D, each answer tuple
a ∈ Q (D) is associated with a DNF formula .

In U-relational database systems like MayBMS, computing the
probability or confidence of an output tuple is based on computing
the probability of a DNF of this tuple, by summing up the probabilities
identified with the valuation θ of random variables such that DNF
becomes true under θ. Some approximation techniques based on
Monte Carlo simulation have been proposed to approximate DNF
probabilities computation [4], [43]. One interesting point about
U-relational databases, is that a lineage of output tuples can be written
in k-DNF formula for small number of k, where k represents the
maximum number of literals.

Conjunctive query. Conjunctive query is the simplest and most
used query in relational databases. It is restricted to the operators
∃ and ∧ and it has the following form in relational calculus:
x, y | ∃ z (R (x, y) ∧ S (y, z)) where R and S are two relations. In Datalog,
it is given in the form: q (x, y): −R (x, y), S (y, z). In SQL, conjunctive
queries correspond to selec − project − join, and the where clause

contains only equalities. By relating conjunctive queries to lineage, in
SQL we can use: select distinct attributes, or alternatively the following
form: select * order by attributes.

The lineage of an output tuple of a query in the first form would be
a DNF formula whose terms are given by the rows returned by a query
in the second form.

Example III.1. Consider the U-relational database in Fig. 3. Consider
a conjunctive query on two uncertain relations UR[SSN] and UR[M] that
returns all possible SSNs of married persons (select SNN from U_SSN, U_M
where U_SSN.FID = U_M.FID and U_M.M=2). Before going through query
results, we should mention that some resulting worlds of this database
could be inconsistent, in way that one world could contain two persons
with the same SSN, which is not possible. Database management systems
like MayBMS offers the possibility to detect such violations. An example
of a query that repairs this database is given as the following:

repair key (fid) in Census_SSN weight by p;
Where Census_SSN refers to the relation URrSSNs. After applying this

constraint, we can reduce the number of instances of URrSSNs to four
possible instances. Although the number of possible worlds is obviously
more than 4, because we have another uncertain relation in hand, which
is UR[M], we fix four instances as well for this relation to better explain
our future notions. That is, we consider only the following 4 worlds:

W1 = {x ↦ 1, y ↦ 3, z ↦ 4, u ↦ 2, v ↦ 2, w ↦ 2}
P(W1) = 0.4 × 0.3 × 0.25 × 0.3 × 0.25 × 1 = 0.0022
W2 = {x ↦ 2, y ↦ 1, z ↦ 4, u ↦ 1, v ↦ 2, w ↦ 2}
P(W2) = 0.6 × 0.7 × 0.3 × 0.7 × 0.25 × 1 = 0.022
W3 = {x ↦ 2, y ↦ 3, z ↦ 4, u ↦ 2, v ↦ 1, w ↦ 2}
P(W3) = 0.6 × 0.3 × 0.25 × 0.3 × 0.25 × 1 = 0.0033
W4 = {x ↦ 2, y ↦ 1, z ↦ 3, u ↦ 1, v ↦ 1, w ↦ 2}
P(W4) = 0.6 × 0.7 × 0.75 × 0.7 × 0.25 × 1 = 0.055

For a query that returns married persons (M = 2), the query returns
over these 4 worlds 8 possible tuples. Thus, the lineage formula would
be a DNF formula consisting of 8 terms returned by this query over 4
possible worlds

[(x = 1 ∧ u = 2) ∨ (y = 3 ∧ v = 2) ∨ (z = 4 ∧ w = 2)] ∨
[(y = 1 ∧ v = 2) ∨ (z = 4 ∧ w = 2)] ∨ [(x =2 ∧ u = 2) ∨
(z = 4 ∧ w = 2)] ∨ [(z =3 ∧ w = 2)]

The output probability is computed with respect to this DNF formula,
which is the sum of these probabilities: 0.0825.

E. Causality and Responsibility in Relational Databases
Counterfactual reasoning that states: event A is a cause of event

B if, had A not happened then B would not have happened, plays an
important role in causality. Halpern and Pearl [16] extended this basic
statement by taking A to be a cause of B, if B counterfactually depends
on A under some contingency. Following this definition, Meliou et
al. have introduced the definition of database causality. Let us fix a
relational schema that consists of k relation names R1, R2, ..., Rk. Given a
database instance D and a conjunctive query Q, for each relation Ri, we
denote by the set of endogenous tuples, and the set of exogenous
tuples. Endogenous tuples are those that are considered to be causes,
whereas exogenous tuples are deemed not to be possible causes. That
is, the tuples in D are partitioned into two sets D = Dn ∪ Dx, where Dn, Dx
represent all endogenous and exogenous tuples respectively. A tuple
t ∈ Dn is said to be a counterfactual cause for an answer a to Q in D, if
D ⊨ Q(a) and D − {t} ⊭ Q(a). Given this definition, we can now give the
definition of actual cause.

Definition 3. Actual cause. A tuple t is an actual cause for an answer
a in D if there exists a set of endogenous tuples Γ ⊆ Dn, such that t is a

UR[SSN] V ↦ D FId SSN

x ↦ 1 1 185
x ↦ 2 1 785
y ↦ 1 2 185
y ↦ 3 2 186
z ↦ 3 3 186
z ↦ 4 3 188

UR[M] V ↦ D FId M

u ↦ 1 1 1
u ↦ 2 1 2
v ↦ 1 2 1
v ↦ 2 2 2
v ↦ 3 2 3
v ↦ 4 2 4
w ↦ 2 3 2

UR[Name] FId Name W V ↦ D P

1 Smith x ↦ 1 0.4
2 Brown x ↦ 2 0.6
3 John y ↦ 1 0.7

y ↦ 3 0.3
z ↦ 3 0.75
z ↦ 4 0.25
u ↦ 1 0.7
u ↦ 2 0.3
v ↦ 1 0.25
v ↦ 2 0.25
v ↦ 3 0.25
v ↦ 4 0.25
w ↦ 2 1

Fig. 3. An example of U-relational database.

- 6 -

International Journal of Interactive Multimedia and Artificial Intelligence

counterfactual cause for a in D − Γ. We call this set a contingency for t.
That is, it is sufficient to find a set of tuples Γ that can be removed

in order to make the query answer couterfactualy depends on the
existence of t. In other words, removing t will switch to non-answer. It
is evident that every counterfactual cause is an actual cause by taking
Γ = ∅. Based on c-tables representation, computing the causes has
been related to lineage in DNF formula [19]. Let us assume that every
tuple t in D is associated with a Boolean variable Xt, and we denote
by Xn the Boolean variables related to endogenous tuples. The DNF
formula for such an output tuple a will consist only of Xn. In terms
of lineage, we say that a tuple t is an actual cause for an answer a to a
query Q on D, iff there exists a minterm in that contains t.

An open question has arisen given the above definition concerning
a contingency Γ: does it matter the size of Γ on the importance of
an actual cause? Chockler and Halpern have addressed this issue
by introducing a quantitative measure called responsibility [18]. In
relational databases responsibility has been used to rank tuples [19],
[20].

Definition 4. Responsibility. The degree of responsibility of a cause
t for an answer a of a query Q on D, denoted drt , is drt = 1/|(Γ| + 1),
where Γ represents the minimal contingency set for t.

That is, the degree of responsibility of a tuple t is based on computing
the number of tuples that we need to remove from the database D in
order to make a query answer a contractually depends on t. Obviously,
when the actual cause t is already a counterfactual cause, i.e, Γ = ∅,
then the degree of responsibility drt = 1.

Let us consider a simple conjunctive query q1 (z): −R(x, y), S(y, z)
over a database that contains the tuples R(a, b), S(b, d), R(a, c), S(c, d).
The lineage for the answer d would be (XR(a,b) ∧ XS(b,d)) ∨ (XR(e,c)) ∧ XS(c,d)).
It is evident that every tuple here is an actual cause for this answer.
Removing R(a, b) or R(e, c) for instance will make both S(b, d) and
S(c, d) counterfactual causes. It is evident that the minimal number
of tuples needed for making these causes counterfactual is 1, that is
each tuple here has a degree of responsibility 1/2. Now let assume
the q2 (y): −R(x, y), S(y) over a database that contains the tuples
R(a, c), R(b, c), S(c), the lineage for the answer c would be (XR(a,c) ∧ XS(c))
∨ (XR(b,c)∧ XS(c)). Here the tuple S(c) has a 1 as a degree of responsibility
since its removal will result in no answer, whereas both of the tuples
R(a, c) and R(b, c) share the responsibility.

IV. Causality and Responsibility in Probabilistic
Databases

It is evident that causality and its quantitative extension
responsibility play an important role in explaining query results in
relational databases. Since probabilistic databases extend relational
databases with probabilistic semantics, a great effort has been done
mainly to extend relational semantics to represent uncertainty in data
[2]. In this regard, we choose to extend the definitions of causality
and responsibility to probabilistic databases, in order to explain the
probabilistic results of a query over a probabilistic database. In addition,
we use the definition of blame [18] that we consider as a helpful tool
when we want to go deeply for explaining such results. Kanagal
and Deshpande [13] have introduced some fundamental notions for
explaining probabilistic results over probabilistic databases. They
addressed questions like: why such a tuple is included in the result?
in addition to: why a tuple t has more probability than the probability
of another tuple t'? Some works try to enhance the computed lineage
itself by proposing the notion of approximate lineage, which is
considered to include only the most important and influential tuples.
Here, we rely on complete lineage, and since it could be very huge, we
employ these two definitions (causality and responsibility) to guide

the user to the most responsible causes for such an output.

We should recall that probabilistic databases can be given into two
representations: tuple-based and attribute-based. The approach that
we are going to propose can handle both sources of uncertainties.
While causality and responsibility can be used for explaining the
first type, we count on blame for understanding the contribution of
uncertain attributes to the probabilistic result of the query. So, we
depend on causality and responsibility for answering questions like:
Why is this tuple? what is its responsibility? what contribution does it
have on the probability of the query? On the other side, we depend on
blame for answering the question: What uncertain variable we should
blame the most for such an outcome?. While the first question has been
considerably addressed, to our knowledge, the second question has
not been addressed before, though it is of high importance and could
return deeper explanations. Furthermore, it could be very helpful for
understanding the entire design of probabilistic databases.

Here we define causality, responsibility and blame by considering
the probabilistic database to be U-relational database. As we showed
before, U-relational databases are a complete representation, effective
in many ways, and more importunately, it explicitly features attribute-
uncertainty, which will be a ground for our definitions. One more
important feature of U-relational databases is that causes can be
returned in a detailed manner, i.e, in a form of valuations of the
uncertain variables, this could provide a better explanation than an
entire tuple that could consist of many attributes.

We introduce first the notions of causality and responsibility
in general semantics, the possible worlds semantics. Hence, our
definitions would be applicable for any probabilistic database, then
we restrict our presentation with an example to U-relational database.

We should recall that computing the probability of a query output
in U-relational databases is based on computing the probability of a
DNF, which is the sum of the weights of the worlds identified with
valuations θ such that the DNF becomes true under θ [44].

A. Causality and Responsibility
Before introducing our definitions, let us recall first what is a causal

model according to Halpern and Pearl [16], on which the definitions of
causality, responsibility and blame are built. A causal model is a tuple
M = (U, V, F), where the set U represents exogenous variables, whose
values are determined by factors outside the model M, but they are
necessary to encode the context, and the set of endogenous variables
V, whose values are determined by a set of functions F. The causes are
determined then by the valuations of V. The causality model can be
extended to a probabilistic causal model as a tuple (M, Pr), where M
is the causality model, and Pr is a probability function over possible
contexts [17].

To relate this definition to probabilistic databases, the context
will refer to a possible world W, whose probability is defined by the
probability function P. V will refer to endogenous tuples in this world,
this set is included in the DNF formula. U will refer to exogenous tuples
that are not included in the DNF formula, but they are necessary to
define the possible world. By considering U-relational databases, F will
refer to the valuations θ.

Now we can introduce the definition of a cause in probabilistic
databases. Let us consider a U-relational database D. We should recall
that a U-relation schema consists of variables assignments (Vi, Di),
such that every tuple is associated with a valuation Vi = vi. We recall
also that given a query Q and a database D, each answer tuple a ∈ Q (D)
is associated with a global DNF formula . Let us denote by the
lineage for a in the local level of a world W.

Definition 5. Actual cause. A tuple t with a valuation Vi = vi ∈
is an actual cause for an answer a in a possible world W, subsequently

- 7 -

Article in Press

in D, if there exists a subset of variables Γ ⊆ V, such that switching their
values makes the truth value of counterfactually depends on Vi = vi.

That is, this definition is the same for a cause in relational database,
just by considering one possible world. V refers to the variables
associated with endogenous tuples, and Vi = vi is a valuation associated
with an input tuple.

Definition 6. Responsibility. The degree of responsibility of a tuple t
with a valuation Vi = vi for an answer a in a possible world W, is drt (Vi
= vi)W = 1/|Γ|+1, where Γ represents the minimal contingency set for t.

Conjunctions in lineage represent join over relations, that is, a
valuation could appear in different conjunctions.

Proposition IV.1. Let CW = C1, ..., Cn be the set of conjunctions related
to DNF formula . A tuple t with a valuation Vi = vi is a
counterfactual cause, and thus it has responsibility 1, iff t is included
in every conjunction Ci.

That is the cause with the highest responsibility will be the one
appearing the most in the conjunctions of .

Although, a cause responsibility is a very interesting measure, in
this simplest form it did not yet take into account the uncertainty
introduced by random variables V. Therefore, we have to deal with this
uncertainty. Halpern and Pearl [17] addressed also the case where the
context is uncertain, then the probability of a cause X = x, where X ∈ V ,
is given by the probability of the context u on which X has its value.
We adopt the same definition here for cause in probabilistic database,
and we define the cause probability in each world W as:

 (4)

That is, we have associated for each cause a probability that
represents exactly the probability of the world in which it is included.
Let us now denote by ∈ W the set of worlds related to the global
DNF formula . Let a tuple t with a valuation Vi = vi be a cause that
appears in a set of worlds Wt ⊆ .

Given the definitions of cause responsibility and cause probability,
we introduce the following definition.

Definition 7. Probabilistic responsibility. We define for each cause
for an answer a ∈ Q(D) a probabilistic responsibility as follows:

 (5)

That is, we define for each cause a responsibility over possible
worlds, where each cause takes the probability of the world in which
it is included. This has been done by computing the product of the
cause responsibility and cause probability on the local level for every
world, then summing up these measures. We consider this measure as
an enhanced and required version of classical responsibility.

Definition 8. Most responsible cause. A tuple t with a valuation
Vi = vi is a most responsible cause for an answer a ∈ Q(D), if
drPt (Vi = vi) ≥ drPt' (Vi' = vi').

Consider for instance a world where we have a cause with
responsibility 1. According to the classical definition, this cause
represents a good explanation, however, when we know that the
probability of this world is very low, the cause automatically loses its
importance. Therefore, most responsible causes are those having high
responsibilities in worlds with high probabilities. Obviously, we are
interested more in most probable worlds. We should note here that
a most probable database is supposed to be the closest to a certain
database. It is evident that a most responsible cause does not have
necessarily the highest probability, and it might not be unique.

Proposition IV.2. A cause t could have drPt (Vi = vi) = 1 for an answer
a ∈ Q(D), which is the highest value possible for probabilistic causality,

iff t ∈ Qcert (W), and t is a counterfactual cause.
Proof. A certain tuple t ∈ Qcert (W) is defined as a tuple that is present
in every world W ∈ W -See equation (3)-, i.e, P(t) = 1, which represents
the sum of all worlds probabilities. With respect to Definition 7, the
probabilistic responsibility of a tuple t (drPt) is obtained by the product
of its probability (Pt) and responsibility drt , so a cause probability is
weighted by its responsibility. So, if this tuple t is a counterfactual
cause in every world, then it has always 1 as a degree of responsibility,
and since t ∈ Qcert (W), then the probabilistic responsibility of t will
represent exactly the sum of all worlds probabilities, which is certainly
1, i.e, drPt (Vi = vi) = 1.

B. Blame
Blame has been proposed as a complementary notion for

responsibility in the presence of uncertainty [18]. Actually, blame is
used when responsibility does not give enough explanation, one source
for this incompleteness is the uncertainty associated with the contexts
in which responsibility is measured. As presented before, causality
and responsibility have been proved to be a helpful tool for explaining
such an answer, but we still need to question the probabilities derived.
How uncertain attributes have contributed to this result, more deeply,
which uncertain variable has the most blame for such an outcome.
This question has more importance with conjunctive queries involving
many uncertain relations.

Definition 9. Blame. Let X be an uncertain attribute, and UR[X]the
uncertain relation. Let us denoted by XTW the set of causes with valuations
Vi = vi, ..., vm with respect to X in a world W. We define for each uncertain
attribute X for an answer a ∈ Q(D) the degree of blame as follows:

 (6)

So, the degree of blame for an uncertain attribute X is based on
computing first the products of the tuples probabilities associated with
it in the world table, and their responsibilities with respect to each
world, then summing up all these measures. That is we are trying to
quantify the probability contribution of each cause valuation to the
probability of the world taking into account its responsibility. We can
say that we obtain here two diagnostic information, the first concerns
tuples (causality and responsibility), and the second concerns the
uncertain attributes (blame), where the second notion is based on the
former notions.

Theorem IV.3. If a tuple t with a valuation Vi = vi ∈ XTW is a most
responsible cause, it does not mean necessarily that X has the most blame.
Proof. We can think of responsibility as an adjusting factor for both
probability of a tuple P for computing the blame, and probability of
cause Pr for computing the probabilistic responsibility. Let us consider
that a cause t with a valuation V1 = v1 is included in the set of certain
tuples Qcert (W), that is according to proposition IV.2, this is a most
responsible cause with the highest possible value. It is sufficient to find
an uncertain attribute X2 such that db(X2 >) db(X1). We should notice
that the most responsible cause when it comes to blame, is affected by
the rest of valuations in XTW. That is, it can be found that X1TW has low
probabilities as well as low responsibilities compared to the valuations
X2TW, where X2TW does not include the most responsible cause.

C. An Algorithm for Explaining Query Answers
Our algorithm takes the lineage of such an answer in DNF

form, and then returns the causes ordered with their probabilistic
responsibilities, and the attributes ordered with their blame. However,
before analyzing the DNF formula, some pre-processing is performed
in order to compute the results in an efficient way. We propose to
transform the DNF formula into a table of two dimensions, the
first dimension represents the local lineage formula with respect

- 8 -

International Journal of Interactive Multimedia and Artificial Intelligence

to each world, and the second represents the possible worlds. This
representation provides all the information that we need to compute
responsibility and blame. We call this representation a causality matrix.

The algorithm 1 aims to generate causes with their dR and Pr, and
attributes with dB. To do so, we should introduce three main functions
representing the main steps in computing probabilistic responsibility
and blame. The objective of the first function ComputeCauses is to
extract the causes from each term in the DNF formula, with respect
to each world, the result will seem like a table of two dimensions.
This table will contain redundant causes that appear in multiple terms,
however, we need it to start the next phase. The second phase takes
the result of the first phase as input, and tries to compute for each
distinct cause its responsibility. This requires the computation of
the contingency Γ for each cause. Based on the input, this is can be
easily achieved through the use of a variable K. When the cause is
not contained in a minterm, K is increased by one, which means that
this term could be removed without affecting the truth value of .
Similarly, if the cause is contained in every term, thus, 𝐾 =0, it means
that this cause is counterfactual and has responsibility 1. By completing
the two loops, each cause will have its related responsibility. After
that, we can compute the probabilistic responsibility of each cause.
By completing this phase, we will have all required information in
hand(causes with their 𝑑𝑅, 𝑃𝑟 and 𝑃) to compute the blame.

Algorithm 1 Compute Explanations
1: Inputs: DNF formula
2: Outputs: Causes with responsibilities, attributes with blame
3: Causes = ∅
4: Causes = ComputeCauses()
5: ComputeRespons(Causes)
6: ComputeBlame(Causes with dr and Pr)
7: OutputExplanations(Causes with dR and Pr, Attributes with
 dB)

It is evident that this algorithm returns the set of explanations in
polynomial time. Its complexity depends on the size of D and the size of
the DNF formula. For computing responsibility, since the DNF formula
is related to a linear conjunctive query, computing responsibility has
been already proved that it can be achieved in polynomial time [25],
[45]. They have proposed a careful analysis of complexity for both
causality and responsibility in relational databases, for both Why so?
and Why no? causality.

Example IV.1. Let us consider the results of the previous example of
the census database (Example III.1). We want now to run our algorithm
and measure the contribution of each cause to the previous output.
We compute tuples responsibilities, as well as blame for the uncertain
attributes SSN and M. We need first to perform a pre-processing on the
lineage formula and construct the causality matrix. The causality matrix
related to the lineage formula is presented in Fig. 4. This representation
could help us to get a deep and complete insight on the causes and
their probabilities, and help us to compute responsibility and blame so
easily. Each column represents a cause with respect to each local lineage
formula, double vertical lines refer to conjuncts of the local lineage

formula. Computing responsibility is based on computing the number of
conjuncts that do not include the cause. Let us take the cause z = 3, z = 4
and w = 2, and compute their responsibilities along the 4 worlds.

In the first world drt (w = 2)W1 = 1/3 since there exists two other
conjuncts that do not contain w = 2, that is, in order to make w = 2
counterfactual cause, there exists two other contingencies. In W2 and
W3, there exists one contingency, drt (w = 2)W2 = 1/2. In the world W4,
w = 2 has a degree of responsibility drt (w = 2)W4 = 1, because it is a
counterfactual cause.

 function ComputeCauses()
2: for each in do
 for each minterm C in do
4: Causes_W = Causes_W ∪ < Vi = vi ; P(Vi = vi) >
 end for
6: Causes = Causes ∪ Causes_W
 end for
8: end function
 function ComputeRespons(Causes)
  for each Distinct cause C in Causes_W do
3: K = 0
 for each minterm M in do
   if C ∉ M then
6:   K = K+1
   end if
 end for
9: dr(C) = 1/1 + k
 Pr(C) = Pr(W)
 drP(C) = drP(C) + (drP(C) × Pr(C))
12: end for
 end function
 function ComputeCauses(Causes with dr and Pr)
 for each uncertain attribute X do
 for each cause C in Causes_W: do
4:

 end for
 end for
 end function
 function OutputExplanations(Causes with dR and Pr,
 Attributes with dB)
 Output Causes ordered by dR × Pr
3:  Output Attributes ordered by dB
 end function

W P

W1 0.0022 (x = 1,0.4) (u = 2,0.3) (y = 2,0.25) (v = 2,0.25) (z = 4,0.3) (w = 2,1)

W2 0.022 (y = 2,0.25) (v = 2,0.25) (z = 4,0.3) (w = 2,1)

W3 0.0033 (x = 2,0.6) (u = 2,0.3) (z = 4,0.3) (w = 2,1)

W4 0.055 (z = 3,0.7) (w = 2,1)

Fig. 4. Causality matrix.

- 9 -

Article in Press

Now for computing probabilistic responsibility, we have all
information in hand, so the probabilistic responsibilities of these causes
are computed as follows:

drPt (w = 2) = drt (w = 2)W1 × P(W1) + drt (w = 2)W2 × P(W2)
+ drt (w = 2)W3 × P(W3) + drt (w = 2)W4 × P(W4)
= (1/3) × 0.0022 + (1/2) × 0.022 + (1/2) × 0.0033 + (1) × 0.055
= 0.0683
drPt (z = 4) = drt (z = 4)W1 × P(W1) + drt (z = 4)W2 × P(W2)
+ drt (z = 4)W3 × P(W3)
= (1/3) × 0.0022 + (1/2) × 0.022 + (1/2) × 0.0033
= 0.013
drPt (z = 3) = drt (z = 3)W4 × P(W4) = 1 × 0.055 = 0.055
We notice that drP1 (z = 3) > drP1 (z = 4) although z = 4 is included

in more worlds than z = 3 (W1, W2, W3). However, since z = 3 is a
counterfactual cause in a world with a high probability, that makes it
more responsible cause. It is evident here that the most responsible cause
is w = 2, since it is included in all worlds.

Now let us compute the blame for each uncertain attribute SSN and
M. We recall that variables x,y and z are defined under the attribute SSN,
whereas u,v and u are defined under the variable M.

db(SSN) = [(drt (x = 1)W1 × P(x = 1)) × (drt (y = 3)W1 × P(y = 3))
× (drt (z = 4)W1 × P(z = 4))]
+ [(drt (y = 1)W2 × P(y = 1)) × (drt (z = 4)W2 × P(z = 4))]
+ [(drt (x = 2)W3 × P(x = 2)) × (drt (z = 4)W3 × P(z = 4))]
+ [(drt (z = 4)W4 × P(z = 4))]
= (0. 4 × 0.3 × 0.3 × 1/3) + (0.7 × 0.3 × 1/2) + (0.6 × 0.3 × 1/2) +
0.7 × 1 = 0.907
db(M) = [(drt (u = 2)W1 × P(u = 2)) × (drt (v = 2)W1 × P(v = 2))
× (drt (w = 2)W1 × P(w = 4))]
+ [(drt (v = 2)W2 × P(v = 2)) × (drt (w = 2)W2 × P(w = 2))]
+ [(drt (u = 2)W3 × P(u = 2)) × (drt (w = 4)W3 × P(w = 2))]
+ [(drt (w = 2)W4 × P(w = 2))]
= 0. 3 × 0.25 × 1 × 1/3 + 0.25 × 1 × 1/2 + 1 × 1/2 + 1 × 1
= 1.314
We see here that db(M) > db(SSN), that is M contributes the most for

the probability of the output result of SSNs for our query. One evident
difference between the two attributes is the certain tuple with the
valuation w = 1 and responsibility one in W4. This shows clearly that the
attribute having the most blame is the one consisting of more responsible
and certain tuples.

We should mention that this measure informs us clearly about which
attribute contributes more to the uncertainty that impacts the output
probability. Let us suppose the case where SSNs are usually certain, and
just under some cases the probability is distributed over two possible
values at most, and for M, we suppose that along all forms the value of M
is never certain and might take all 4 possible values. Considering a case
like this would result evidently in db(SSN) > db(M), i.e, SSN contributes
the most for the output probability. Actually, knowing such information
will have a high importance through enabling us to address the source of
this uncertainty in the future.

V. Experimental Evaluation

We implemented the above algorithm in C#. We tested our method
in Windows 10 with i7 CPU and 8 GB memory. To our knowledge, there
is no benchmark of probabilistic databases available for performing
experiments, therefore, we have dealt with this issue through two

main experiments on synthetic and real data respectively. In the first
experiment, we created a probabilistic database that concerns the
census scenario by creating a list of random forms, and then we tried to
compute causes and responsibilities. This experiment is meant mainly
to measure the performance of our method in terms of execution time.
The second experiment is based on a real data set extracted from the
IMDB database [24]. In this experiment we will show the usefulness of
causality, responsibility and blame for explaining probabilistic query
answers.

A. Synthetic Census Data Set
We make two basic experiments on the synthetic census data set.

The first is done by fixing the number of worlds by 500 and varying
the number of forms. We compute the time execution in seconds for
different numbers of forms, from 5000 to 30000 forms.

The result of this experiment is depicted in Fig. 5. For 5000 forms,
the time execution of our algorithm is estimated by 0.79 seconds, and
1.36 seconds for 10000, and continues increasing, until it reaches 10.57
seconds for 30000 forms.

0

2

4

6

8

10

12

0 5000 10000 15000 20000 25000 30000 35000

Forms

Execution Time (seconds)
500 worlds

Fig. 5. Execution time with respect to number of forms.

We perform another experiment now by fixing the number of
forms by 50000, and varying the number of worlds from 100 to 600 (see
Fig. 6). For 100 worlds, the time taken by our algorithm is estimated
by 1.36 seconds, and 3.71 for 200 worlds until it reaches 19.60 seconds
for 600 worlds. As a result of these two experiments, we see here that
the execution time is affected by both the number of forms and worlds
in similar way, and the computation time is efficient even for large
sizes. In general, we observe that computing explanations is linear in
the size of the number of forms as well as as the number of worlds.
In other words it is linear in the size of the lineage, which conforms
with the results found by Kanagal and Deshpande [13], where the
computation times are also very similar.

0

5

10

15

20

25

0 100 200 300 400 500 600 700

Worlds

Execution Time (seconds)
50 000 forms

Fig. 6. Execution time with respect to number forms given 100 worlds.

- 10 -

International Journal of Interactive Multimedia and Artificial Intelligence

Now we are going to present the results of the number of probabilistic
responsibility classes based on the same previous experiments. So, we
first fix the number of worlds by 500 and change the number of forms,
and then fix the number of forms by 50000 and change the number
of worlds. The results are depicted in Fig. 7 and Fig. 8 respectively.
As we see in Fig. 7, it is evident that the number of causes and their
probabilistic responsibilities increases in function of the number of
forms. The second observation, which is more important, is that we
have a small number of classes comparing to the number of causes. For
instance, for 5000 forms, we have 2506002 causes and just 455 classes
of probabilistic responsibilities, and given 50 000 forms, we have over
17 million (17536002) causes with 501 classes only. We can explain this
result by having a large set of causes that share the same probabilistic
responsibility value. Regrouping together all the causes that share the
same probabilistic responsibility would be very useful. However, we
notice that the number of classes is close from a value to another, where
is still constant starting from 20000 forms. This is can be explained as
the following: as long as the number of causes increases, we will have
equal probabilistic responsibilities values, and thus no new classes are
created. We should mention here that the number of causes does not
refer to distinct causes, but rather to the number of causes counted
over all the worlds, which means that the causes counted in a world
are counted again in another world, which is required, since we are
interested in computing probabilistic responsibilities at each world.

2506002 5011002 7516002 8020802 12526002 17536002

455 469 482 501 501 501

5000 10000 15000 20000 25000 30000

Number of causes vs number of Probabilistic Responsibilities given
500 worlds

Causes Prob Responsibilities

Fig. 7. Causes and probabilistic responsibility in function of forms number.

5050202 10050402 14670510 20050802 22372350 25051002

101 202 293 401 447 501

100 200 300 400 500 600

Number of causes vs number of Probabilistic
Responsibilities given 50 000 forms

Causes Prob Responsibilities

Fig. 8. Causes and probabilistic responsibility in function of worlds number.

Concerning the second experiment, we see that the results depicted
in Fig. 8 are similar to the previous results. It is evident that as the
number of worlds increases, we obtain a large set of causes as well as

probabilistic responsibility classes. We notice that the maximum value
of classes number, which is 501 is reached at 600 worlds, which refers
exactly to the same maximum value found in the previous experiment.

Now we are going to present a final experiment that aims to
show the impact of fixing the number of probabilistic responsibility
classes on speeding up the execution time. Fixing the maximum value
for probabilistic responsibilities is desirable by the user in order to
focus only on most responsible causes and omitting the causes of low
importance, which is one of the objectives of our work. To better show
the impact of fixing the number of classes, we depict in Fig. 9 the
execution time for top 100 classes together with the results of the first
experiment. As we see in the results, the execution time is remarkably
reduced. For instance for 5000 forms, the time is reduced from 0.79 to
0.24, from 1.36 to 0.38 for 10000 forms, and finally for 30000 forms,
the time is reduced from 10.57 seconds to 1.14 seconds. So, relying on
most responsible causes only allows to focus on important causes, and
thus it helps to deliver good results in term of execution time, since
we are omitting a large set of causes that share the rest of probabilistic
responsibility classes, which are estimated for instance for 30000
forms by 400 classes.

Execution time (seconds)
500 worlds vs. number of forms

0.79
1.36

2.65

3.88

5.95

10.57

0.24 0.38 0.43 0.78 1.04 1.14

5000 10000 15000 20000 25000 30000

No limit limit of prob resp by 100

Fig. 9. Difference in execution time for 100 classes of probabilistic responsibility.

B. IMDB Data Set
This experiment is based on a prepared probabilistic database that

has uncertain relations, where the sources of uncertainty are related
to fuzzy object matches for titles, and the confidence in movies
ratings [46]. The probabilistic IMDB database consists of two main
relations. The schema of this database is presented in Fig. 10. While
the first relation introduces uncertainty on the level of title, the second
introduces uncertainty on the level of ratings, where a rating has a
value in the range: 1 to 5.

Movies(movie_id int, title varchar,
year int, director varchar)
Ratings(movie_id int, cust_id int,
date varchar, rating int, confidence float)

Fig. 10. IMDB probabilistic database schema.

The movies relation consists of 1881 tuples, and the ratings relation
consists of 10037 tuples. We aim to execute a query that returns the
possible ratings for such a movie. All the queries required for returning
this result are introduced in the database management system MayBMS
[22]. Based on the possible worlds semantics, we must first repair the
database to enforce constraints and make it consistent through the
following queries:

create table ratings_1 as
select rating, movie_id
from (repair key movie_id in
ratings weight by confidence) r;

- 11 -

Article in Press

--
create table movies_1 as
select movie_id, title, director, year
from (repair key movie_id in movies) q;

Now, we estimate the exact confidence of distinct tuples through
conf() function, such as: what are the possible ratings for each movie
given all the instances of the probabilistic database. Conf() is computed
as the sum of the probabilities of the instances (worlds) in which the
tuple occurs as follows:

create table ratings_1_conf as
select rating, movie_id, conf()
from ratings_1
group by movie_id, rating;

create table movies_1_conf as
select title, movie_id, director,
year, conf()
from movies_1
group by movie_id, title, director, year;

Now, we can join the two relations into a third one to obtain
complete information using the following query:

create table ratings_movies as
select M.movie_id, M.title,
M.year, R.rating, R.conf
from movies_1_conf as M,
ratings_1_conf as R where
M.movie_id=R.movie_id
group by M.movie_id, M.title,
M.year, M.director, R.rating,
R.conf order by M.movie_id,

The resulting relation ratings_movies consists of 3292 tuples. Given
this relation, we now want to get the possible ratings of such a movie.
We choose Jack as a title for our query. The query as well as its results
is given below:

select distinct rating, conf from (select *
from ratings_movies_conf where title
like ’%Jack%’) Q;

rating | conf

1 | 0.12
2 | 0.02
2 | 0.2
2 | 0.3
3 | 0.42
3 | 0.52
3 | 0.56
4 | 0.06
4 | 0.12
4 | 0.32
5 | 0.12
5 | 0.24

As we see in the results, the user can get different confidence values
for different ratings values, where all ratings values are present from
1 to 5. The user can have in mind different questions regarding these
results, and he would be seeking for some explanations. Why I have
rating 1 in my results, while I’m expecting at least 3? why 3 has the
highest probabilities values, while I’m expecting the movie to have

rating 5? is there a mismatch with other movies? so who is the director
of this movie, and in which year ? etc. In other words, which tuples are
responsible for such an outcome.

The tuples responsible for the presented output are 248 tuples,
which can be returned by the following query:

$select * from ratings_movies_conf
where title like ’\%Jack\%’$).

We see here that for a specific requested movie (Jack), we have 248
tuples that have contributed, which clearly shows that the evaluation
of a lineage formula, and extracting the most responsible causes for a
query answer in probabilistic databases is a challenging task. For each
resulting rating value, we investigate the lineage information and the
most responsible causes. For the value 1, there is one tuple that has
contributed, which is a conjunction of two tuples from movies and
ratings relations. These tuples are: movies(581, BlackJack : Themovie,
1993,Unknown) and ratings(581, 1), which are returned as an explanation
for the rating 1. Both tuples have a degree of responsibility 1, since both
tuples are counterfactual causes, where removing one tuple no longer
yields a rating 1. However, the tuple movies(581, BlackJack: Themovie,
1993,Unknown) is the most responsible cause, since it is certain, thus it
has a degree of probabilistic responsibility (drP) greater than the tuple
ratings(581, 1), which is not certain. This example clearly shows the
need for probabilistic responsibility, where classical responsibility is
not enough for explaining probabilistic databases.

In contrast to rating 1, for the values 2, 3, and 4,we have 62 tuples
contributing to the query answers, whereas for rating 5, we have
61 tuples, which results in 248 tuples in total. An example of results
for rating 2, rating 3 and rating 4 are presented in Fig. 11. For all of
these values, we see that we have exactly two tuples of the movies
508, and 581, whereas for the rest of 60 tuples, they are all related to
the movie 172. This means that the movies 508 and 581 are certain
tuples, whereas the movie 172 introduces a high level of uncertainty
with different matches on titles. For instance, we have the same title
Jack in different years (1913, 1916,...) and different titles matches (Jack,
Jacky, Jill Jacks Off, ...). Now we want to compute the probabilistic
responsibility for both movies and ratings tuples.

Since the movies 508 and 581 are certain, they appear in all the
worlds of this probabilistic database, and since in every world we
have 3 movies with the title Jack, the responsibility of these causes
is 1/3, and thus for rating 2, the most responsible cause is the tuple:
movies(581, Black Jack: The movie, 1993, Unknown), since it has the
highest degree of probabilistic responsibility (drP). For rating 3, the
confidence seems high and close for every tuple, which means that it
is the highly possible rating for all movies. Although, the Sixteen (60)
movies with the movie_id = 172 seem to have the highest confidence
values, every tuple can occur only once at each world, in contrast to
the two previous ones (508 and 581), which are certain, and therefore
the most responsible cause is still the same (t:movies(581, Black Jack:
The movie, 1993, Unknown)). The results for rating 4 are very similar,
however, the most responsible cause this time is movies(508, Siant
Jack, 1979, Bogdanovich Peter). For rating 5, we have only two movies
that are candidate to be causes, the movie 172 and 508, where 581
has no responsibility at all. The most responsible cause is movies(508,
Siant Jack, 1979, Bogdanovich Peter), since it is a certain tuple, and its
probability of being ranked 5 is higher than the movie 172. To clarify
more the importance of these results for explanation, let us consider
the following scenario: when the user asks for the rating of Jack, he
was anticipating at least rating 4, which makes him surprised getting
ratings: 1, 2 and 3. From the previous results, he would know that
the movie is looking for it might be movies(508, Siant Jack, 1979,
Bogdanovich Peter), since it has no possibility of being ranked 1,
ranked 2 and 3 with low probabilities, and ranked 4 and 5 with high
probabilities (most responsible).

- 12 -

International Journal of Interactive Multimedia and Artificial Intelligence

Now concerning blame, we want to measure the degree of blame
for each uncertain attribute, which are title and rating. Actually, the
degrees of blame of the previous query are very close, however, for
most values of ratings, the degree of blame of title is higher than the
degree of blame for rating (db(title) > db(rating)), which means that it
has more contribution for the estimated probabilities, and thus rating
has the highest source of uncertainty. The results can be explained as
the following: as we showed before, as much as the uncertain relation
has certain tuples, as much as the degree of blame(dB) increases.
Actually, it is the case here for the attribute title with the two movies
508 and 581, which are certain, however for the movie 172, we have
a high level of uncertainty with sixty (60) possible titles match,
which decreases significantly the degree of blame for this uncertain
attribute. Though, the degree of blame for rating is low comparing to
title, because all the movies concerned with this query have no certain
rating values. Now, if we suppose that the movie 172 is certain as well,
that will result absolutely in increasing significantly the degree of
blame of title. We should mention that this kind of information is not
just helpful for estimating the level of uncertainty for each uncertain
attribute on the local level of a query answer, but also it can give us
a better insight on the entire probabilistic database and how these
attributes affect our queries results.

VI. Conclusion and Future Work

In this paper, we have shown how causality, responsibility and
blame can be used in a complementary way in order to give useful
quantitative explanations for query results in probabilistic databases.
We presented how probabilistic responsibility measure could help us
to identify which tuples have contributed the most for a query answer.
In addition, we employed blame to identify among many uncertain
attributes, which attribute has the most blame for such an outcome.
This technique enables us to obtain a complete explanation framework.
This technique has been proved to be useful in probabilistic database
management systems that feature U-relational model like MayBMS.
We delivered an algorithm for computing explanations, which has
been implemented and tested on synthetic as well as real data sets.

While our technique addresses only conjunctive queries, among
future works is the study of other types of complex queries, such as
aggregation and top-k queries. Furthermore, this framework may
benefit from employing sufficient lineage instead of complete lineage,
which produces a smaller approximate lineage formula.

References

[1] Carnegie Mellon University, "Read the Web" Research Project Website
Accessed: Oct. 19, 2022. [online]. available: http://rtw.ml.cmu.edu/rtw//.

[2] D. Suciu, D. Olteanu, C. Re, C. Koch, Probabilistic Databases. Morgan and
Claypool Publishers, 2010.

[3] P. Bosc, O. Pivert, “Modeling and querying uncertain relational databases:
A survey of approaches based on the possible worlds semantics,”

International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems, vol. 18, no. 5, pp. 565–603, 2010.

[4] N. Dalvi, D. Suciu, “Efficient query evaluation on probabilistic databases,”
The International Journal on Very Large Data Bases, vol. 16, no. 4, pp.
523–544, 2007.

[5] X. Dong, Y. Luming, “Study on consistent query answering in inconsistent
databases,” Frontiers of Computer Science in China, vol. 1, no. 4, pp. 493–
501, 2007.

[6] M. Arenas, L. E. Bertossi, J. Chomicki, “Consistent query answers in
inconsistent databases,” in Proceedings of the 37th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems, 1999, pp. 68–79.

[7] F. Parisi, J. Grant, “On repairing and querying inconsistent probabilistic
spatio-temporal databases,” International Journal of Approximate
Reasoning, vol. 84, pp. 41–74, 2017.

[8] M. Calautti, L. Libkin, A. Pieris, “An operational approach to consistent
query answering,” in Proceedings of the 37th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems, 2018, pp. 239–251.

[9] X. Wang, X. L. Dong, A. Meliou, “Data x-ray: A diagnostic tool for
data errors,” in Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, 2015, pp. 1231–1245.

[10] C. Berkholz, M. Merz, “Probabilistic databases under updates: Boolean
query evaluation and ranked enumeration,” in Proceedings of the 40th
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, 2021, p. 402–415.

[11] L. Antova, T. Jansen, C. Koch, D. Olteanu, “Fast and simple relational
processing of uncertain data,” in In Proc. 24th IEEE International
Conference on Data Engineering, 2008, pp. 983–992.

[12] G. V. den Broeck, D. Suciu, “Query processing on probabilistic data: A
survey,” Foundations and Trends in Databases, vol. 7, no. 4, pp. 197–341,
2015.

[13] B. Kanagal, J. Li, A. Deshpande, “Sensitivity analysis and explanations
for robust query evaluation in probabilistic databases,” in ACM SIGMOD
International Conference on Management of Data, 2011, pp. 841–852.

[14] C. Re, D. Suciu, “Approximate lineage for probabilistic databases,” The
International Journal on Very Large Data Bases, vol. 1, no. 1, pp. 797–808,
2008.

[15] I. Ceylan, S. Borgwardt, T. Lukasiewicz, “Most probable explanations
for probabilistic database queries,” in Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence (IJCAI-17), 2017,
pp. 950–956.

[16] J. Y. Halpern, J. Pearl, “Causes and explanations: A structural-model
approach part i: Causes,” in Proceedings of the 17th Conference in
Uncertainty in Artificial Intelligence, 2001, pp. 194–202.

[17] J. Y. Halpern, J. Pearl, “Causes and explanations: A structural-model
approach. part ii: Explanations,” British Journal for the Philosophy of
Science, vol. 56, no. 4, pp. 889–911, 2008.

[18] H. Chockler, J. Y. Halpern, “Responsibility and blame: a structural model
approach,” Journal of Artificial Intelligence Research (JAIR), vol. 22, no. 1,
pp. 93–115, 2004.

[19] A. Meliou, W. Gatterbauer, J. Y. Halpern, C. Koch, “Causality in databases,”
IEEE Data Engineering Bulletin, vol. 33, no. 3, pp. 59–67, 2010.

[20] L. Bertossi, B. Salimi, “Causes for query answers from databases: Datalog
abduction, view-updates, and integrity constraints,” International Journal
of Approximate Reasoning, vol. 90, pp. 226–252, 2017.

[21] L. Antova, T. Jansen, C. Koch, D. Olteanu, “Fast and simple relational
processing of uncertain data,” in IEEE 24th International Conference on

Query results for rating 2 Query results for rating 3

…………………………………. …………………………………. ………………………………….

Query results for rating 4

508 | Saint Jack | 1979 | Bogdanovich Peter | 2 | 0.021 508 | Saint Jack | 1979 | Bogdanovich Peter| 3 | 0.42 508 | Saint Jack | 1979 | Bogdanovich Peter| 4 | 0.32

581 | Black Jack: The Movie | 1993 | Unknown | 2 | 0.3 2 581 | Black Jack: The Movie | 1993 | Unknown| 3 | 0.52 581 | Black Jack: The Movie | 1993 | Unknown| 4 | 0.06

172 | Jack | 1913| Liabel Andre | 2 | 0.23 172 | Jack | 1913| Liabel Andre | 3 | 0.56 172 | Jack | 1913| Liabel Andre | 4 | 0.12

172 | Jack | 1916 | Borzage Frank | 2 | 0.24 172 | Jack| 1916 | Borzage Frank | 3 | 0.56 172 | Jack| 1916 | Borzage Frank | 4 | 0.12

172 | Jacky| 2000| Hu Fow Pyng | 2 | 0.25 172 | Jacky| 2000| Hu Fow Pyng | 3 | 0.56 172 | Jacky| 2000| Hu Fow Pyng | 4 | 0.12

172 | Jill Jacks Off | 1993| Constantinou, S.D | 2 | 0.262 172 | Jill Jacks Off | 1993| Constantinou, S.D | 3 | 0.56 172 | Jill Jacks Off | 1993| Constantinou, S.D | 4 | 0.12

Fig. 11. Query results for ratings 2–4.

http://rtw.ml.cmu.edu/rtw//

- 13 -

Article in Press

Data Engineering, 2008, pp. 983–992.
[22] L. Antova, C. Koch, D. Olteanu, “Maybms:managing incomplete

information with probabilistic world–set decompositions,” in In Proc. 23rd
IEEE International Conference on Data Engineering, 2007, pp. 1479–1480.

[23] D. Suciu, “Probabilistic databases for all,” Proceedings of the 39th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
2020, p. 19–31.

[24] IMDb.com, Inc., IMDb Website. Accessed: Oct. 19, 2022. [Online].
Available: https://www.imdb.com//.

[25] A. Meliou, W. Gatterbauer, K. Moore, D. Suciu, “The complexity of
causality and responsibility for query answers and non-answers,” The
International Journal on Very Large Data Bases, vol. 4, no. 1, pp. 34–45,
2010.

[26] T. J. Green, V. Tannen, “Models for incomplete and probabilistic
information,” in Proceedings of the international conference on Current
Trends in Database Technology, 2006, pp. 278–296.

[27] T. J. Green, G. Karvounarakis, V. Tannen, “Provenance semirings,” in
Proceedings of the 2007 ACM SIGMOD- SIGACT-SIGAI Symposium on
Principles of Database Systems, 2007, pp. 31–40.

[28] R. Diestelkämper, S. Lee, M. Herschel, B. Glavic, To Not Miss the Forest for
the Trees - A Holistic Approach for Explaining Missing Answers over Nested
Data, p. 405–417. 2021.

[29] B. Salimi, Quer-Answer Causality in Dataabses And its Connections with
Reverse Reasoning Tasks in Data And Knowledge Management. PhD
dissertation, Carleton University, 2015.

[30] L. Bertossi, B. Salimi, “From causes for database queries to repairs and
model-based diagnosis and back,” Theory of Computing Systems, vol. 61,
no. 1, pp. 191–232, 2017.

[31] A. Meliou, A. Meliour, S. Nath, D. Suciu, “Tracing data errors with view-
conditioned causality,” in Proceedings of the 2011 ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems, 2011, pp. 505–516.

[32] X. Lian, L. Chen, “Causality and responsibility: probabilistic queries
revisited in uncertain databases,” in Proceedings of the 22nd ACM
international conference on Information and Knowledge Management,
2013, pp. 349–358.

[33] K. Mu, “Responsibility for inconsistency,” International Journal of
Approximate Reasoning, vol. 61, pp. 43–60, 2015.

[34] Z. Miao, Q. Zeng, B. Glavic, S. Roy, “Going beyond provenance: Explaining
query answers with pattern-based counterbalances,” in Proceedings of the
2019 International Conference on Management of Data, SIGMOD ’19, 2019,
p. 485–502.

[35] L. Antova, C. Koch, D. Olteanu, “From complete to incomplete information
and back,” in ACM SIGMOD International Conference on Management of
Data, 2007, pp. 713–724.

[36] J. Boulos, N. Dalvi, B. Mandhani, S. Mathur, C. Ré, D. Suciu, “Mystiq: a
system for finding more answers by using probabilities,” in Proceedings of
the 2005 ACM SIGMOD International Conference on Management of Data,
2005, pp. 891–893.

[37] O. Benjelloun, A. D. Sarma, A. Halevy, J. Widom, “Databases with
uncertainty and lineage,” in The International Journal on Very Large Data
Bases, 2006, pp. 953–964.

[38] O. Benjelloun, A. D. Sarma, C. Hayworth, J. Widom, “An introduction to
uldbs and the trio system,” IEEE Data Engineering Bulletin, vol. 29, no. 1,
pp. 5–16, 2006.

[39] T. Imielin´ski, W. Lipski, “Incomplete information in relational databases,”
Journal of the ACM (JACM), vol. 31, no. 4, pp. 761–791, 1984.

[40] P. Sen, A. Deshpande, L. Getoor, “Read-once functions and query
evaluation in probabilistic databases,” The International Journal on Very
Large Data Bases, vol. 3, no. 1, pp. 1068–1079, 2010.

[41] D. Olteanu, J. Huang, “Using obdds for efficient query evaluation on
probabilistic databases,” in 2nd International Conference on Scalable
Uncertainty Management, 2008, pp. 109–121.

[42] A. Darwiche, P. Marquis, “A knowledge compilation map,” Journal of
Artificial Intelligence Research, vol. 17, no. 1, pp. 229–264, 2002.

[43] C. Re, N. Dalvi, D. Suciu, “Efficient top-k query evaluation on probabilistic
data,” in 2007 IEEE 23rd International Conference on Data Engineering,
2007, pp. 108–122.

[44] C. Koch, D. Olteanu, “Conditioning probabilistic databases,” The
International Journal on Very Large Data Bases, vol. 1, no. 1, pp. 313–325,
2008.

[45] A. Meliou, W. Gatterbauer, K. Moore, D. Suciu, “Why so? or why no?
functional causality for explaining query answers,” Department of
Computer Science and Engineering, University of Washington, Seattle,
2010.

[46] MayBMS Project, MayBMS - A Probabilistic Database Management
System. Accessed: Oct. 19, 2022. [Online]. Available: http://maybms.
sourceforge.net//.

Hichem Debbi

He received his Master’s and PhD degrees in computer
science from the University of M’sila, Algeria in 2011 and
2015 respectively. He is currently an assistant professor
at the department computer science, University of M’sila.
His research interests include but not limited to: causality,
verification and explanation of probabilistic systems,
debugging and analysing complex systems.

https://www.imdb.com//
http://maybms.sourceforge.net//
http://maybms.sourceforge.net//

