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Abstract

Not all frameworks used in machine learning and deep learning integrate with Android, which requires some 
prerequisites. The primary objective of this paper is to present the results of the analysis and a comparison of 
deep learning development frameworks, which can be adapted into fully decentralized Android apps from a 
cloud server. As a work methodology, we develop and/or modify the test applications that these frameworks 
offer us a priori in such a way that it allows an equitable comparison of the analysed characteristics of interest. 
These parameters are related to attributes that a user would consider, such as (1) percentage of success; (2) 
battery consumption; and (3) power consumption of the processor. After analysing numerical results, the 
proposed framework that best behaves in relation to the analysed characteristics for the development of an 
Android application is TensorFlow, which obtained the best score against Caffe2 and Snapdragon NPE in the 
percentage of correct answers, battery consumption, and device CPU power consumption. Data consumption 
was not considered because we focus on decentralized cloud storage applications in this study.
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I. Introduction

THE availability of large volumes of data allows the evolution of 
artificial intelligence (AI) [1], [2]. For the first time in the history 

of humankind, systems can analyse the information generated at 
exponentially faster speeds. 

Machine learning (ML) is the practice of using algorithms to 
analyse data, learn from it and make a prediction about something 
[3]. ML and deep learning (DL) algorithms must manage a lot of 
information to produce results that accurately describe reality [4], [5]. 
That information can draw conclusions about what we think and feel.

These models have drawn ever-increasing research interest due 
to their intrinsic capability to overcome the drawbacks of traditional 
algorithms [6]. ML, DL and IA have grown in their use given their 
benefits in different contexts [7]. In recent years, many studies have 
shown that combining ML and DL techniques is especially useful in 
image analysis [8], [9]. DL have proven effectiveness in object and 
image recognition, natural language processing, speech recognition, 
robot navigation systems, self-driving cars and health care. [10], [11]. 
This allows the precise detection of a disease, locating stolen and 
sold objects via the Internet, searching for missing persons, etc. Due 
to its great potential, this technique is applied in a large number of 

sectors such as security, health, finance, automotive and agriculture. 
However, DL takes ML to a more detailed level, reducing the margin 
of error and increasing the accuracy of the conclusions it reaches [12], 
[13]. In this case, the system goes through layers or neuronal units. 
While in ML, to perform a classification, it is necessary to indicate 
the characteristics; in DL, the algorithm will perform the classification 
during the training by itself.

Each layer processes the information and returns a result in the 
form of weighting. The second layer that analyses the image will 
combine the result obtained by the first layer with its own judgement. 
As a result, the weighting will change. The third layer will use this 
new modified weighted result to perform its calculations, reducing 
the margin of error and thus increasing the accuracy of its results. 
The system trains itself due to a large amount of information being 
considered, improving its weighting.

Data storage and preparation tasks for further processing require 
the most time [14] but are essential because AI algorithms develop 
complex processes of understanding and interpreting data and 
therefore need them to provide value.

Although existing ML and DL services use cloud computing and 
servers to run, and therefore require an Internet connection, there 
is a trend towards decentralization [15], [16]. [17] argues that 
decentralizing AI opens the door for more equitable development. 
Instead of connecting to data centre-based services, queried 
through mobile communications, AI capabilities will reside on the 
device itself.
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ML and DL are the key technologies on which new functionalities, 
personalization and connectivity with other devices in the Internet of 
Things (IoT) will be based.

II. Tasks and Methods

This study has been structured into three tasks: (A) revision of the 
most well-known frameworks; (B) test application development; and 
(C) analysis and comparison. Finally, we show the results of this study. 
Fig. 1 shows the flow chart followed in this study.

Start

Review of frameworks for the development
of Machine Learning & Deep Learning

Test application deployment

Analysis and Comparision

Results

Fig. 1. Flow chart.

A. Review of Frameworks for the Development of Machine 
Learning & Deep Learning

The eight most commonly used frameworks globally were reviewed 
[18]. Table I shows links to the official websites that list the best 
features of each framework and indicates whether integration with 
Android is allowed.

TABLE I. ML & DL Frameworks

Name Official Web Android 
integration

1 TensorFlow [19]-[21] https://www.tensorflow.org/ Yes

2 Caffe [22] https://caffe.berkeleyvision.org/ No

3 Caffe2 a [23] https://pytorch.org/ Yes

4 Amazon Machine 
Learning [24]

https://aws.amazon.com/es/machine-
learning/ No

5 CNTK [25]
https://docs.microsoft.com/en-us/

cognitive-toolkit/ No

6 Torch [26] http://torch.ch/ No

7 Snapdragon NPE https://developer.qualcomm.com/software/
qualcomm-neural-processing-sdk Yes

8 DeepLearning4J [27] https://deeplearning4j.konduit.ai/ Yes
a Caffe2 and PyTorch projects are merging now [23].

After a first filter, we analyse the frameworks that are exportable 
to Android. Table II summarizes the requirements to be executed on a 
smartphone and its uses.

B. Test Application Deployment
We define the functional requirements (FR) and non-functional 

requirements (NFR) of applications to be developed or adapted.

All applications have the same requirements so that they behave in 
a similar way.

• FR-1. Through the trained model, the included images can be 
recognized.

• FR-2. The applications show the recognition result together with a 
percentage of success probability.

• FR-3. The recognition will be static from a photograph included in 
the application.

• NFR-1. The applications must achieve reasonable response times 
when executing the deep learning model.

• NFR-2. The applications will be functional for smartphones with 
an Android OS 6.0 or higher operating system.

For each framework, we implement the corresponding application. 
Whenever possible, we use the test applications from the official 
repositories because it would take a long time to implement the 
integration of these frameworks in Android from the beginning. 
If necessary, we make adjustments and developments, such as 
modifications to the code so that all applications have the same features.

The primary goal of this study is not to create commercial 
applications but rather to provide simple functionality to facilitate the 
objective of this study: to compare frameworks under equal conditions.

The applications include an image gallery. The user clicks on each 
image, and the application shows the result of the recognition and the 
probability of success of the clicked image.

Listed below are the changes implemented in each application and 
the problems found:

1. TensorFlow app.

The TensorFlow app was retrieved from the official TensorFlow 
repository [28]. The most important change was to modify the 
primary functionality of the application. TensorFlow originally 
used a live camera to recognize objects, but this was changed to 
measure parameters correctly in the subsequent comparison. The 
functionality changed to a list of images where the user clicks an 
image, and the application returns the recognition result.

2. Caffe2 app.

The AICamera application was obtained from the official 
repository [29]. The most important change was the same as 
that in the TensorFlow application. Caffe2 integrates with C++ to 
perform model recognition and execution.

3. Snapdragon NPE app.

The SNPE Image Classifier application was obtained from the SDK, 
available on the official Qualcomm Developer Network repository 
[30]. No changes were necessary because the application provided 
the functions that were proposed in the requirements. Its 
development is only possible on Linux because it uses Snapdragon 
libraries that are included in the repository and only compatible 
on Linux.

4. Deeplearning4J app.

The DL4JImageRecognitionDemo application was obtained from 
the official repository [31]. Due to its limited development to date, 
it has not been possible to use this application. Although it was 
modified, the result was unsuccessful. The application did not 
compile correctly, possibly due to bugs with the libraries or some 
type of incompatibility. Because implementing an application that 
integrates the framework from the beginning requires a long time, 
this application was discarded for the testing phase.

When defining the requirements of the model before training, the 
authors agreed to use a pre-trained DL model that was available in the 
frameworks because each framework has a different format.

The operation is the same for all three applications, which have 
a list of images that the user clicks on. The apps then display the 
recognition result along with the probability of success, which the 
model thinks is the clicked product. At this stage, we make a limited 
number of attempts.

https://www.tensorflow.org/
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Fig. 2, Fig. 3 and Fig. 4 show the image recognition of each 
application. We highlight with a red circle the image pressed during 
the preliminary evaluation tests.

Fig. 2 shows the test performed with TensorFlow when clicking on 
the photo of a cheeseburger. The percentage of success is 63.91%, and 
those of the other images were less than 10%.

In the test with Caffe2, the percentage is 93.62% after choosing the 
photo of bananas, with the other options near 0% (see Fig. 3)

In Fig. 4, after testing on the Snapdragon NPE, we also obtained a 
high success rate (87.38%) when selecting zucchini.

C. Analysis and Comparison
As basic applications, there are no differences in the aspects 

related to code optimization. The proposed analysis parameters were 
(1) success rate; (2) battery consumption; and (3) processor power 
consumption.

1. Success rate: The result is determined by the success or failure of 
each food. When all frameworks obtain the same successes or 
failures, by of the highest percentage of probability, i.e., the one 
with the highest probability of success for each detection. For 
this purpose, the same gallery with 20 food images was included 
in each application. After this, a round was performed in which 
each image was clicked on, and the result of the prediction was 
saved in a table. We checked the results in all cases along with the 
percentage of the probability of success (see Table III).

2. Battery consumption: Nowadays, we are always on the lookout 
for our smartphone’s battery to reach the end of the day without 
running out, because with the multimedia content we watch and 
the hours of use we give it, few smartphones have large battery 
capacities. For this reason, it is essential to choose the framework 
that consumes the least so that the user notices it as little as possible. 
In order to evaluate this parameter, the new versions of Android, 

TABLE II. Frameworks Compatible With the Android Operating System

Name Characteristics Requirements Uses
TensorFlow • Execution of neural models.

• Hardware acceleration thanks to the Android 
Neural Networks API.

• Android API 23 (Marshmallow) or later 
and NDK 12b or later.

• Computer vision.
• Voice and image recognition.
• Medical applications.
• Intelligent searches.
• Intelligent answers in emails.

Caffe2* • Execution of neural models.
• Hardware acceleration thanks to the Android 

Neural Networks API.
• Offers conversion from Torch models to Caffe2.

• Android API 21 (Lollipop) or higher. • Computer vision.
• Voice and image recognition.
• Translation.
• Chatbots.
• IoT.
• Medical applications.

Snapdragon NPE • Execution of neural models.
• Compatibility with TensorFlow, Caffe and Caffe2.
• Developed on Linux.

• For GPU: Qualcomm Snapdragon 845, 
820, 835, 625, 626, 650, 652, 653, 660, 
630, 636, and 450.

• For Adreno GPU: libOpenCL.so

• Object classification.
• Face detection.
• Natural language understanding.
• Speech recognition.
• Security/authentication.
• Resource management.

DeepLearning4J • To create & train a neural network on an Android 
device.

• Android API 21 (Lollipop) or higher. • Object and speech recognition.
• Natural language processing.
• Data prediction.

Fig. 2. Test in TensorFlow. Fig. 3. Test in Caffe2. Fig. 4. Test in Snapdragon NPE.
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TABLE III. Percentage of Correct Answers

Food Image TensorFlow Caffe2 Snapdragon NPE (CPU) Snapdragon NPE (GPU)

Artichoke Artichoke 83.24% Artichoke 99.99% Artichoke 99.74% Artichoke 99.70%

Banana Banana 80.10% Banana 93.91% Banana 51.02% Banana 51.66%

Beer Bottle Beer Bottle 67.65% Scale 55.14% Beer Bottle 54.38% Beer Bottle 54.68%

Broccoli Broccoli 83.18% Broccoli 99.74% Broccoli 99.56% Broccoli 99.51%

Burrito Burrito 82.31% Burrito 99.93% Pinwheel 19.58% Pinwheel 15.36%

Carbonara Carbonara 83.17% Carbonara 99.07% Swab 41.59% Swab 36.49%

Cheeseburger Cheeseburger 83.17% Hot Dog 47.40% Cheeseburger 72.18% Cheeseburger 70.55%

Consommé Consommé 78.59% Consommé 98.19% Washbasin 60.95% Washbasin 69.87%

Cucumber Cucumber 83.20% Cucumber 98.95% Cucumber 99.85% Cucumber 99.80%

Guacamole Guacamole 82.98% Guacamole 98.86% Mortar 37.96% Mortar 40.62%

Hotdog Hot Dog 82.86% Hot Dog 99.87% Jellyfish 3.62% Jellyfish 3.32%

Ice Cream Ice Cream 24.05% Honeycomb 33.80% Pedestal 12.36% Pedestal 15.29%

Meat Loaf Meat Loaf 83.13% Meat Loaf 67.83% Ice Lolly 22.66% Ice Lolly 28.56%

Orange Orange 77.62% Orange 77.56% Orange 43.36% Orange 41.82%

Pineapple Pineapple 77.76% Spaghetti squash 51.51% Necklace 23.38% Necklace 20.78%

Pizza Pizza 80.11% Pizza 99.19% Wall clock 13.53% Wall clock 13.64%

Pretzel Pretzel 83.27% Pretzel 99.40% Pretzel 90.92% Pretzel 89.79%

Strawberry Strawberry 83.22% Strawberry 94.68% Golf Ball 82.70% Golf Ball 82.47%

Wine bottle Red Wine 69.69% Whistle 30.39% Wine Bottle 82.07% Wine Bottle 80.71%

Zucchini Zucchini 79.95% Cucumber 78.24% Zucchini 88.22% Zucchini 87.30%

Correct 20 14 11 11

Wrong 0 6 9 9

Percentage of correct answers 100% 70% 55% 55%
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Google offers a web service called Battery Historian [32], in which 
we enter a log obtained from Batterystats. Batterystats.bin is a file 
that works as a registry, where Android saves the consumption 
data of the mobile device either via hardware or software services. 
The operating system uses this file to monitor consumption and 
battery level, and to display consumption statistics. The operating 
system is programmed to reset the file when the battery is fully 
recharged. When the battery is discharged, we record new data 
about battery use and charging. With the tool, we will evaluate (1) 
device estimated power use; (2) device estimated power use due to 
CPU usage; and (3) CPU user time.

3. Processor power consumption: One of the factors affecting the 
battery is CPU consumption. For this reason, we will measure 
what percentage is consumed each time an image recognition 
is performed. Another factor is that the lower the CPU power 
consumed, the faster and smoother the app will experience on 
lower-end devices with a more moderate processor, so the app 
will cover more of the market. To measure the power consumed, 
the Android Profiler tool from Android Studio was used [33]. 
This tool provides real-time data related to the CPU, memory 
and network activity of an application. You can perform sample-
based method tracing for time code execution, capture dumps, 
view memory allocation, and inspect information from files 
transmitted over the network. In this study, we focus on the CPU 
Profiler, which shows the power that the CPU is consuming on 
any interaction that we make in the system or after selecting a 
specific application in real time.

One of the premises of this study is that the application is integrated 
into the device and, therefore, decentralized with respect to any server. 
Thus, it is not necessary to measure data traffic.

D. Resources Used
The hardware resources used in this study included the following:

• PC Asus X54HR

• Smartphone Xiaomi Mi3

 - To test the test applications.

 - To measure the parameters to compare the test applications.

• Smartphone Xiaomi Redmi Note 4

 - To test the analysis with the GPU offered by the Snapdragon 
Neural Processing Engine (Snapdragon NPE), because its 
processor and GPU are compatible with the framework for 
that function.

The tools for the implementation and development of the 
applications are as follows:

• Android Studio.

• Inception V3 model.

 - Trained by ImageNet content (https://image-net.org/) with 
data from 2012.

 - This model is composed of more than 1000 different classes: 
objects, animals, food, etc.

III. Results

The framework that stands out in a single parameter is not the best 
but the one that is more balanced considering all parameters. Next, we 
show the results for each framework.

A. Success Rate
To perform tests whose results are comparable, every time the 

test on each application was performed, all system applications were 
closed; having applications open in the background may influence 

the measurements. Regarding the Snapdragon NPE application, a 
smartphone compatible with GPU analysis was used to verify the 
differences between frameworks. Table III shows the results obtained.

Tensorflow has a 100% success rate. It also shows a stable behaviour, 
i.e., it obtains a high probability percentage in the cases it gets right, 
with a small exception. In the detection of the Ice Cream image, the 
prediction is correct but the probability percentage is low (24.05%).

Caffe2 is in second place with a success rate of 70%. Despite not 
achieving a 100% hit rate, the behaviour is also stable. In the cases 
it succeeds it obtains high probability percentages, and in the cases 
it fails it gets low probability percentages no higher than 55%. 
Therefore, we can easily detect whether a detection is wrong based 
on the probability percentage. Regarding the wrong predictions, in 
most cases the result is not similar or interpretable with the original. 
For example, with Pineapple the framework has detected Spaghetti 
squash, or with Wine bottle the detection obtained has been Whistle.

Snapdragon NPE is in third and last place with a success rate of 
55%. Its results have been fair/poor, even with the GPU analysis that 
supposedly increases performance. The behaviour has not been as 
stable as in the previous frameworks. In certain successful results it 
gets a low percentage of probability, for example Banana (51.02%) or 
Orange (43.36%). The opposite also occurs. With Strawberry, it detects 
Golf Ball with 82.70%. Regarding the wrong predictions, some of the 
wrong results obtained, if they can resemble with the original, e.g. 
Guacamole and Mortar or Strawberry and Golf Ball.

Although the three applications use the same image recognition 
model (Inception V3), the model has to be adapted to each framework, 
so performance may change [34]. It can also affect the software 
optimization of each framework in the operating system (OS). In this 
case, Tensorflow is developed by Google, the same developer as the 
Android OS, so it could be better optimized and therefore get better 
results [35].

B. Battery Consumption
A 2-minute execution test was performed in which each image was 

analysed 2 times.

Before starting the test and running the applications, we reset 
the device’s consumption log file and its history using the “adb shell 
dumpsys batterystats” command. Fig. 5, Fig. 6 and Fig. 7 show the 
captures made by the battery historian tool.

The frameworks that consume less power are Caffe2 and 
TensorFlow. Snapdragon NPE performs the worst, with a difference of 
10% (estimated battery consumption) compared to TensorFlow.

The “CPU user time” in TensorFlow and Caffe2 is 13.430 s and 34.320 
s, respectively, while in Snapdragon NPE, it is 112.530 s, indicating 
much higher consumption with Snapdragon NPE. While TensorFlow 
and Caffe2 seem to use the CPU only when they parse the image or 
update the display, Snapdragon NPE constantly consumes resources.

Application

App StatsSystem Stats History Stats

Version Name
Version Code
UID
Device estimated power use
Foreground
CPU user time
CPU system time
Device estimated power use due to CPU usage

android.example.com.tflitecamerademo
1.0
1
10299
0.01%
1 times over 2m 2s 985ms
13s 430ms
2s 300ms
0.02%

Fig. 5. Tersorflow battery test.
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Application

App StatsSystem Stats History Stats

Version Name
Version Code
UID
Device estimated power use
Foreground
CPU user time
CPU system time
Device estimated power use due to CPU usage

facebook.f8demo
1.0
1
10292
0.03%
1 times over 2m 0s 737ms
34s 320ms
2s 930ms
0.03%

Fig. 6. Caffe2 battery test.

Application

App StatsSystem Stats History Stats

Version Name
Version Code
UID
Device estimated power use
Foreground
CPU user time
CPU system time
Device estimated power use due to CPU usage

com.qualcomm.qti.snpe.imageclassifiers
1.0
1
10298
0.11%
1 times over 2m 15s 367ms
1m 52s 530ms
8s 370ms
0.07%

Total number of wakeup alarms 0

Fig. 7. Snapdragon NPE battery test.

TABLE IV. Battery Consumption

Device 
estimated 
power use

Device estimated 
power use due to 

CPU usage
CPU user time

TensorFlow 0.01% 0.02% 13s 430ms

Caffe2 0.03% 0.03% 34s 320ms

Snapdragon NPE 0.11% 0.07% 1min 52s 530ms

C. CPU Power Consumption
In this test, we connect the mobile device to a PC to use an Android 

CPU Profiler. With this tool, we can measure the power consumed by 
the application when it analyses an image.

We report the average calculation in a given timeframe in which the 
application analyses ten images. After the calculations, we obtain an 
average consumption for the analysis of a single image (see Table V).

TABLE V. CPU Power Consumption

Average consumption per image analysis

TensorFlow 38%

Caffe2 35%

Snapdragon NPE 43%

D. Summary
Although there are no noticeable differences, Snapdragon NPE 

consumes more CPU time to analyse an image than Caffe2 and 
TensorFlow.

After the tests, a summary of the results of the comparison is shown 
in Table VI.

TABLE VI. Comparison Summary

Percentage of 
correct answers

Battery 
consumption

CPU power 
consumption

TensorFlow 100% 0.01% 38%

Caffe2 70% 0.03% 35%

Snapdragon NPE 55% 0.11% 43%

IV. Conclusion and Future Lines of Work

There are more and more developers in the application market and, 
therefore, more competition. For this reason it is necessary to choose 
the framework with the best results, so that the user does not feel 
disappointed.

TensorFlow and Caffe2 produce have much better results than 
Snapdragon NPE, which also exhibited highest battery consumption 
and a fair to poor response success rates.

The battery and CPU consumptions are similar for TensorFlow and 
Caffe2, but the response rate is better with TensorFlow. Additionally, 
TensorFlow is a Google framework, has a large community on both 
Github and Stack Overflow, and is well documented with questions, 
reviews and tutorials online. TensorFlow also keeps a close eye on 
these user communities to improve their platform. Thus, based on 
this study’s results, TensorFlow is the most recommended for the 
implementation of an Android application.

There are different areas where image recognition is applied that 
could benefit from this type of development. The most interesting are 
the areas of health and wellness. First, through the diagnosis of diseases, 
after analysing the alterations in the X-rays. In the second, improving 
the management of food purchases. With a simple application on the 
mobile, the user could check the lack of products in the pantry.

Having selected this framework, we plan to develop an assistance 
application for food that will allow a user to take one or more photos 
with a smartphone camera and recognize food using the trained 
model. Next, we plan to transfer the list of products from a kitchen 
pantry to a smartphone. Using the same recognition function, we plan 
to generate a shopping list by checking which products are missing in 
the pantry and which we should buy.
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