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Abstract

Potential uses of automated Facial Expression Recognition (FER) cover a wide range of applications such as 
customer behavior analysis, healthcare applications or providing personalized services. Data for machine 
learning play a fundamental role, therefore, understanding the relevancy of the data in the outcomes is of 
utmost importance. In this work we present a study on how gender influences the learning of a FER system. 
We analyze with Explainable Artificial intelligence (XAI) techniques how gender contributes to the learning 
and assess which facial expressions are more similar regarding face regions that impact on the classification. 
Results show that there exist common regions in some expressions both for females and males with different 
intensities (e.g. happiness); however, there are other expressions like disgust, where important face regions 
differ. The insights of this work will help improving FER systems and understand the source of any inequality.
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I. Introduction

THAT  men’s and women’s facial expressions differ is a well-
known fact. Gender differences have been examined subjectively 

but also on physiological measures such as facial electromyography 
(EMG) or observable Action Units (AUs). Studies show differences in 
frequency [1]–[3], increased attention [4] or expressiveness specially 
in the expressions of happiness, fear, anger or disgust [1], [5], [6]. 
Regarding smiling, Dimberg and Lundquist [3] found that women 
evoked more facial muscle activity in response to happy faces. This 
result is consistent with earlier works [7]. Regarding fear, evidence 
shows that females were more facially expressive when presented 
with fear-relevant images (e.g. angry faces or snakes) with an increase 
of the activity on the corrugator supercilia [6]. Women also experience 
disgust with more intensity than men [4], however, anger is less likely 
to be displayed by females [8]. 

Six basic facial expressions -happiness, sadness, anger, surprise, 
disgust and fear- are recognized across different cultures [9]. 
Descriptions have been made about the face muscles involved in 
forming those expressions. The Facial Action Coding System (FACS) 
[10]  describes anatomically all visually discernible facial movement 
by defining Action units (AUs), which are the actions of individual 
muscles or groups of muscles. Observing and coding a selection of 
AUs, Emotion FACS (EMFACS), humans can identify prototypical 
facial expressions that have been found to suggest certain emotions. 

Fan, Lan and Li [11] analyzed two of these AUS, the AU6 (cheek 
raiser) and AU12 (lip corner puller) related to the smiling (happiness 
expression) and found that females were generally more expressive 
and presented a  higher intensity value for AU12 (bigger smile) than 
males. McDuff et al. [1] also analyzed AUs (AU1, AU2, AU4, AU12 and 
AU15) to study gender differences. Their results found that women 
smiled more, and they presented more significantly inner brow raise 
actions, which are related with fear and sadness.

Houstis and Kiliaridis [12] did not use AUs, but they analyzed  a 
set of facial distances when posing a rest pose, a lip pucker, and a 
posed smile. Their findings regarding gender, found that males had a 
vertical upward component more pronounced both in the posed smile 
and the lip pucker, while females had a more pronounced horizontal 
component in the posed smile.

There is extensive research in analyzing gender differences both for 
recognition (perceiver) [13]–[15] and generation (expresser) of facial 
expressions [16], [17].  However, in the case of current deep learning 
developments for automatic FER [18], due to their black box nature, 
it makes it difficult to assess the gender differences in recognition 
beyond comparisons of for example the accuracy rates or bias  [19]–
[22]. However, a deeper understanding on how men and women 
images contribute to the learning of the models could help improving 
the models or understanding the misclassifications. Further, research 
in this area is usually based on existing datasets which are not always 
gender balanced [18] and we even find datasets, such as JAFFE [23] , 
with only one gender (10 Japanese female subjects).

Explainable Artificial Intelligence (XAI) techniques can provide 
further information on the internal working on these models and 
make them more transparent. Although they do not include a gender 
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perspective, we find examples applying these techniques in automated 
FER to understand automatic emotional annotation [24],  to improve 
transfer learning [25], [26] or to understand the influential face 
regions in the classification [27], [28]. Heimerl et al. [24] included XAI 
techniques in their emotional behavior annotation tool addressed to 
non-expert users. Humans assisted the automatic labeling -only for 
four out of Ekman’s six basic emotions: happiness, sadness, anger 
and disgust- aided by confidence values of the predicted annotation, 
as well as visual explanations using XAI (LIME [29] , INNvestigate 
[30]). Schiller et al. [25] presented saliency maps to identify the most 
relevant face regions used for the face recognition. The saliency maps 
were generated by Layer-wise Relevance Propagations (LRP) [31] 
and by eye-tracking. Then, they evaluated both and transferred that 
knowledge by hiding the non-relevant information to speed up the 
training of the neural network in a new domain. 

Weitz et al. [27] investigated a Convolutional Neural Network 
(CNN) trained to distinguish facial expressions of pain, happiness, 
and disgust. They applied two XAI methods: LRP and LIME. They 
observed that the CNN did not exclusively look at the face but 
also to the background of the image.  Regarding pain, Prajod et al. 
[26] also presented a study on the effects of transfer learning for 
automatic FER for emotions to pain. They applied LRP saliency maps 
to visually compare and understand the most influent regions for the 
classification, both for emotion recognition and for pain recognition, 
and related those regions with AUs. The results showed that specific 
AUs related to the facial expressions of contempt and surprise were 
not relevant for pain recognition.

With a gender perspective in mind, in  our previous exploratory 
study, we could sense differences in the learning [32] which motivated 
us to analyze more thoroughly the impact of gender in automated 
FER. Further, the interest in this field is due to the multiple and varied 
domains that can benefit from FER such as diagnosis and treatment 
of psychiatric illness [33], marketing psychology applications [34] 
or human computer interfaces [35]. Therefore, by studying the 
influence of gender differences in FER training, we can improve our 
understanding of which face regions are important and consider this 
knowledge to contribute with better models which will impact the 
applications based on FER.

The work is organized as follows: Section 2 describes the material 
used and the procedure followed for the study. Section 3 presents 
and discusses the main results regarding performance, and gender 
differences and similarities in the important face regions considered 
by the model. Finally, the main contributions and future line works are 
presented in the last Section. 

II. Materials and Methods

This section contains detailed description of data, data pre-
processing and augmenting, the XAI approach used to understand the 
internal working of the model and the procedure followed.

A. Dataset
We train our FER model on the AffectNet dataset [36], a well-

known public dataset and widely used in FER. AffectNet comprises 
more than one million still images of facial expressions in the wild 
and covers both categorical and dimensional affect models. About half 
(approximately 440K images) of the images are manually annotated 
as one of Ekman’s basic emotions [37] (anger, fear, disgust, sadness, 
surprise, happiness, contempt and neutral). Further, the dataset 
presents issues such as duplicates or non-face images because it was 
built through web-scraping. In order to study gender differences, we 
manually labelled images (Female - Male) and selected a similar number 
of images regarding the gender label and the facial expression (see Fig. 

1). Although there are a few datasets with gender labels and facial 
expressions (e.g. RAFDB with around 30K images [38]), we selected 
AffectNet due to its size and wide application in FER.  It is important 
to highlight that formally both sex or gender should be informed or 
self-reported, but on web-scrapped datasets that information is not 
available. According to the World Health Organization (WHO), sex 
refers to “the different biological and physiological characteristics 
of males and females” and gender refers to “the socially constructed 
characteristics of women and men – such as norms, roles and 
relationships of and between groups of women and men” [39]. The 
view of gender used in this paper is binary. When we refer to a 
particular gender, we are assuming this gender based on the visual 
characteristics of the individual in the image. Additionally, as Chen 
and Joo [40] identified, human-generated annotations in FER datasets 
can include biases (e.g. annotation biases between genders, especially 
when it comes to the happy and angry expressions). Therefore, this 
study is limited due to these reasons. 

Fig. 1. Excerpt from the dataset of females’ images for each expression.

The dataset used in the experimentation is comprised by an initial 
subset of 19044 images (1587 images x six expression x two gender) 
randomly selected where duplicated images, non-face images and 
images of individuals difficult to identify their gender by observation 
(e.g. babies or androgynous faces) were not considered. To meet the 
balanced dataset requirement, the subset was chosen considering 
the maximum number of manually labelled images per gender and 
facial expression, which was limited by the expression of Disgust. 
The Disgust expression counts with 4303 images in AffectNet, but 553 
are duplicates, 290 images were undetermined and 1873 correspond 
to males and 1587 correspond to females. Therefore, the maximum 
number of images per gender and facial expression is 1587. Table I 
describes quantitatively the dataset in terms of expression and gender.

B. Pre-Processing and Data Augmentation
Images are pre-processed and augmented before the training. The 

pre-processing steps carried out are face detection, face alignment 
and cropping. To detect the face, we apply the a contrario framework 
proposed by Lisani et al. [41]. For its alignment, we initially detect the 
eyes using the 68 facial landmarks proposed by Sagonas et al. [42]. 
We find the geometric centroid of each eye from these landmarks 
and compute the distance between them to draw a straight line and 
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calculate the rotation angle. This angle is then used to align the eyes 
horizontally. Finally, we crop the face and resize it to 224x224 pixels to 
feed it into the network as input. 

The pre-processing steps discarded images (see Table I) when the 
algorithm did not detect the face (e.g. the face was not completely 
visible or it was a side face). 

Finally, to increase the number of images to train and add diversity, 
we augmented data by modifying lighting and appearance  [43].  We 
use the gamma correction technique (see Eq. 1) to modify the lighting 
conditions, with four gamma values (γ = 0.5, γ = 1.0, γ = 1.5 and γ = 2.0).

 (1)

where x is the original image, y is the new image and γ is the value 
modified to change the illumination. To modify the appearance, we 
apply four-pixel translations of the image in both axes.

C. Explainability Approach
There exist a varied number of XAI techniques [44] for explaining 

models and data both at global and local levels. In this work, to analyze 
visually the outcome of the system, we use LIME, Local Interpretable 
Model-agnostic Explanation [29]. LIME can be applied on any 
classifier and offers locally faithful explanations of the instance being 
explained. When LIME is applied to images, explanations are the parts 
of the image that are most positive towards a certain class. We present 
a novel strategy to use LIME to acquire global knowledge based on 
instance-level information in this context. To study the differences of 
the model for female and male globally, we merge all LIME masks 
obtained from the same training set, test set and expression in an 
average heatmap.

Fig. 2 Normalized location of the landmarks

Instead of computing the heatmap on the input space of the 
network (a 224 x 224 matrix), it is more relevant to compute it on 
the face representation space, that is, the parts of the face that are 
more relevant to identify one or another expression, regardless the 
orientation, translation or scaling of the image. 

To compute the heatmap in the face space, we normalize all images 
with LIME applied to make the points of interest coincide. Faces are 
transformed so that the landmarks coincide with the normal form 
(see Fig. 2). 

In Table II, we show the result of the process with six sample images, 
one for each expression starting from the original image: we identify 
the landmarks and compute the triangularization, then we apply LIME 
and superimpose the landmarks and triangularization, and finally we 
normalize this last image to the normal form. The detail of the process 
is described in the Algorithm 1.

Algorithm 1: Computing the normalized LIME image

1:   procedure GetNormalizeLIME (img)                 ▷ original image

2:      black_image ← create black image with img size

3:      L' ← landmarks(black_image)             ▷ 68 normalized landmarks

4:      L' ←L' ∪ 17 top points ∪ four corners                   ▷ 89 landmarks

5:      L ← landmarks (img)

6:      L ←L ∪ 17 top points ∪ four corners                    ▷ 89 landmarks

7:      lime_img ← lime (img)           ▷ Compute LIME for original image

8:      tri ← delauny (L)                                              ▷ triangularization

9:      norm_lime_img ← empty image (224×275)  ▷ Create empty image

10:    for each pixel coordinate p' ∈ norm_lime_img do
11:       (v'i, v'j, v'k) ← triangle from L' that contains p' using tri triangles

12:       (vi, vj, v'k) ← triangle from L that match (v'i, v'j, v'k) in L'
13:       (c'i, c'j, c'k) ← p^' coordinates as lineal combination of (v'i, v'j, v'k)
14:        p ← lineal combination (barycentric coordinates) of (vi, vj, vk) 
             using (c'i, c'j, c'k) scalars

15:        norm_lime_img [p'] = lime_img [p]

16:    return norm_lime_img                          ▷ LIME image normalized

The merged heatmap is the average of all normalized LIME images 
that belong to the same training dataset, test dataset and facial 
expression. Then, we calculate distances between all the generated 
heatmaps, which is computed as one minus normalized correlation. 

TABLE I. Number of Images in Terms of Facial Expression and Gender From the Original Dataset to the Training and Testing Datasets. In Gray 
the Expressions Used in This Study. Dupl.: Duplicates. Und: Undetermined. F: Female. M: Male.

Gender label Selected Pre-processing
Face detected Female datasets Male datasets

# Dupl. F M Und. F M F M |F-M| Test Train Test Train
Neutral 75374 5093     

Happiness 134915 8430 2458 1590 581 1587 1587 1254 1182 72 253 1001 238 944
Sadness 25959 3425 1588 1691 613 1587 1587 1130 1038 92 227 903 209 829
Surprise 14590 1183 1588 1670 681 1587 1587 1183 1058 125 237 946 214 844

Fear 6878 1082 1608 1588 553 1587 1587 1150 1023 127 235 915 206 817
Disgust 4303 553 1587 1873 290 1587 1587 1230 1093 137 243 987 218 875
Anger 25382 3169 1588 3944 475 1587 1587 1233 1123 110 246 987 225 898

Contempt 4250 315     
None 33588 2342     

Uncertain 12145 943     
Non-face 82915     

Non-labeled 6999     
Total 427298 26535 10417 12356 3193 9522 9522 7180 6517 1441 5739 1310 5207
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Distances generate a symmetric matrix that is used to cluster similar 
heatmaps applying the Ward’s variance minimization method [45]. 
Finally, we visualize the dendrogram generated by clustering to 
analyze the arrangement of the clusters produced by the models.

D. Procedure
We prepare three training and testing datasets: (1) a mixed dataset 

including a relatively gender-balanced number of images per facial 
expression; (2) a dataset with only images of females and (3) a dataset 
with only images of males. 

Deep Convolutional Neural Networks (CNNs) have proved to be 
effective in numerous computer vision tasks [46], therefore, we use 
them to classify six facial expressions: anger, disgust, fear, happiness, 
sadness and surprise. In particular, we design our network based on the 
Inception v3 architecture [47]. The fully connected layer of Inception 
V3 network is replaced by a Global Average Pooling layer [48] and 
the softmax layer is modified to train the six classes (anger, sadness, 
fear, surprise, happiness, and disgust).  Table III describes the hyper 
parameters of the network. The model is trained on a different dataset 
(mixed, only-female and only-male) and fine-tuned on imagenet [46]. 
We perform stratified 5-fold cross-validation, since these values have 
shown empirically to yield test error rate estimates that suffer neither 
from excessively high bias nor from very high variance [49], and 
report the mean classification accuracy. We highlight that the aim of 
the study is to analyze the influence of male and female datasets in the 
training, without focusing on improving the accuracy of the model. 
Then, the model is tested on all testing datasets (mixed, only-female 
and only-male) (see Table I for the details of number of images for each 
expression in each model). The different combinations of training and 
testing datasets used in this study are identified in Table IV.

TABLE III. Hyper-Parameters Used in the Inception V3 Network

Parameters
Weights (pre-trained model) Imagenet

Learning Rate lr = 10-4 

Optimization algorithm Adam [50]

Batch Size on training set 128

Batch Size on validation set 32

Epochs 1

TABLE IV. IDs of Combinations of Training and Testing Sets

Testing

Mixed Female Male

Training

Mixed MI-MI MI-FE MI-MA

Female FE-MI FE-FE FE-MA

Male MA-MI MA-FE MA-MA

To study differences between male and female, we apply the 
LIME merging procedure aforementioned to create the heatmaps to 
observe the face regions that are important for the model to classify 
images into a facial expression class. We build 36 heatmaps (3 training 
datasets (mixed, female and male) x 2 testing sets (female and male) 
x 6 expressions). In this case, LIME is configured to show the 5 most 
important features for the classification.

III. Results

In this section we present the accuracy obtained and the gender 
differences observed regarding the face regions that influence the 
recognition.

TABLE II. Normalization Process of the Images With LIME Applied to 
Merge the Important Regions for the Model

Exp.

Original 
image with 

landmarks and 
triangulation

LIME with 
landmarks and 
triangulation

LIME transformed to 
normal face with landmarks 

and triangulation
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A. Accuracy
The training done with the mixed dataset achieves the best results 

in all cases (with accuracy around 53%-55%). Although we did not 
focus on improving the results, the accuracy is similar to other works 
that used AffectNet: Wang et al. [51] compiled several state-of-the-art 
methods on AffectNet with accuracies ranging from 47% to 60.23% for 
7 or 8 expressions classification;  Ngo et al. [52] achieved accuracies 
ranging from 46.07% to 60.7% using SE-ResNet-50 with different 
loss functions and classifying 8 expressions and  Yen and Li [53] 
tested different architectures (ResNet-50, Xception, EfficientNet-B0, 
Inception, and DenseNet-121) with 8 expressions achieving accuracies 
ranging from 54% to 58% with class weight and data augmentation. 
Similar results are achieved both with the unbalanced trainings (male 
and female training) when tested with the mixed dataset (MA-MI, FE-
MI). However, results decrease when testing with the other gender 
dataset, especially the training with female tested with male (FE-MA) 
(see Table V).

TABLE V. Mean Class-Wise Percentage Accuracy of the Models, 
Broken Down by Datasets

Testing dataset
Mixed Male Female

Training 
dataset

Mixed 53.83 52.73 54.84

Male 47.12 47.80 46.51

Female 47.61 42.86 51.98

Observing the confusion matrices (see Tables VI, VII and VIII), 
happiness is the best recognized expression for all training and 
testing datasets, except for FE-MA (female training dataset and male 
testing dataset). Although accuracy is high both for the mixed and 
male trainings (above 75%) with all testing datasets, female training 
dataset values are around 70% only with the female testing datasets 
and achieves lower values with the other testing datasets (lower than 
56%). It is noteworthy that the higher values testing with females are 
achieved both with the male (MA-FE) and mixed (MI-FE) training 
datasets, which might be because of the higher expressiveness of 
females when smiling [7]. 

In the case of mixed training, there is a similar behavior both for 
the testing with male and female (MI-MA, MI-FE), obtaining the 
worse classifications for the fear and anger expressions. Fear is highly 
misclassified with surprise, and anger with disgust and sadness. Even 
humans have difficulties identifying facial expressions such as disgust 
and anger [25].

In general, both surprise and anger are not well recognized when 
training with males but recognizing anger for females achieves only 
a 25% of accuracy (MA-FE). When training with females, surprise and 
fear are low recognized both for the mixed and male testing (FE-MI 
and FE-MA) and for female testing (FE-FE), fear and sadness present 
the lowest accuracy.

In FE-MA (female training dataset and male testing dataset), 
expressions tend to be classified as angry. That means that from the 
total of classifications, anger is the expression mostly selected by 
the CNN (see last row of each confusion matrix in Table VII). On the 
contrary, when using the MA-FE (male training dataset and female 
testing dataset), expressions tend to be classified into the happiness 
expression (see last row of each confusion matrix in Table VIII). 
Lastly, the mixed training dataset tends not to classify expressions 
into the fear class (see last row of each confusion matrix in Table 
VII and VIII).

TABLE VI. Confusion Matrix (Tested With Mixed Dataset, Trained 
With All Datasets). Values Are Expressed as Percentages. Last Row Is 

the Sum of All

Train/Test Mix
Ha Sa Su Fe Di An

Ha 79.07 4.43 6.29 0.86 5.58 3.78

Sa 5.35 50.44 9.98 4.66 12.85 16.72

Mix Su 8.25 8.25 54.63 13.70 6.82 8.35

Fe 3.27 10.83 30.32 36.89 8.87 9.81

Di 6.97 11.24 6.49 4.21 54.03 17.06

An 4.04 16.78 9.37 3.78 18.09 47.94

107.0 102.0 117.1 64.1 106.3 103.7

Ha 78.19 5.30 5.46 2.67 6.41 1.97

Sa 9.50 41.58 10.68 11.27 14.52 12.43

Ma Su 9.05 10.89 37.75 29.10 7.76 5.45

Fe 5.01 10.28 22.05 47.13 9.20 6.32

Di 12.10 14.24 6.21 9.63 45.28 12.54

An 8.57 19.83 8.74 10.41 19.62 32.83

122.4 102.1 90.9 110.2 102.8 71.6

Ha 55.51 8.95 7.23 3.16 17.07 8.08

Sa 1.48 43.50 8.96 7.20 16.67 22.18

Fe Su 4.64 10.13 44.94 20.99 7.58 11.73

Fe 1.57 10.57 24.64 40.35 9.25 13.63

Di 3.05 12.45 5.99 6.51 50.15 21.85

An 1.44 16.77 6.28 6.50 17.79 51.22

67.7 102.4 98.0 84.7 118.5 128.7

TABLE VII. Confusion Matrix (Tested With Male Dataset, Trained 
With All Datasets). Values Are Expressed as Percentages. Last Row Is 

the Sum of All

Train/Test Male
Ha Sa Su Fe Di An

Ha 75.64 5.58 5.84 1.10 6.52 5.33

Sa 5.20 52.59 7.92 3.37 12.80 18.12

Mix Su 6.72 11.24 51.26 15.20 6.51 9.07

Fe 3.12 11.24 28.64 36.48 9.98 10.54

Di 6.50 12.45 6.49 4.11 50.96 19.49

An 3.83 18.21 7.91 4.28 16.31 49.45

101.0 111.3 108.1 64.6 103.1 112.0

Ha 75.79 5.92 4.74 1.95 8.89 2.71

Sa 8.68 41.96 8.87 8.59 15.02 16.88

Ma Su 8.23 12.00 35.77 26.70 8.90 8.41

Fe 4.88 9.88 21.13 45.84 10.48 7.79

Di 9.34 14.26 5.58 8.22 46.06 16.54

An 5.53 17.20 6.67 9.11 20.07 41.42

112.5 101.2 82.8 100.4 109.4 93.8

Ha 39.86 13.11 5.33 4.32 24.62 12.77

Sa 0.58 43.63 4.64 6.36 20.12 24.68

Fe Su 2.65 13.88 32.14 25.89 9.45 15.99

Fe 1.27 11.43 20.45 40.02 9.88 16.94

Di 1.19 14.09 4.94 6.32 47.31 26.15

An 0.44 18.44 2.94 6.96 17.01 54.21

46.0 114.6 70.4 89.9 128.4 150.7
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TABLE VIII. Confusion Matrix (Tested With Female Dataset, Trained 
With All Datasets). Values Are Expressed as Percentages. Last Row Is 

the Sum of All

Train/Test Female
Ha Sa Su Fe Di An

Ha 82.30 3.34 6.71 0.64 4.70 2.32

Sa 5.50 48.46 11.89 5.84 12.89 15.42

Mix Su 9.63 5.58 57.66 12.34 7.10 7.69

Fe 3.39 10.47 31.77 37.32 7.88 9.16

Di 7.38 10.17 6.48 4.31 56.78 14.87

An 4.21 15.49 10.71 3.33 19.71 46.54

112.4 93.5 125.2 63.8 109.1 96.0

Ha 80.45 4.71 6.14 3.36 4.07 1.28

Sa 10.26 41.24 12.36 13.74 14.04 8.36

Ma Su 9.79 9.89 39.50 31.27 6.75 2.80

Fe 5.12 10.64 22.85 48.29 8.09 5.01

Di 14.55 14.23 6.75 10.90 44.61 8.96

An 11.35 22.22 10.62 11.61 19.20 25.00

131.5 102.9 98.2 119.2 96.8 51.4

Ha 70.26 5.02 9.01 2.08 9.95 3.67

Sa 2.31 43.38 12.95 7.97 13.51 19.88

Fe Su 6.42 6.77 56.38 16.61 5.90 7.92

Fe 1.82 9.81 28.36 40.65 8.69 10.66

Di 4.72 10.99 6.91 6.68 52.67 18.04

An 2.36 15.26 9.33 6.08 18.48 48.49

87.9 91.2 122.9 80.0 109.2 108.7

B. Gender Differences in FER: Regions of Influence for 
Classification

Table IX and X present the merged heatmaps for the LIME images 
which help us understand those image regions that impact the 
classification of the image into a class. It is important to remark that 
even if heatmaps are similar between expressions, the network could 
be observing different features in those zones (e.g., the presence of 
frown or not). To focus on the differences in the important zones 
between male and female, we used the heatmaps of FE-FE and MA-
MA to calculate their subtraction. We obtained three images per 
expression showing the absolute difference, the difference between 
FE-FE and MA-MA, and the difference between MA-MA and FE-FE 
(see Table XI).

Observing the difference in the heatmaps, the disparity between 
female and male datasets for the sadness, fear and anger expressions 
is lower than happiness, disgust and surprise, which are the most 
different regarding gender. 

In the happiness expression, the network trained both with males 
and females give importance to the lower face region (see Table IX), 
but in female training, this zone is more highlighted, and in male 
training, cheeks are also important. 

In the case of disgust, the female dataset (FE-FE) focuses on the 
lower region face (the mouth and chin), whereas male datasets (MA-
MA) accentuate the central zone comprised between the mouth and 
the eyes (up to the temples) (see Table X).

In the surprise expression, similar heatmaps are achieved with both 
male and female datasets (see Table IX), however, female datasets (FE-
FE) highlight with more intensity the upper-middle face.

Heatmaps for surprise and fear are quite similar (see Table 
IX), this could be the reason for their misclassifications (see Fig. 3, 

TABLE IX. Heatmaps of Merged LIME Explanations for Each 
Expression, Training and Testing Datasets
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TABLE X. Heatmaps of Merged LIME Explanations for Each Expression, 
Training and Testing Datasets (Cont.)

Training
Female

Training
Mixed

Training
Male

D
is

gu
st

Test
Fe

Test
Ma

A
ng

er

Test
Fe

Test
Ma

0.0 0.1 0.2 0.3 0.4

6 MA-FE
6 MA-MA
6 MI-MA
6 MI-FE
6 FE-FE

6 FE-MA
4 FE-MA
4 FE-FE
3 FE-FE

3 FE-MA
4 MA-MA
4 MA-FE
4 MI-FE

4 MI-MA
3 MA-MA
3 MA-FE
3 MI-FE

3 MI-MA
5 FE-MA
5 FE-FE
5 MI-FE

5 MI-MA
5 MA-MA
5 MA-FE
2 FE-MA
2 FE-FE

2 MA-MA
2 MA-FE
2 MI-FE

2 MI-MA
1 MI-FE

1 MI-MA
1 MA-MA
1 MA-FE
1 FE-FE

1 FE-MA

Fig. 3. Dendrogram with expressions happiness (1), sadness (2), surprise (3), 
fear (4), disgust (5) and anger (6). Ward’s method is used to join clusters. 
Distance between clusters is computed as one minus normalized correlation.

TABLE XI. Differences Between Heatmaps for Each Expression. First Row: Absolute Value of the Difference Between the Heatmaps MA-MA and 
FE-FE. Second Row: Difference Between the Heatmaps FE-FE and MA-MA. Third Row: Difference Between the Heatmaps MA-MA and FE-FE. The 

Scalar Is Just Used to Improve the Visualization of the Differences. FE-FE Is Represented With F, MA-MA Is Represented With M

Happiness Sadness Surprise Fear Disgust Anger

3*|f-m|

3*Max(f-m, 0)

  

3*Max(m-f, 0)
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where the heatmaps for these expressions are grouped hierarchically 
based on similarity). Further, observing the grouped clusters in the 
dendrogram, happiness is the most different expression, which means 
that the important facial regions for learning are different to the other 
expressions and may help in the recognition.

The dendrogram also highlights the similarities of the heatmaps 
built using the mixed, male or female datasets for each expression. In 
general, expressions created with all datasets focus on similar regions, 
except for disgust trained with male datasets and surprise trained 
with female datasets. The first union of branches is mainly between 
those heatmaps belonging to the same training dataset and expression, 
meaning that the influence of the LIME images provided by the testing 
datasets is scarce. The next unions of branches depend mainly on the 
expression (with some exceptions, disgust in male training and surprise 
in female training), meaning that independently of the datasets, the 
expression influences the heatmap created. The similarities between 
heatmaps indicate that fear and surprise are the most similar and 
they share regions with anger, then sadness and disgust also coincide 
in face regions. And as already commented, happiness is the most 
different expression regarding the important face regions.

Although in some expressions an influence of the face regions 
indicated by Ekman [9] are shared (e.g. lower face for happiness), in 
general there is no direct relationship with them or even with  AUs.

However, as Disgust is the most different expression regarding face 
regions, when planning a new study with limited resources, endeavors 
to achieve extra Disgust images from both genders can benefit 
FER. Summarizing, as highlighted regions are different in several 
expressions, the lack of diversity in the training dataset may impact 
the misclassification of facial expressions. 

IV. Conclusion

Currently FER is a relevant area of research due to its wide range 
of applications, and frequently new approaches are validated using 
well-known datasets or models. However, especially in web-scrapped 
datasets, we cannot assure that they include an evenly distributed 
number of images of individuals in terms of sensitive attributes 
such as gender. Further, analyzing gender differences will help 
improve FER systems and understand the source of any inequality 
o misclassification. Considering this, we questioned: What are the 
gender differences when training a ML system for FER? 

The aim of the present study was to study how gender impacts 
in the learning of a CNN. We explained comprehensively with XAI 
techniques the differences and similarities of the important face 
regions for the model to classify an expression into a class, considering 
gender.

A first contribution of the work is the novel explanation technique 
used for the comparison, that is, the creation of a unique heatmap 
based on the individual results of applying LIME on each image. By 
merging the instance-level information in a normalized image, we 
acquire global knowledge about the functioning of the CNN. Then, 
heatmaps can be used to calculate and analyze the similarities and 
differences among expressions and gender. This technique can be 
transferred to other similar FER studies.

Regarding FER, as expected, gender-balanced training datasets 
improve FER accuracy, achieving similar likelihood for positive and 
negative outcomes. However, unbalanced datasets do not affect in the 
same manner all the face expressions. Results show that training with 
male datasets achieve better results than training with female datasets, 
this could be related with the claims of women being generally 
more expressive than men and being better senders of nonverbal 
information [3], [54], therefore, the training with less exaggerated 

expressions could transfer better. However, the expression of anger is 
an exception, which can relate with the literature than men pose anger 
more intensely. 

Analyzing the performance, the expression of happiness is globally 
well recognized, with the exception of female training tested on 
males. In addition, it is interesting how female training tends to 
classify frequently male images into the anger class, whereas, in the 
opposite way, male training tends to classify expressions by women 
as happiness. And the mixed training, decides frequently to classify 
images into other classes before using the fear expression.

Lastly, the findings of the comprehensive study of the important 
face regions for the neural network show that there exist common 
regions in some expressions both for females and males with different 
intensities (e.g., happiness); however, in expressions like disgust, face 
regions are different. Therefore, when datasets are not balanced, these 
differences can impact the correct classification of facial expressions. 
In addition, regarding the differences between gender and expression 
in the face regions important for the model, we observed that the 
expression is more influential than the training or testing datasets. 

As Xu et al. [21] commented, there is a need for the research 
community to invest effort in creating facial expression datasets with 
explicit labels regarding sensitive attributes. The gender labelled 
file used in this study is available in https://github.com/josebambu/
AffectNetGenderLabelling/.

We note that the results obtained are achieved with a particular 
relevant dataset (AffectNet dataset) and model (Inception), therefore, 
future work lines are to study if different datasets and neural networks 
behave similarly as this study and analyze if important facial regions 
for the network coincide with human perception, in order to build 
more human-based models. Further, it would be of interest to apply 
the methodology to other types of images (e.g. thermal [55] or depth 
[56]), and other fields of study such as face identification [57] or pain 
detection [27].
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