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Abstract

Sea surface temperature (SST) is an important index to detect ocean changes, predict SST anomalies, and prevent 
natural disasters caused by abnormal changes, dynamic variation of which have a profound impact on the 
whole marine ecosystem and the dynamic changes of climate. In order to better capture the dynamic changes of 
ocean temperature, it’s vitally essential to predict the SST in the future. A new spatio-temporal attention graph 
convolutional network (STAGCN) for SST prediction was proposed in this paper which can capture spatial 
dependence and temporal correlation in the way of integrating gated recurrent unit (GRU) model with graph 
convolutional network (GCN) and introduced attention mechanism. The STAGCN model adopts the GCN model 
to learn the topological structure between ocean location points for extracting the spatial characteristics from 
the ocean position nodes network. Besides, capturing temporal correlation by learning dynamic variation of 
SST time series data, a GRU model is introduced into the STAGCN model to deal with the prediction problem 
about long time series, the input of which is the SST data with spatial characteristics. To capture the significance 
of SST information at different times and increase the accuracy of SST forecast, the attention mechanism was 
used to obtain the spatial and temporal characteristics globally. In this study, the proposed STAGCN model was 
trained and tested on the East China Sea.Experiments with different prediction lengths show that the model can 
capture the spatio-temporal correlation of regional-scale sea surface temperature series and almost uniformly 
outperforms other classical models under different sea areas and different prediction levels, in which the root 
mean square error is reduced by about 0.2 compared with the LSTM model.
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I. Introduction

The dynamics of the oceans, which make up about two-thirds 
of the planet, have an extremely important impact on climate, 

marine ecology, and the lives of the people around them. Sea surface 
temperature (SST) is an important index to detect ocean changes, predict 
SST anomalies, and prevent natural disasters caused by abnormal 
changes. Therefore, it’s significant to predict the dynamic change of 
SST in the future. Moreover, SST has played an indispensable role in 
the ocean-atmosphere interaction, that is, the exchange of matter, 
energy, and momentum between the ocean and the atmosphere [1] 
[2] [3]. As a result, changes in SST have incalculable impacts on global 
climate and marine ecosystem [4] [5] [6] [7]. Besides, SST predictions 
also has implications for applications related to the ocean, such as 
weather forecasting, fisheries, and marine environmental protection. 
Therefore, it’s critically necessary to predict dynamic changes of SST 
in the future to help people identify and prevent severe weather events 
such as drought in advance [8] [9], and it’s also of great significance for 
scientific research and applications [10]. However, due to the influence 

of many complex factors, such as sea surface heat flow, radiation, and 
solar wind, the prediction of SST is quite indefinite and challenging.

In recent years, SST prediction methods have been widely applied 
and attracted much attention further become an attractive field of 
marine research. Three kinds of methods are generally used to predict 
SST including the numerical method based on the mathematical 
model, the data-driven method using the historical model to predict 
SST in the future, and the method combining the two methods [11]. 
The numerical methods generally use kinetic and thermodynamic 
equations to exposit the dynamic changes of SST and then solve a 
series of differential equations which are difficult to solve due to they 
are usually sophisticated and require a large amount of computation. 
The data-driven method is mainly used to predict the future SST value 
from the perspective of data. This method builds the model by learning 
the relationships and patterns from the historical SST observation data 
and further uses the learned relationships model to approximate the 
future SST data. The data-driven method is less complicated than the 
numerical method and is suitable for the prediction of SST in high-
resolution areas. The data-driven method mainly predicts the future 
SST from the perspective of statistical data analysis, machine learning, 
and artificial intelligence algorithms. Among them, statistical data 
analysis techniques primarily contain the Markov model [12] [13], 
Empirical canonical correlation analysis [14] and regression model 
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[15] [16], etc. Classical machine learning methods including linear 
regression, support vector machine (SVM)[ [17],nonlinear regression 
model [18], and artificial neural network [19] are used to forecast 
future SST. Support vector machine (SVM) is a generalized linear 
classifier that classifies data based on supervised learning. Particle 
swarm optimization (PSO) algorithm is a random and parallel 
optimization algorithm based on population. Those two kinds of 
artificial intelligence methods are commonly used in SST prediction 
[17] [20]. The numerical method and machine learning method can 
also be combined [11] to better predict SST, but the prediction effect is 
similar to that using the numerical method.

With the continuous development and innovation of deep learning, 
the deep learning method has been mostly used in SST prediction due 
to its powerful ability to learn and model the relationship between data 
[21] [22] [23] [24]. Recurrent neural network (RNN) can effectively 
deal with time series prediction problems, but serious gradient 
vanishing or outbreak problems will occur when processing long time 
series data. As a variant of the recurrent neural network, a long short-
term memory (LSTM) network with recurrent structure and gating 
mechanism is proposed to solve the long-term time dependence 
problem, which can remember longer time series information 
and obtain better prediction results [25]. In order to simplify the 
complex structure of LSTM network, a gate recurrent unit (GRU) 
[26]with relatively unsophisticated gate structure was proposed. As 
an improved variant of the LSTM network, the GRU model not only 
retains the advantage of LSTM in long-term series memory but also 
has high computational efficiency, which alleviated the phenomenon 
of network overfitting and underfitting.Those model have been widely 
used in ocean surface temperature prediction [27] proposed a full-
connected LSTM (FC-LSTM), which is composed of LSTM layer and 
Full Connected layer. [26]designs an adaptive mechanism based on 
deep learning and attention mechanism to predict SST, which uses 
GRU encoder-decoder to obtain the static change of SST and apply 
dynamic influence link to acquire the dynamic variation for realizing 
the long-term prediction of future SST. [9]proposes an integrated 
learning model (LSTM-Adaboost) that combines the deep LSTM 
neural network with the Adaptive Boosting (AdaBoost) algorithm to 
predict the daily SST in the short and medium-term. Feng et al used 
time-domain convolutional network to achieve short-term small-scale 
SST prediction of the Indian Ocean [28]. Han et al. used convolutional 
neural network method to achieve regional prediction of Sea surface 
temperature, sea surface height and ocean salinity in the Pacific [29].

However, although these SST prediction models have achieved a 
good prediction effect, they only consider the time correlation but 
ignore the spatial dependency, so they cannot achieve high accuracy 
in predicting the dynamic changes of SST sequence data. Beside, 
the association structures constructed when capturing the spatial 
influence of adjacent nodes on the central node are not all standardized 
grid structures. For example, topology structures based on spatial 
association can be constructed when missing values exist. Therefore, 
in order to capturing spatial dependencies from complex topologies, 
the GCN was applied to obtain the spatial dependence from the SST 
series data of the ocean location points, an original SST prediction 
method named spatio-temporal attention graph convolutional network 
(STAGCN) based on ocean location points network was proposed 
in this paper. Specifically, the GCN is applied to capture spatial 
correlation from the ocean positions network with the topological 
structure. The GRU is used to capturing the temporal dependence 
from the dynamic changes of the SST time series data. In addition, the 
STAGCN model introduces an attention mechanism to learn global 
correlation, adjust and integrate global temporal information of SST 
for realizing accurate SST prediction tasks eventually.

The contribution of this paper can be summarized in the following 
two aspects: (1) A STAGCN model is designed to capture the global 
spatial and temporal dependence simultaneously for accurate SST 
prediction, which combines the GCN deep learning model with 
the GRU learning model and introduces an attention mechanism.
(2) The concept of a graph is applied to the field of SST prediction, 
and the topology structure network of ocean location points graph is 
constructed to obtain the spatial characteristics from SST time series 
by GCN model. Using 38-year time-series satellite data from some 
areas of the East China Sea, the experiments show that the STAGCN 
model can achieve preferable prediction results than the GRU model 
and the GCN model demonstrating that the STAGCN model has the 
ability to capture both time and space correlation from SST series data 
simultaneously, and can achieve desirable prediction effect for the 
short-term prediction of future SST.

The rest of the paper is organized as follows. Section II proposes the 
novel STAGCN model for SST prediction in detail. Section III describes 
the experiments and analyzes the results. Finally, Section IV gives the 
conclusion of the paper.

II. Method

A. Problem Clarification
In this study, the prediction of SST is to predict the sea surface 

temperature within a certain time in the future according to the 
historical SST time-series information.

The undirected graph G = (V, E) with no weights was used to describe 
a topological network composed of oceanic observation points, and 
each location represents a node in the graph, where V = v1, v2, ....,vN 
means all oceanic positions that correspond to the N vertices of 
the graph. E represents the correlation between ocean points 
corresponding to the edges between nodes in the graph, reflecting 
the connection between nodes at different positions. The connection 
relationship between nodes in the whole graph is represented by the 
adjacencies matrix A, the number of the rows and columns of which 
are determined by the number of nodes, and each value of which 
represents the connection relationship between nodes. The value of 
each item in the adjacency matrix A is either 0 or 1. 0 indicates that 
there is no direct connection between nodes and 1 expresses that there 
has a linkage between nodes.

The feature X P*N of the node in the topology graph corresponds to 
the SST value of each location point on the ocean positions network.
where N represents the length of the time dimension in oceanographic 
satellite data, and Xt ∈ Rt*N represents the SST value at time t.

The SST prediction problem can be regarded as looking for a 
mapping function f, which map the SST value in the historical time 
n to the SST value in the next T periods under the conditions of the 
topology diagram G of the ocean location points network and feature 
matrix X. Equation (1) refers to the SST prediction process:

 (1)

The left side is the historical SST value with the length n, from 
which the model learns the variation trend of SST, and the right side 
of the equation is the predicted future SST value with length T under 
the mapping condition.

B. The STAGCN Model
To capture global dynamic changes of the SST information, a novel 

STAGCN model combines graph convolutional network capturing 
spatial correlation and gated recurrent unit obtaining temporal 
dependence with attention model at the same time is proposed in this 
paper.In the STAGCN model, a layer of GCN network can be used to 
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obtain a better prediction effect, and Equation (2) refers to the specific 
convolution process:

 (2)

where f(X, A) express the final output of the GCN model, X is the 
eigenmatrix, A means the adjacency matrix of the graph convolution. 
ReLU(·) represents an activation function used to add linear factors 
to improve model expression.is the form of the adjacent matrix after 
further renormalization to avoid causing gradient explosion. W0 
represents the weight that needs to be trained in the progress of the 
graph convolutional network, whose first dimension F means the time 
series length of ocean data and second dimension G means the number 
of neural units in the output layer.

Specifically, the area we study is ocean location points graphs 
composed of position points determined by longitude and latitude, 
and the topological connection relationship between location points 
can be captured by the GCN network. The shaded part of the dotted 

line in Fig. 1 is a topological graph of a point in the simulated ocean 
location. It is assumed that the red dot 1 represents the central node 
in the topology diagram, and the green dots (the green dot in the 
shaded part of the dotted line) around it are the adjacent nodes. The 
interaction degree between the central node and the adjacent nodes 
can be obtained by GCN model. Then the GCN model captures the 
SST characteristic attributes of the topological structure and further 
acquires the spatial correlation from the location points network. 
The GRU model was adopted in this study to obtain the temporal 
dependence of SST data. The attention model is used to screen which 
moments of SST data are relevant, that is, to distinguish the importance 
of data at different moments, which improves the accuracy of the 
prediction and realize the SST prediction task based on the structure 
of the ocean location points graph. The specific spatial-temporal 
prediction process of the STAGCN model is shown in Fig. 2, where the 
distance function (Equation) was applied to calculate the adjacency 
matrix A1 that represents the connection relation between the position 
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Fig. 1. Topology graph of an ocean location point (in the dotted shaded part). (a) The green nodes indicate the location points have connection relationship with the 
central point. (b) The topological structure between the central node 1 and its adjacent nodes is established through the GCN model to obtain the spatial features.

Prediction

FC
Context Vector

A�ention Model

A cell of
GCN-GRU

So�max

(αt, ..., αt-1,αt)

ht-n

ht-n

ht-n

Xt-n
Xt-1 Xt

wt-n

ht-1

ht-1

ht-1

ht-1
ht

Yt

ut

rt

ctX

A1 A1
A1 A1

wt-1

ht

ht

wt

MLPt-1MLPt-n

GRU

GCN

Distance
Function

Distance
Function

Adjacent matrixAdjacent matrix Adjacent matrix Adjacent matrix

Distance
Function

Distance
Function

GRU

GCN

GRU

GCN

GRU

GCN

GCN

MLPt
et-1

et-n et
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points, the GCN-GRU represents the process of combining the output 
of the GCN model and the GRU model, and the FC express the fully 
connected layer.

First of all, the obtained adjacency matrix and the SST feature data 
Xi (i = t−n, ..., t−1, t) of n historical time series were taken as input, 
from which the GCN model capture the spatial information. Then, The 
input of the GRU model is replaced by the output of the GCN model 
to obtain the temporal characteristics of SST data. Equation (3) to (6) 
refer to the update gate, reset gate, cell state and output state at time t 
in the STAGCN model respectively.

 (3)

 (4)

 (5)

 (6)

where ut and rt express the update gate and reset gate, ht−1 means 
the output at previous time, ht means the state output at present t 
moment, ct represents the information be reserved from previous 
moment and present time. Function fgcn(·) express the graph 
convolution, Wu, Wr and Wc are the connection weights between the 
output of graph convolution and the previous output ht−1, bu, br and 
bc are the corresponding thresholds. Moreover, the final hidden state 
information of the GRU model is used as the input of the attention 
model, which is used to obtain the importance of the changes 
information of SST series data. Finally, we get the prediction from the 
full connection layer. In the attention model, multi-layer perception 
is used as the scoring function, in which wi (i = t−n, ..., t−1, t) is the 
weight matrix of multi-layer perception. The score ei (i = t−n, ..., t−1, t) 
of the multi-layer perception output is brought into the Softmax 
function to get the attention distribution probability. The last hidden 
state and its weight are weighted to obtain the final context vector C.

To sum up, we propose that the STAGCN model has the ability to 
obtain the global spatial dependence and temporal dynamic changes 
which can obtain a preferable SST prediction effect. The GCN model is 
applied to capture spatial information by building the structure of the 
interrelation between the position nodes. The GRU model is used to 
obtain the temporal dependence from the SST series data with spatial 
characteristics. Moreover, the attention model captures the global 
variation trends of the SST information which is significant to achieve 
accurate SST prediction tasks.

III. Experiments

A. Research Area and Data
Rich in natural resources, the East China Sea is the confluence of 

many rivers covering a wide area including China’s Bohai Sea in the 
north and the Taiwan Strait in the south and is the strategic maritime 
area for China, Japan, South Korea, and other countries. Therefore, 
studying the dynamic changes of SST data in the East China Sea plays an 
extremely important role in national marine transportation and people’s 
production and life in the surrounding countries. The research area 
selected in this study is the part area of the East China Sea with sea areas 
of 26.8755°N - 32.125°N and 123.125°E - 127.125°E covering most areas of 
the East China Sea and no land area, as is shown in Fig. 3. The selected 
area includes most of the East China Sea to facilitate the acquisition of 
grid-based SST data and the establishment of the topological structure of 
the ocean position points graph for SST prediction.

In this study, the data used in the experiments were derived from 
the daily Optimum interpolated SST (OISST Daily Edition 2.1) with 
a spatial resolution of 1/4° in the N ational Oceanic and Atmospheric 

Administration (NOAA) platform. In this study, AVHRR-only daily SST 
data contained a total of 13,879 days SST data from 1982/01/01-2019/12/31 
covered the spatial span of 26.875°N-32.125°N, 123.125°E-127.125°E (the 
most of the east sea) are used as the experimental dataset, with a total 
of 22*17 position points as the study nodes.

In this study, the experimental data is composed of two parts: 
the adjacency matrix and the eigenmatrix respectively. The former 
is an adjacency matrix of size 374*374, which depicts the spatial 
dependence between position points. Equation (7) refers to each value 
in the adjacency matrix W is derived by some scaling of the distance 
between each position point in the ocean anchor point network.

 (7)

where Wij is the weight of the edges in the position graph 
determined by the distance between position i and j (dij). σ2 and ε are 
thresholds to control spacial arrangement and sparse arrangement of 
the adjacency matrix W, which are set to 0.1 and 0.4 respectively after 
testing in the experiments. The latter part of the experimental data 
is the eigenmatrix, which describes the dynamic changes of the SST 
value over time at the position nodes.

B. Experiment Setup
In order to better explain the superiority of the STAGCN model 

proposed in predicting SST, we chose five comparative models 
including the autoregressive moving average model (ARIMA), 
linear support vector machine model (SVR), graph convolutional 
network model (GCN), and gated recurrent unit model (GRU). In the 
experiments, we divided the dataset into the training set and test set, 
and the ratio of the two is 8:2. The Adam optimizer is used to train 
the model. The STAGCN model, GCN model, and GRU model use 
TensorFlow 1.5.0 (GPU version) as runtime environment during the 
training and testing progress. The ARIMA and SVR are respectively 
implemented using Statsmodels 0.12.2 and Scikit-learn 0.24.1 [31].

The real SST and the predicted SST of different nodes at time t 
are respectively expressed by Yt and . In the network training, the 
loss function value should be minimized as far as possible, which is 
beneficial for the predicted SST value of each ocean position node to 
be a better fit to the actual SST value. The loss function defined in the 
STAGCN model is shown in Equation. The first term ||⋅|| is the 2-norm 
of the real value and the predicted value, and the second term is the 
regularization term λLreg with hyperparameter λ, which improved 
the prediction performance of the model and prevented overfitting 
occurrence during training.
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To prove the desirable prediction performance of the STAGCN 
model, five measurement criteria are used to compare the SST 
prediction performance of the proposed model with other models 
including root mean square error (RMSE), mean absolute error (MAE), 
accuracy (Accuracy), coefficient of determination (R2) and explained 
variance score (Var).

 (8)

 (9)

 (10)

 (11)

 (12)

where Equation (8) to (12) refer to the calculation process of RMSE, 
MAE, Accuracy, (R2) and (Var) respectively, T means the length of the 
SST time series, N represents the total number of position points. TN 
is the number of recorded changes in temperature values at all ocean 
locations with a time length of T.  represents the real SST value and 
the  means predicted SST value in the position point n at the moment 
t. The entire sets of  and  can be defined as Y and  respectively. 

 represents the average value of collection Y. Five criteria are used 
to measure the merits of the model from the perspective of error, 
accuracy, and fitting degree. The F in the accuracy indicator refers to 
the F-norm.

In the neural network model, the setting of model parameters is 
crucial to the model training, such as the number of neurons in the 
hidden layer, whose size determines the computational complexity 
and predictive performance of the whole model. Therefore, in order 
to improve the training efficiency and the accuracy of prediction, 
we used different hidden units to conduct experiments on the test 
set and select the corresponding number of hidden units with the 
best predicted effect from the predicted results. We set the number 
of neurons in the hidden layer as the value in [8, 16, 32, 64, 128], 
respectively. The variation trend of error indicators under different 
hidden units condition as shown in 4, from which we can see that 
the RMSE and MAE reach the minimum value when the number of 

hidden layer units is 32. At the same time, we can see from 4 that the 
prediction error including RMSE and MAE has a similar decreasing 
trend while hidden units increases from 8 to 32, and then it shows 
an increasing trend when hidden units exceed 32. On the contrary, 
the prediction accuracy has an opposite trend, rising first and then 
falling. The trend of the model measurement indexes shows that there 
is a critical value of the number of hidden layer cells in the model. 
When the critical value is exceeded, the complexity of the model will 
increase with the increase of the number of hidden layer cells, and 
the performance of the model will decline simultaneously. Since the 
prediction performance of the model has the best performance when 
the number of hidden units is 32, the following experiments will be 
carried out under the condition that the number of hidden units is set 
to 32.

C. Experiment Results and Discussion
We performed prediction experiments on 1 day, 7 days, 14 days, and 

30 days SST values in the future and measure the performance of the 
proposed STAGCN model, the ARIMA model, SVR model, GCN model, 
and GRU model with five performance metrics. The SST prediction 
result of the STAGCN model is analyzed from the perspectives of 
prediction accuracy, temporal and spatial prediction ability, and long-
term prediction ability.

Table I shows that the result of the five metrics using to measure 
the prediction result of the STAGCN model compared with other 
models on the East China Sea dataset for the 1-day, 7-days, 14-days, 
and 30-days prediction tasks, with boldface sections representing the 
optimal values of the various metrics of the model. - show that the 
value is negative, indicating that the model cannot predict well and 
can be ignored. Compared with other models, the proposed STAGCN 
model achieves excellent prediction performance under almost all 
conditions, indicating that the STAGCN model can capture the global 
spatio-temporal correlation, thus achieved an accurate prediction 
of SST. For different prediction lengths, the prediction effects of the 
STAGCN model are preferable to other models, demonstrating that 
the STAGCN model has the ability to predict SST accurately in both 
the short and long term.

As can be seen from Table I, the prediction performance of the GRU 
model is better than that of the GCN model. The RMSE of the GRU 
model is approximately 0.07 lower than that of the GCN model and 
the accuracy of the GRU model is increased by 0.4% compare with 
the GCN model for future one-day SST prediction. The forecasted 
effect of the GCN model is worse than that of the GRU model probably 
because the data itself has obvious time series features, but the GCN 
model merely captures the spatial dependency without considering 
the temporal characteristics from SST data.
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Fig. 4. Comparison of SST prediction results of the STAGCN model under different hidden units conditions. (a) Changes trend of RMSE and MAE under different 
hidden units conditions. (b) Variation trend in Accuracy, R2 and Var under different hidden units conditions.
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In order to better illustrate that the STAGCN model proposed in this 
paper can capture the temporal and spatial dependence from SST data 
and obtain satisfactory prediction effect simultaneously, we visualized 
the error index RMSE of STAGCN model, GRU model, and GCN model 
in predicting SST for next 1 day, 7 days, 14 days and 30 days and 
analyzed their prediction performance. The visualization results are 
shown in Fig. 5. Fig. 5 (a) and Fig. 5 (b) are visual comparison effects 
of the STAGCN model compared with the GCN model and the GRU 
model on RMSE metric respectively. As can be seen from the bar chart, 
the RMSE of the models increases with the increase of the predicted 
length, but the error of the STAGCN model is smaller than that of 
the other two models demonstrating that the STAGCN model has the 
ability to obtain spatio-temporal correlation from SST series data. For 
example, the RMSE values of STAGCN model are about 0.16, 0.21, 0.23 
and 0.35 lower than that of the GCN model for 1-day, 7-day, 14-day and 
30-day SST forecasting, indicating that the STAGCN model is capable 
to obtain spatial features from sequence data. The RMSE values of the 
GRU model considered single temporal characteristics are raised by 
about 0.07, 0.14, 0.14 and 0.17 for future 1-day, 7-day, 14-day and 30-

day SST prediction respectively compared with the STAGCN model, 
indicated that the STAGCN model can obtain the time correlation.
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TABLE I. The Prediction Result of the STAGCN Model Compared With Other Models

Time metrics ARIMA SVR GCN GRU LSTM STAGCN

1 day RMSE 7.2835 0.9280 0.5034 0.4217 0.5528 0.3479
MAE 5.9413 0.7567 0.3574 0.2825 0.4316 0.2354

Accuracy 0.6625 0.9588 0.9759 0.9799 0.9757 0.9846
R 2 - 0.9670 0.9933 0.9953 0.9884 0.9954
Var - 0.9671 0.9933 0.9953 0.9910 0.9954

7 day RMSE 7.9466 1.2042 0.8746 0.8034 0.7909 0.6644
MAE 6.5981 0.9860 0.6450 0.5836 0.6077 0.4907

Accuracy 0.6304 0.9464 0.9581 0.9615 0.9651 0.9705
R 2 - 0.9447 0.9798 0.9830 0.9761 0.9832
Var 0.0090 0.9477 0.9799 0.9831 0.9786 0.9832

14 day RMSE 7.7821 1.3285 1.0467 0.9493 0.8941 0.8122
MAE 6.4279 1.0855 0.7860 0.7086 0.6853 0.6142

Accuracy 0.6386 0.9408 0.9497 0.9544 0.9604 0.9640
R 2 - 0.9325 0.9711 0.9762 0.9691 0.9749

Var - 0.9351 0.9711 0.9762 0.9691 0.9749

30 day RMSE 8.3632 1.5406 1.3253 1.1428 1.1605 0.9694
MAE 7.0629 1.2533 1.0052 0.8662 0.8860 0.7510

Accuracy 0.6128 0.9314 0.9364 0.9452 0.9492 0.9568
R 2 - 0.9095 0.9538 0.9657 0.9469 0.9642

Var 0.0040 0.9117 0.9539 0.9666 0.9471 0.9642
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To reflect the prediction effect of the STAGCN model, we visualized 
the variation trend of the RMSE and the accuracy in SST forecasting 
for the next 1 day, 7 days, 14 days and 30days. The results are shown 
in Fig.6. As can be seen from the figure, with the increase of prediction 
length, the error of the STAGCN model increases relatively large and 
the accuracy decreases slightly. Although the RMSE of the STAGCN 
model does not have a certain stability, its prediction accuracy is 
relatively stable, indicating that the STAGCN model can also achieve 
long-term SST prediction while it has better prediction ability for 
short-term SST prediction than long-term SST prediction.

Fig.7 (a) and Fig.7 (b) are RMSE and Accuracy results of SST 
prediction by different methods at different prediction horizons. It’s 
observed that the STAGCN model achieved the lowest RMSE and the 
highest Accuracy for different predicted lengths.

To better explain the prediction performance of the STAGCN 
model, an ocean location point was randomly selected from the East 

China Sea dataset, in which we predicted the future SST for the next 1 
day, 7 days, 14 days, and 30 days, and visualize the prediction effect of 
all the selected days and the next 90 days. Fig. 8 , Fig. 9 , Fig. 10 , and 
Fig. 11 show the visualization results of the SST for the 1-day, 7-days, 
14-days and 30-days forecast intervals.

The prediction results of STAGCN model with the prediction 
length of 1 day, 7 days, 14 days and 30 days show that STAGCN 
model has poor prediction at peak and peak valley. The main reason 
may be that the GCN model in STAGCN model captures spatial 
features by constantly moving its defined smoothing filter, which 
will lead to excessive peak smoothing of the overall prediction 
results. At the same time, the model has a corresponding delay 
in the overall prediction.Although the prediction performance of 
STAGCN model decreases with the increase of prediction length, 
the fitting degree of predicted value and real value of STAGCN 
model is still high, and good prediction results can be obtained. 
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Fig. 9. The visualization comparison of the predicted and actual SST values for the 7 day.
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Fig. 8. The visualization comparison of the predicted and actual SST values for the next day.
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STAGCN model can capture the temporal correlation and regional 
spatial characteristics from the TIME series of SST, and obtain the 
global spatiotemporal dynamic change trend by using the attention 
mechanism, which reduces the prediction error and improves the 
accuracy of prediction, and realizes the long-term and short-term 
prediction task of regional scale SST.

IV. Conclusion

The sea surface temperature is an important index to detect ocean 
changes, predict SST anomalies, and prevent natural disasters caused 
by abnormal changes, the dynamic variation of which have a profound 
impact on the whole marine ecosystem and the changes of climate. 
Therefore, it’s essential to predict the future sea surface temperature. In 
order to achieve accurate SST prediction, a prediction model combining 
the GCN model with the GRU model and introduces the attention 
mechanism named the STAGCN model is proposed in this paper. We 
use the graph network to model the network of ocean location points. 
Nodes on the graph represent each ocean location point, edges on the 
graph represent that there have connections between location points. 
The GCN model is used to obtain the spatial correlation from the SST 
time series by constructing the spatial topology structure on the ocean 
points graph, which is obtained by the distance function between 
the nodes. The STAGCN model takes the GRU model to capture 
time dependence in the way of filtering and retaining historical and 
current SST information. Meanwhile, the attention model is applied 
to captures the importance of SST information from the output state 
and combines the global spatio-temporal characteristics from SST 
information. In this study, the experimental results of predicting the 
future short-term and long-term SST with STAGCN model on the data 
set indicating that the STAGCN model can achieve desirable prediction 
performance compared with the ARIMA model, SVR model, GCN 
model, and GRU model. In conclusion, the STAGCN model can acquire 
preferable forecasting results for future short-term and long-term SST 

prediction in the way of capturing global spatial characteristics and 
temporal dependence from SST series data.
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