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Abstract

The task of determining whether or not a link will exist between two entities, given the current position of the 
network, is called link prediction. The study of predicting and analyzing links between entities in a network 
is emerging as one of the most interesting research areas to explore. In the field of social network analysis, 
finding mutual friends, predicting the friendship status between two network individuals in the near future, 
etc., contributes significantly to a better understanding of the underlying network dynamics. The concept 
has many applications in biological networks, such as finding possible connections (possible interactions) 
between genes and predicting protein-protein interactions. Apart from these, the concept has applications in 
many other areas of network science. Exploration based on Graph Neural Networks (GNNs) to accomplish 
such tasks is another focus that is attracting a lot of attention these days. These approaches leverage the 
strength of the structural information of the network along with the properties of the nodes to make efficient 
predictions and classifications. In this work, we propose a network centrality based approach combined with 
Graph Convolution Networks (GCNs) to predict the connections between network nodes. We propose an 
idea to select training nodes for the model based on high edge betweenness centrality, which improves the 
prediction accuracy of the model. The study was conducted using three benchmark networks: CORA, Citeseer, 
and PubMed. The prediction accuracies for these networks are: 95.08%, 95.07%, and 95.3%. The performance 
of the model is comprehensive and comparable to the other prior art methods and studies. Moreover, the 
performance of the model is evaluated with 90.13% for WikiCS and 87.7% for Amazon Product network to show 
the generalizability of the model. The paper discusses in detail the reason for the improved predictive ability of 
the model both theoretically and experimentally. Our results are generalizable and our model has the potential 
to provide good results for link prediction tasks in any domain.
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I. Introduction

Social Networks have been the primary source of information 
exchange between people for more than a decade now. The flow of 

information in this era depends heavily on the interactions of people 
with their peers and friends, such as liking a post, following a page, 
buying products, etc. Both the social networking websites and the 
e-commerce website are influenced by this fact. Miao et al. [1] discusses 
the impact of online customer reviews on product returns. The study 

found that the influence is even greater for sellers with good quality 
or branded products. Ullal et al. [2] also concluded in their study that 
customer reviews can significantly influence the selling and buying 
behavior of e-commerce companies. There are many such studies that 
prove how important the connections a person has are. A person’s 
opinion and thinking are strongly influenced by the views and activities 
of their social environment. This ideology, in turn, is used by companies 
to identify the potential customers/buyers in the near future. This is 
done by analyzing the network of existing customers and identifying 
people who have the same preferences, characteristics, etc. This 
correlation in the characteristics of the two people forms the basis for 
a friendship relationship between them. This concept of link analysis 
and prediction is not only useful in product recommendation, but also 
in various areas of network science. Link prediction in network science 
is an important research area to understand the growth and evolution 
of the network. The idea of link prediction [3], [4] and analysis is of 
great importance in community detection, influence analysis, anomaly 
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detection, recommendation, etc. [5] where the available information 
plays an important role in identifying the linking patterns. Further, 
link prediction has a substantial role in the study of protein-protein 
interaction patterns and prediction of the linkage between the 
unconnected protein molecules [6]. Similarly, Marcus et al. [7] have 
used the link prediction to study the time-evolving criminal network. 
Likewise, there are many applications and related areas where link 
prediction has played a significant role. Although researchers have 
proposed various link prediction models and methods, still there is a 
lot of scope for improvement. With the advancements in deep learning 
for graphs, the task of link prediction has gained increased attention. 
This is because deep learning techniques for graphs provide highly 
accurate predictions over the limited training data.

In this paper, we present the task of link prediction using a Graph 
Convolutional Network (GCN). The key to this idea lies in the selection 
of the training pool based on network centrality. This idea is explored 
in detail in section 4 of the paper. As a result, the link prediction 
task has higher accuracy given a limited training dataset, since the 
aggregation of the neighborhood improves due to the selection of 
edges based on their importance. Therefore, the contributions of the 
manuscript can be highlighted as follows:

• We proposed an efficient GCN-based link prediction technique 
where the links of the training set are selected based on edge 
betweenness centrality.

• The utilized justification of edge betweenness centrality is based 
on the selection of the training set for GCN.

• Detailed comparison of the results obtained with the current state 
of the art methods for link prediction.

The flow of the paper is organized as follows: Section I gives a brief 
introduction to link prediction, its applicability, and the contribution 
of the manuscript. Section II gives an overview of the state of the art in 
link prediction methods. Also, Graph Convolutional Networks (GCN) 
and their applicability to the task of link prediction are discussed in 
this section. Section III discusses the proposed method, its correctness 
and modification of the conventional GCN-based link prediction. 
The section also addresses the importance of network centrality 
to the link prediction task. Section IV highlights the experimental 
setup, description of the considered datasets and explanation of the 
proposed model. Section V discusses the results obtained with the 
proposed model. In addition, the results are compared with other 
state-of-the-art implementations over the datasets. Finally, Section 
VI summarizes the results of the study and highlights some future 
directions to be further explored.

II. Literature Survey

This section gives a brief literature review of the state of the art, 
highlighting link prediction and Graph Convolutional Networks. It 
also discusses the latest graph deep learning based architectures and 
frameworks to tackle the task of link prediction. The section focuses 
on the need and scope of deep learning techniques for link prediction.

A. Link Prediction
The task of link prediction can be defined as predicting whether or 

not two nodes will form a link in the future.

So, given a graph, if two nodes are not connected at time t, what is 
the probability that they will be connected at time (t + 1)? Taking this 
idea further, there may be many unconnected nodes in the graph at a 
given time. So the task is to correctly predict the possible connections 
between nodes at a given time in the network.

To formulate this more formally, consider a graph G(V, E) defined 
as follows:

V: Set of vertices or nodes in the graph such that

V = {v1, v2, … vn} ∀ n ≥ 1
E: Set of edges or links as E = {e1, e2, … em} ∀ m ≥ 1
This is the graphical structure at time t0. At some time t1 > t0 the 

graphical structure evolves as G(V, E') suchthat E' = {e1, e2, … ek} ∀ m ≥ 1 
and k ≥ m. Our goal is to predict the edge set E'' for the graph G 
with the same number of nodes and an increased number of edges 
as a result of linkages between the disconnected nodes of the graph 
based on the information at time t0 of the graph. This edge set should 
approximate the actual edge set E'.

Fig. 1 shows a graphical network in which the dashed edges 
represent the possible connections between the unconnected nodes at 
a given time in the near future. An interesting fact about the creation 
of connections is that each group of nodes tries to complete its Triadic 
closure [8]. According to Granovetter’s theory of Strength of Weak Ties 
[9], if there is a connection between nodes A-B and A-C, then there 
is a strong tendency for linkage between B-C. The statement is about 
the triadic closure property for graphical networks. As an extension 
to this, there are many node groups in the network in which a pair 
of nodes attempts to close triads. The links between such pairs of 
nodes have a high probability of appearing in the future. This is one 
of the main ideas behind link prediction. Another idea for predicting 
a link between pairs of nodes is based on the different degree of 
expansion of the network inside and outside the group. According 
to Bi et al. [10], the network expansion inside the community is 
high. The nodes outside the community have fewer linkages, or 
very few nodes are connected. Apart from these, there are several 
other concepts for building networks such as stochastic block model 
[11], stochastic block model with Bayesian context, and stochastic 
block model with spectral clustering [12], which is the basis for link 
establishment between nodes. Another class of concepts are measures 
of proximity of nodes such as common neighbors, Jaccard coefficient 
[13], Adamic/Adar [14], Preferential Attachment Model [15] etc., 
based on which link establishment between nodes can be expected. 
These are the conventional approaches to link prediction that have 
evolved over time. Various improvements to these general ideas have 
been developed to achieve better and more efficient results. However, 
the increasing size of networks, aggregation of features in the form of 
node attributes and information, dynamic evolution of the network, 
and many other factors pose challenges to the computational ease 
and predictive ability of the methods. Machine learning/deep 
learning based approaches to the problem of link prediction are 
therefore attracting increasing attention. Combining these general 
ideas with artificial intelligence (AI) and machine learning (ML) 
based approaches has proven to be successful. The results obtained 
are very accurate. The remainder of the discussion in this section 
therefore focuses on the current state of the art in deep learning-
based approaches to link prediction over the graph.
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Fig. 1. Network as Graph with possible edges or links between the nodes.
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B. Graph Convolutional Networks (GCN)
Graph Convolutional Networks (GCNs) have emerged in recent 

years as powerful machine learning methods for graph processing 
[16]. The basic idea behind the operation of convolutional networks is 
neighborhood aggregation, where the features of each node play a crucial 
role in decision making. Unlike an image, the structure of the graph is 
irregular and cannot be mapped to a fixed grid (see Fig. 2). Therefore, 
the structure of the graph also plays an important role. For this reason, 
the conventional Convolutional Neural Network (CNN) based approach 
cannot be used for graph structures. A GCN uses both the network 
structure and the features of the neighboring node to evaluate the folded 
value over the considered node. This additional information about 
the context of the node in the form of the network structure plays an 
important role in the prediction and classification tasks.

Fig. 2. Image structure v.s. graph structure [17].

The task of modeling a Graph Convolutional Network (GCN) for 
a graph is solved by two mathematical approaches: Spectral Graph 
Theory and Spatial Graph Theory. Spectral Graph Theory requires a 
Fourier transform based computation of translation in the frequency 
domain to create a graph Laplacian [17]. Since this requires a detailed 
mathematical explanation, we will only explain the main steps here. 
At a high level, the spectral graph convolution in the Fourier domain 
is defined by applying the filter gθ to the input signal x:

 (1)

gθ: A diagonal matrix diag(θ) parameterized by θ ∈ Rn

Since the operator based on spectral graph convolution is a position 
invariant of the nodes of the graph, the graph Laplacian matrix L for a 
graph G of dimensions N × N is given as:

 (2)

Here A stands for Adjacency Matrix, I for Identity Matrix, and D 
for Diagonal Matrix. Their product gives the aggregate sum and D−1/2 

normalizes this product to suppress the effect of high degree nodes. 
Moreover, L can be factorized using U, which contains eigenvectors of 
L and Λ with the corresponding eigenvalues. Since L is a positive semi-
definite matrix and U is the Fourier basis, the Fourier transform over x 
can be defined as follows:

 (3)

Hence the inverse is presented as:

 (4)

If F is the Fourier domain space, the graph convolution operator can 
be defined as an elementwise product:

 (5)

Comparing equation (5) with equation (1), the final convolution 
equation of the graph can be given as follows:

 (6)

such that:

 (7)

With gθ filled with the learning parameters , the output on layer 
k can be defined as follows:

 (8)

Here, fk1−1 and fk are the number of input and output channels in 
layer k, respectively,  is the output channel in layer k.

However, this spectral convolution has certain limitations. First, 
computing the eigenvalues of the graph matrix is a computationally 
intensive task. Second, for very large graphs, the aggregation of 
neighborhoods for large values of k becomes computationally 
intensive and degrades the aggregation results. To solve these 
problems, only a neighborhood of a few hops should be considered 
in the localization of the filtering process. Therefore, spatial graph 
convolution methods have gained increasing attention. Thus, by 
adding formal parameters to the equation (2) and approximating the 
depth of the network to two, an embedding based on a 2-layer GCN 
model can be defined as follows:

 (9)

Here K is defined as D−1/2AD−1/2. The ultimate task is to learn the 
weights for the model, where C × H are the trainable weights for W(0). 
Similarly, HXF are trainable weights for W(1). Here, C refers to the 
dimensions of the feature vectors, 'F' refers to the dimensions of the 
resulting vectors, and 'H' is the number of hidden layers. The expression 
in equation (9) can be further extended depending on the hidden layers 
in the network. The depth of the network is based on the intuition of 
the contribution of the k path length of the neighborhood. However, 
in general, graph networks do not have much impact on neighborhood 
interactions beyond 2 − 3 path lengths [18]. Therefore, the results of 
GCN networks at 2 − 3 level are remarkable and impressive; otherwise, 
the model suffers from the overfitting condition. The final layer of this 
spatial GCN model is guided by a softmax function to make predictions. 
The cross-entropy loss function is considered for training the model:

 (10)

Here YI is the set of values with their respective labels. The 
hyperparameters of the model are set to optimize this loss metric, 
including the learning rate, epochs, layer sizes, etc. A detailed 
discussion of these parameters can be found in section V of the paper. 
Further improvements to the model, such as changing the aggregation 
function, using weighting preferences to cluster the neighborhood, 
etc., provide a path to advanced versions of GCN such as Graph 
Attention Model, GraphSage, etc. In the following subsection, we 
discuss the state of the art regarding the role of GCN/GNN in efficient 
link prediction execution.

C. Graph Neural Network Based Approaches to Link Prediction
Since the last decade, the world has been experiencing a boom in 

the research area of graphical neural networks. GNN is a special kind 
of neural networks characterized by the structures of graphs. Semi-
supervised link prediction using label propagation was first introduced 
by Kashima et al. [19]. This model of link prediction is applicable to 
multirelational domains and uses auxiliary information such as node 
similarity. A new fast and scalable algorithm for semi-supervised link 
prediction was proposed by Raymond et al. [20] for both static and 
dynamic graphs.
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Menon et al. [21] proposed a model that predicts links through 
Matrix factorization. This model gains knowledge of latent features 
from the topological structure of the graph. Moreover, the author 
considered the problem of class imbalance during optimization with 
stochastic gradient descent and scales. Gao et al. [22] addressed the 
problem of predicting temporal link prediction. This model integrates 
the information of graph proximity, global network structure, and 
node content. The prediction approach called SLiPT (self-training 
based link prediction using a temporal network) shows better 
prediction accuracy and was proposed by Zeng et al. [23]. Berton 
et al. [24] dealt with graph construction in supervised and semi-
supervised classification.

To improve performance, Kipf et al. [25] proposed VGAE 
(Variational Graph Auto-Encoder). This approach uses latent variables 
and gives better results in predicting links in citation networks. 
Another approach by Yang et al. [26] defines a new proximity matrix 
and formulates BANE (Binarized Attributed Network Embedding). In 
contrast to these methods, Tran et al. [27] focused on a simple but 
effective architecture. This architecture, named MTGAE (Multi-Task 
Graph Auto-Encoder), works for unsupervised link prediction and 
semi-supervised node classification. In the same year, Hisano et al. 
[28] worked on performance improvement using a simple discrete-
time graph embedding approach for link prediction for both temporal 
cross-sectional network structures. Pan et al. [29] defines (ARGE and 
ARVGE) adversarial graph embedding framework and demonstrates 
the efficiency of the algorithm through experiments.

To reduce the information loss, Di et al. [30] recently presented 
an approach to expand the normal neighborhood when aggregating 
GNNs. This approach is suitable for graph link prediction, 
supervised and semi-supervised graph classification, and graph edge 
classification. Recently, Zhang et al. [31] have advanced research 
in link prediction using the SegNMF method. This method claims 
to provide better accuracy in temporal link prediction than the 
previously developed method.

All the state of art methods discussed above take into account the 
spatial embeddings of the node into account where the nodes are 
selected randomly for training the model. Further, the test data taken 
for predicting the accuracy of the model for link prediction task is very 
small (5 - 10%). Further few recent state of art models proposed for link 
prediction task in [27], [32], [33] are designed for solving problems of 
specific domain only. The complexity of these models tend to increase 
with the increase in the size of the network. So, the models do not 
guarantee to generalize well for networks of different nature, size 
and domain. Thus, the applicability of GNNs for this task on various 
problems in different domains can still be improved and extended. In 
summary, following gaps are identified and these gaps motivate us to 
propose the solution:

• There are no/limited approaches for predicting links between 
nodes in a graph with limited information available for training 
the network [34], [35].

• There is no centrality-based approach that can improve the 
prediction capability of GCN model to identify connections 
between nodes.

• There is a need for a generalized model which is dependent upon 
the structural aspects of the underlying network and independent 
of the application [27], [32],[33].

III. Bet-GCN Approach to Link Prediction

This section discusses how edge betweenness centrality measure in 
combination with Graph Convolutional Network (GCN) enhances the 
task of predicting links between unconnected nodes of the network. 

The content of this section has been divided into the following 
subsections:

• Basics of edge betweenness centrality.

• Link prediction as a binary classification problem.

• Justification of edge betweenness based training set selection.

A. Basics of Edge Betweenness Centrality
The concept of network was proposed by Roethlisberger et al. 

[36]. This concept defines the importance of a node based on various 
attributes such as the degree of a node, closeness with the nodes in its 
neighborhood, the number of nodes for which it is central, etc., i.e., 
it identifies the potential of the underlying node in terms of guiding 
and channeling the flow of information in the network. Based on 
this, there can be several centrality measures, e.g., degree centrality, 
closeness centrality, PageRank and hits centrality and betweenness 
centrality, etc. In the paper by Saxena and Jadeja [37], all these 
centrality measures are discussed in detail. Moreover, we investigate 
the suitability of the centrality measures to find out important nodes 
depending on the problem or task. In this section, we restrict ourselves 
to the betweenness centrality measure. The interconnectedness 
centrality measure is a centrality measure based on the shortest path. 
Thus, the importance of a node is recognized based on the maximum 
number of shortest paths in which it participates. This path-based 
measure, proposed by Freeman et al. [38] has two conjectures: i) node 
betweenness ii) edge betweenness. However, one is the implication of the 
other. The notion of edge betweenness centrality suggests that an edge 
is involved in the maximum number of shortest paths. Looking at the 
Fig. 3, the edge AB has the highest betweenness centrality compared 
to other edges in the network. This is because the edge AB is part of 
most shortest paths between any pair of vertices of the given graph. 
Consider two sets: set X = {A, F, G, H} and set Y = {B, C, E}. All shortest 
paths from any vertex of set X to any vertex of set Y use edge AB.

B

C E

A

F

G
H

Edge with high
betweenness

centrality

Fig. 3. Graphical network with edge AB as high betweenness centrality edge.

Formally, to identify the betweenness centrality of node x, we have:

 (11)

Here σyz is the total number of shortest paths leading from y to 
z, and σyz(x) refers to the number of these paths that pass through 
x. Thus, the more shortest paths emanating from node x, the more 
central node x is. Edges that have one of these nodes as an endpoint 
have high edge betweenness centrality. Edges with high betweenness 
centrality are especially important in a large network. Endpoint nodes 
of an edge with high betweenness centrality are more reachable in 
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the network with shorter path lengths. Thus, this property allows 
us to take advantage to increase node coverage. We use this concept 
to improve the performance of the GCN. An in-depth analysis and 
execution of this concept is presented in Section IV of the paper. In the 
following subsection, we discuss the approach to link prediction in a 
given network as a binary classification problem.

B. Link Prediction as a Binary Classification Problem
The task of link prediction is to determine whether or not a pair 

of nodes will have a link between them in the future. Consider 
a graph G(V, E) at a given time t with V as a set of nodes and E 
as a set of edges, as shown in Fig. 4a. The graph shows various 
possible links between pairs of nodes that can occur at time t + δt 
(represented by dotted lines). At time t + δt, as shown in Fig. 4b, 
some expected connections appear (shown by bold edges in the 
graph), while some of them do not. Graph Convolution Networks 
(GCN) captures the properties of the nodes in addition to the 
topological and structural information of the network. This helps in 
finding close correlations and probable neighbors of a node based 
on their behavioral similarities in the network. However, to do this, 
we must first model the problem in a structure of < feature, target > 
pairs to apply a graph-based machine learning model.

(a) Graphical network at time t

(b) Graphical network at time t + δt

A

B

C

D

F

E

A

B

C

D

F

E

Fig. 4. Evolution of Graph G from time t to time t + δt.

Each node has a feature set (vector) associated with it. It consists 
of a collection of information about the node, its properties, etc., that 
define and identify that node in the network. An edge has two nodes 
as its endpoint, so the final feature set in this case is a combination of 
the feature vectors of the two nodes that form the edge. If we consider 
the edge as (u, v), where u and v are the nodes under consideration, 
the final feature vector is as follows:

feature vector = feature vector(u) ⋃ feature vector(v)
Further, depending upon whether the two nodes u and v are 

connected or not, target (label) can be defined as:

target = 1 , if (u, v) is connected

           = 0 , otherwise

Thus, by separating the connected and disconnected nodes with the 
labels 1 and 0, respectively, we can create a pair (see Table I). It is now 
possible to process the data with a machine learning model to make 
predictions. For the given graph G, we can select a pool of edges for 
training the GCN model. Here, each edge is accompanied by its label. 
Also, the GCN model uses the node feature information to train the 

model. The edges of the test dataset can be randomly selected to test 
the accuracy of the model for the binary classification problem, i.e., 
predict 1 for each connected pair and 0 for each unconnected pair.

TABLE I. Graph Edges With Labels

Connected Edge Label Unconnected Edge Label
A-B 1 B-C 0
A-C 1 C-E 0
B-D 1 C-D 0
B-F 1 D-F 0
E-F 1 E-D 0

For real networks, the model is created by randomly hiding some 
edges from the network. The remaining network is then used to train 
the GCN. The hidden edges are then used to test the adequacy of the 
model. This simulative technique is as good as analyzing the temporal 
transition of the graph because: i) we do not have timestamp snapshots 
of the real networks at persistent intervals and ii) the network 
changes its structure gradually. Thus, the network is not significantly 
perturbed. For these two reasons, we consider only a single real graph 
as input. In the following subsection, we discuss and analyze how 
edge betweenness centrality based training set selection improves the 
efficiency of the GCN model for link prediction.

C. Justification of Edge Betweenness Centrality Based Training 
Set Selection

So far, we have discussed the edge betweenness centrality measure 
and the strategy for solving the link prediction. In this subsection, we 
will analyze the basis of our proposal:

Training set selection based on edge betweenness centrality 
improves GCN training efficiency. For this purpose, let us consider 
a graph G(V, E) for which holds:

V: Set of vertices or nodes defined as {v1, v2, ..., vn} ∈ V
E: Set of edges or links defined as {e1, e2, ..., ek} ∈ E such that n, k > 1
Let X be the feature matrix defined as:

 (12)

In general, we have n > m (size of training data (number of nodes) 
> length of a feature vector) to avoid the condition of overfitting 
during the training process.

Now a set of edges is chosen from the set E to generate a test set 
t1 containing t1. The t1 is a subset of E containing all connected pairs 
of nodes. For all these edges (or node pairs), the class label set l1 is 
defined as 1. Now, a few random unconnected node pairs are selected 
from the set Complement(E) or  to generate another test set t2. The 
corresponding label set for the node pairs of the set t2 is defined as l2 
with label value 0. Combining the test sets t1 and t2, the final test set t 
can be defined as:

 (13)

Corresponding to it, the label set L for this test set t can be defined as:

 (14)

Deleting edges from the graph G creates a graph G', where the 
edge set of G' is defined as E' = E − t. From this residual graph, the 
training set is constructed in the same way as the test set. Based on 
this training set, the predicted set of labels for the edges selected from 
the test set t is obtained as L'. Thus, the objective of the problem can 
be formulated as follows:

(1) To obtain predicted label set L', we use the GCN model for the 
edges in test set t, which approximates the label set L i. e., Min.
(L' - L) ∀ edges in t.
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(2) With respect to identification of such a subset, the following 
observations are made:

• The subset of edges (or node pairs) selected based on the 
betweenness centrality measure improves the training 
efficiency of the model.

• The probability of random selection of such an edge set to 
produce a predicted label set L' is nearly zero.

(3) Let us try to infer the validity of the first statement.

• E'' contains subset of edges chosen randomly. Let this subset 
be named as E1.

• E'' contains top d edges based on the betweenness centrality 
score. Let this subset be named as E2.

Further, it is assumed that Cardinality(E1) and Cardinality(E2) are 
the same. Let us consider the first edge from each subset. Let a be the 
edge chosen from E1 and b be the edge chosen E2. Let σb represent 
the edge betweenness centrality of node b and σa refer to the edge 
betweenness centrality of node a. Thus, it is obvious that:

 (15)

Further, we also assumed that the edge sets E1 and E2 are disjoint, 
i.e., no edges are common to the two sets. Then, extending the above 
expression for 1 ≤ i ≤ l:

 (16)

Equation (16) holds for a fixed path length p, for the paths covered 
by the edges in E1 and E2. As can be seen from the description of GCN 
in Section II, it is well known that the neighborhood contribution 
beyond path length 2 or 3 is not beneficial because of the vanishing 
gradient problem over the graph Laplacian. So the value of p is ∈ {1, 2}.  
As per Section III, edges with high betweenness centrality allow for 
greater network coverage with shorter path length. This means that 
the node coverage (number of reachable nodes) from the nodes of the 
set E2 (say ϕ) will be larger than the number of reachable nodes from 
the nodes of the set E1 (say α), i.e.,:

 (17)

For a GCN model, training efficiency (η) depends on feature 
availability (f.a.), i.e., the more features available to the model for 
learning, the better the training of the model. Feature availability 
increases when the number of nodes reachable from a fixed set of 
nodes is high, since each node is associated with a feature vector X. 
Thus, feature availability again depends on node coverage or node 
reachability (κ). Based on all these discussions, a relationship can be 
established that looks like the following:

 (18)

Considering equations (17) and (18) synchronously, the set E2 
will cover more neighborhood nodes, which means greater feature 
availability since each node is associated with a feature vector X. This 
increases the training efficiency of the model compared to selecting 
the training set based on E2. To test this observation empirically, 
let us consider a small example according to Fig. 5. Consider  
E1 = {(A, F), (B, C)} as the edge set selected for training. For a fixed 
path length 2, the node coverage of the set is E1:

 (19)

Now consider another edge set E2 = {(A, B), (E, D)} where the two 
edges with high betweenness centrality value are selected for training. 
For the same path length 2, t,he node coverage is the same for this 
training set:

 (20)

Since E2 has a larger number of nodes in its neighborhood, the 
availability of features will also be larger. And finally, it can be 
confirmed that the training efficiency of the model improves. Thus, 
it has been successfully analyzed that the selection of the training set 
based on the edge betweenness centrality improves the learning of the 
GCN-based training model for link prediction. On this basis, we can say 
that a mapping L' can be obtained which is approximately equal to L.

In the proposed method, the training is edge based, not node based. 
Hence, the criteria of edge set selection based on the betweenness 
centrality of edges makes sense. On the other hand, edge selection 
based on nodes having high degrees is not feasible. The reason for this 
is a high degree node has many edges associated with it. Each edge 
associated with the node will have equal weightage. Hence, all the edges 
incident on the high degree vertex will be selected for training. In such 
a situation, the model may miss out a significant portion of the network 
required for training since only edges which are incident to the high 
degree vertices will be selected. Clearly, this selection fails to capture 
the crucial structural properties of the of the network. Also, this degree-
based selection will not allow the training set to capture diverse feature 
vectors which is essential for efficient training of the model.

On the other hand, consider the betweenness centrality-based 
approach for edge selection as discussed in subsection B of section 
III. This high betweenness edge centrality based selection will lead 
to generation of computation graphs with more number of nodes (in 
average) during training. Since, feature set aggregation is directly 
proportional to number of nodes in the underlying computational 
graph, a better training of the GCN model is guaranteed using 
proposed approach. This in turn enhances the prediction capability 
of the model.

Next, we need to ensure that the probability of randomly selecting 
the edge set E2 is close to zero. Let us consider the total number of 
edges in the network as k, such that k > 1. The number of ways to 
choose a subset of length w (subset of w edges) is given as kCw. Our 
goal is to find the probability of choosing the subset E2 from these kCw 
subsets. Thus, let us consider an event Q as: choosing the subset E2 of 
the set E, where E is the set of all edges of the graph such that |E| = k. 
The probability of this event will be:

 (21)

Let us assume that 45% of the edges are used for training. Thus, we 
have w = (9/20)k. Putting this value of w into the equation (21), we get,

 (22)

In general, the number of edges for real network graphs is on 
the order of more than 104. Plugging the value of k as 104 into the 
expression, we get,

 (23)

Node coverage when selected edge
set for training is {(A, F), (B, C)}

Node coverage when selected edge
set for training is {(A, B), (E, D)}
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Fig. 5. Node coverage of graph G(V,E) based on training edge selection.
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Finally, we can also successfully show that the probability of 
randomly choosing the edge set E2 is close to zero. Thus, the section 
successfully verifies the two arguments: i) selecting the training set 
based on edge centrality improves the performance of the model. ii) the 
probability of randomly selecting an ordered set based on the centrality 
score is close to zero. In the next section, we detail the proposed method 
and its design along with the description of the dataset.

IV. Dataset and Model Description

In this section we discuss mainly about the datasets, the proposed 
model formulation, and aspects related to its implementation.

A. Dataset Description
To assess the performance of the proposed model, three famous 

state of the art datasets have been chosen: CORA, Citeseer and PubMed. 
The datasets have been summarized in Table II.

TABLE II. Dataset Description

Dataset Nodes Edges Classes Features Type

Cora [25] 2,708 5,429 7 1,433
Citation
Network

Citeseer [25] 3,312 4,732 6 3,703
Citation
Network

PubMed [25] 19,717 44,338 3 500
Citation
Network

Amazon [39] 13,752 491,722 10 767
Amazon
Product
Network

WikiCS [40] 11,701 216,123 10 300
Wikipedia
Network

The first three datasets considered are essentially citation networks 
where node stands for papers and edge stands for the citation links. 
The CORA citation network consists of 2708 scientific publications 
classified into one of the following seven classes: neural networks, 
rule learning, reinforcement learning, probabilistic methods, theory, 
genetic algorithms, and case-based. For each node, there is a feature 
word vector of length 1433. Thus, the size of the feature matrix is 
2708 × 1433. The Citeseer dataset consists of 3312 scientific papers 
classified into six classes: Agents, AI, DB, IR, ML, and HCI. The feature 
matrix has order 3312 × 3703. The PubMed citation network consists 
of 19,717 scientific publications with the following classification 
classes: 1, 2, 3 i.e., diabetes type-1, 2 and 3. The feature vector for 
each node consists of a TF/IDF vector with 500 unique words. The 
accuracy of the proposed model with GCN-based training was 
tested using these three benchmark datasets. The consistency of the 
results obtained with these networks highlights the effectiveness 
of the proposed solution. To prove the applicability of the proposed 
solution to other types of networks, two other graphical networks are 
considered. Amazon Computer [39] is a segment of the Amazon co-
purchase graph, which is a network collected by crawling the Amazon 
website and contains product metadata and rating information about 
various products. The nodes in the graph represent items, while the 
edges indicate that two or more goods are usually purchased together. 
The goal is to assign items to the appropriate product categories by 
using product ratings as node attributes. WikiCS [40] is a novel dataset 
derived from Wikipedia to benchmark Graph Neural Networks. The 
dataset contains 11701 nodes corresponding to computer science 
articles, with edges based on hyperlinks, and 10 classes representing 
different branches of the field.

It is common for real-life applications with graphs to have limited 
training data because labels will often be sparse, despite having vast 
quantities of data. This is true for all the datasets considered in this 

manuscript. Hence, they are limited training datasets. In the context 
of link prediction, labels are edge labels (0 for not edge and 1 for an 
edge). And for training, a very small fraction of labels are known. For 
example, for Cora, labels of only 5429 edges are known (label 1) out 
of 3665278 possible edges. Labels of the remaining 3659849 edges are 
unknown. Hence, the Cora dataset is a limited training dataset. The 
same is true for other datasets too as shown in Table III.

TABLE III. Dataset With Actual V/s Possible Eddges in the Graphical 
Networks

Dataset Nodes Total possible 
edges

Total edges in 
actual graph

Cora 2708 3665278 5429

Citeseer 3312 5483016 4732

PubMed 19717 194370186 44338

Amazon 13752 94551876 491722

WikiCS 11701 68450850 216123

Following this, the next subsection explains the implementation 
design and operation of the proposed model.

B. Proposed Framework and Experimental Setup
To construct a Graph Convolution Network based training model 

architecture, Stellar Graph library [41] was used. In addition, the graph 
library NetworkX [42] is used to capture the structural information of 
the network. The input data set for the GCN model consists of an edge 
list and a feature matrix along with labels.

The relationship that exists between the data points (nodes) of the 
graph is represented by the links between them, defined by the edge 
list. To prepare the test dataset, an Edge Splitter () function from the 
Stellar Graph library was used. This function randomly takes some 
pairs of nodes from the original graph G. For each connected pair, the 
associated label is 1. Also, some unrelated pairs are randomly selected 
and these pairs are assigned the label 0. Thus, we obtain the final test 
set tuple t for which the label set L is defined with labels 0 and 1 for 
each unconnected and connected pair of nodes, respectively.

Let us now consider the training dataset. After removing the edges 
in the test set t from the graph G, the training dataset is selected 
from the residual graph G'. The training dataset contains the top k 
edges with high values of betweenness centrality computed using 
the NetworkX graph library (nx.edge_betweenness_centrality()). This 
part of the training dataset is denoted as tr1 with the corresponding 
label set as trl1 with all label values as 1. Furthermore, few edges are 
sampled using the edgesplitter() function to include some unconnected 
pairs. Let this part of the training dataset as tr2 with the label set trl2. 
Thus we have the final training dataset defined as:

 (24)

with training label set defined as:

 (25)

Fig. 6 explains the steps to generate a training dataset (55%) and a 
test dataset (upto 45%). The input graph dataset consists of edge list 
information along with node feature vectors. Note that each node 
has a feature vector associated with it. To create the test dataset, edge 
splitter function randomly pools the edges, marked as label ‘1’, and 
an equal number of node pairs amongst which no direct edge exists, 
marked as label ‘0’. A similar procedure is adopted by the function to 
create the train dataset. However, in addition to the edges selected, top 
‘k’ betweenness centrality metric-based edges are also appended in 
the training dataset. Finally, the train and test datasets are supplied to 
the GCN model. Since the connectivity of the graph must be ensured, 
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it is not possible to extract a very high percentage of edges from the 
graph for the creation of the test dataset. Therefore, the test dataset 
here is a combination of validation test dataset.

Graph
Convolutional 

Neural Network
(GCN)

Train Data Set with edge
labels (0 or 1)

Test Data Set with edge
labels (0 or 1)

+

+

Centrality Dataset
ranked based on

betweenness score

Edge betweenness
centrality()

Edge List 
of the network

Feature Matrix (n x m)
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Label
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Label

...........

Edge Spli�er()

Fig. 6. Proposed Framework: Feeding train and test set to GCN.

Using the node feature matrix defined for each node for the nodes 
involved according to the training set selection, the model is fed with 
the input. The function FullBatchnode Generator() defines the neural 
network (NN) for the graphical network. The defined neural network 
has three layers: the input layer, the hidden layer, and the output layer. 
The number of hidden layers is best determined from the experimental 
simulations. However, in the case of GCNs, the number of hidden 
layers corresponds to the diameter of the graph. This refers to the 
number of neighbors that are a path length k away from the node 
under consideration. The value of k is generally kept very low because 
the vanishing gradient problem affects the performance of the model. 
Other hyperparameters of the model such as kernelsize, learningrate, 
epochs, activationfunction, etc. are chosen to minimize the error. The 
hidden layers have a Rectified Linear Unit (ReLU) activation function 
with a hidden layer size on the order of 4, 096 × 4, 096. However, the 
size of the kernel varies depending on the size of the network. Other 
parameters of the network such as learning rate is set to 0.0001 with 
Adam Optimizer and Cross Entropy as loss functions. The output layer 
of the model uses a Softmax function to predict the presence of an edge 
between a pair of edges over the test dataset. Fig. 7 explains the GCN-
based training and classification process.
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Fig. 7. GCN Based Training of the model.

Fig. 8 sums up the entire process in a block diagram. The algorithmic 
steps in training of Bet-GCN model are as shown in algorithm Bet-
GCN. The input to the model is an input graph dataset G(V, E) where 
V represents set of vertices and E represent set of edges. Each node in 
the graph has feature vector associated with it. Let A be the adjacency 
matrix for the graph and X be the feature matrix (as mentioned in 

equation 12). The algorithm will yield a trained model m which 
can predict whether an edge exists (edge label 0) or not (edge label 
1) between two given pair of nodes (binary classification problem). 
In step 1, edge splitter function randomly pools a set of edges from 
graph G to prepare training dataset (say Tr). The training set consist 
of edges which exist in the graph labelled as 1 and edges which do not 
exist in the graph labelled as 0. In step 2, from the remaining graph 
(say G'), edge splitter function constructs the test dataset (say Te) in a 
similar manner. Step 3 and Step 4 identifies the top k edges in order 
of edge betweenness centrality. The top k edges identified in step 4 are 
added in step 5 to Tr to generate the final training dataset. In step 
6, the GCN model is fed with Tr, G and the model hyperparameters 
like learning rate, layer size, ReLu activation function. The input layer 
is fed with an aggregation function defined as A.X. The hidden layer 
further performs feature aggregation using a layer size 4, 096 × 4, 096 
at a learning rate 0.0001. The ReLu activation function is applied to 
obtain the convoluted vector (neighborhood aggregation) matrix at 
each layer. At each layer gradients are determined and based upon the 
error function gradients, using backpropagation algorithm weights are 
adjusted. This whole process iterates till the error gradient functions 
at each layer evaluates out to be zero. In this condition, we obtained a 
finalized weight vector matrix at output layer and the trained model m. 
Finally, in step 7, the trained model is tested over Te using SoftMax() 
classification function to generate the classification report.
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of graph
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Hidden layers
(Feature aggregation) Edges
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with edge
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edge set

Train
edge set

Input feature
vectors per node

Fig. 8. Pictorial block diagram for Bet-GCN model.

V. Results and Analysis

This section mainly focuses on the experimental results and 
performance of the proposed Bet-GCN model. It highlights the 
significant results of the model in three benchmark datasets, namely 
Cora, Citeseer and PubMed, and the comparative analysis with the 
respective state-of-the-art methods. The results of our proposed model 
Bet-GCN (Edge betweenness centrality with Graph convolutional 
networks) are summarized in Table IV. The performance of the model 
improves considering that the model performs well on a large test data 
set. All of the state-of-the-art methods discussed work over 5  10% test 
data. The Bet-GCN based results are analyzed over upto 45% test data 
with at least 30% unseen node pairs in the test dataset.

TABLE IV. Citation Networks Accuracy

Method Cora Citeseer PubMed Test 
Dataset

VGAE [25] 0.920 0.914 0.965 -
MTGAE [27] 0.946 0.949 0.944 5-10%

GLP [32] 0.9455 0.8612 - 5-55%
GCN [33] 0.9050 0.8701 0.9694 - 
GAT [33] 0.8979 0.8731 0.9436 - 

EdgeConv [33] 0.8528 0.8294 0.8665 - 
EdgeConvNorm [33] 0.9178 0.8754 0.8991 - 
Bet-GCN(proposed) 0.9508 0.9507 0.953 upto 45%
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As summarized in Table IV, most models consider methods 
such as random walks (where only local node similarity is used) 
or maximum likelihood estimation methods for link prediction. It 
can be observed that none of these methods materialise the node 
features, the structure of the underlying network, or the importance 
of the edges completely. In comparison, GCN, which considers 
the structure of the dataset as a graph, significantly improves link 
prediction performance. Traditional Graph Convolutional Networks 
(GCN) directly convolve the structure of the connected graph as a 
filter to perform neighbourhood mixing. Graph Attention Networks 
(GAT), on the other hand, apply a shared linear transformation to 
each node, followed by a computation of attention coefficients using 
a joint attention mechanism. The performance of link prediction with 
these two models is impressive and promising. A more recent state 
of the art, the Variational Graph Auto-Encoder (VGAE), uses a graph 
convolutional network as an encoder that maps the node features 
into a latent representation, followed by a decoder that generates 
conditional probabilities of the adjacency matrix [25]. While Multi-
Task Graph Autoencoders (MTGAE [27]) learns a joint representation 
of latent embeddings from a local graph and explicit node features. 
These two methods are significantly better than the traditional GCN 
model due to the inclusion of autoencoders. In addition, GLP [32], a 
gravitational link based unsupervised approach is used. Here, the main 
idea is to decompose the graph into a local structure (by extracting 
subgroups) and a global structure (by detecting communities). The 
method showed promising results on large complex networks, but 
is highly dependent on the network structure. Two recent link 
prediction methods based on Graph Convolution Learning were 
also proposed: EdgeConv and EdgeConvNorm [33]. The methods 
performed well on the three networks, as the over-smoothing of Edge 
Convnorm helps to better learn link prediction based on the node and 
its neighborhood representation.

Our proposed model (Bet-GCN) is a modification of the traditional 
GCN model, as it uses edges based on their betweenness centrality 
in the graph along with node features. Our proposed prediction 
model achieves an accuracy of 95.08% in Cora, 95.07% in Citeseer, 
and 95.32%in PubMed. These results are competitive with the current 
state-of-the-art models, which can be observed in Table IV.

The model extrapolates the structure of the underlying graph 
for sampling positive edges when training the model for prediction. 
BET-GCN architectural hyperparameters were fine-tuned for the 
Cora, Citeseer, and PubMed networks. A 0.70 and 0.35 fraction of 
the original network is randomly sampled for positive and negative 
edges as training and test edges, respectively. The positively sampled 
training edges are replaced with the edges sorted based on the edge 
betweenness centrality score. A two-layer GCN model is used, where 
4, 096 is the dimension of the node features in each hidden layer. 
The Rectified Linear Unit (ReLU) activation function is used. For the 
final link classification, a pair of node embeddings from the GCN 
model is used and the binary operator inner product (ip) is applied. 
This produces the corresponding link embedding, which is passed 
through a dense layer. A learning rate of 0.0001 for Adam Optimizer 
is used to train the model. Our model is trained with 500 epochs. 
These hyperparameter settings are the same for Cora and Citeseer 
citation networks. The PubMed dataset consists of 10x more edges and 
therefore has different hyperparameter values. The training accuracy 
and loss curves of the model for the three datasets are shown in Fig. 9, 
Fig. 10, and Fig. 11, respectively. Based on the obtained results, it can 
be confirmed that the proposed method performs best for the three 
collaboration networks.

Area Under the Curve (AUC) curves of the model obtained for the 
three datasets are shown in Fig. 12, Fig. 13 and Fig. 16. The AUC curves 
show the ability of the classifier to distinguish correctly between 
positive and negative classes. The high AUC value for all three datasets 
CORA (94.02%), Citeseer (94.24%), and PubMed (97.96%) indicates the 
consistency of the model in terms of performance.

The hyperparameters’ settings depend upon the size and structure 
of the network for training GCN models. The basic parameter settings’ 
have been considered based upon Thomas N Kipf and Max Welling 
[1] paper. The parameters that are varied are layer size, learning rate 
and iterations due to varied network structures and sizes. In general, 
ReLu activation function has been used for 4, 096 × 4, 096 layer size 
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Fig. 9. CORA: Training and Loss curve.

Algorithm 1. Bet-GCN

Require: An input graph dataset G(V, E) where V represents set of 
vertices and E represent set of edges

Output: The trained model, m
Step 1. Tr ← edgesplitter(G)
▷ Generating training set Tr by random selection of edges from 
graph G
Step 2. Te ← edgesplitter(G)
▷ Generating test set Te by random selection of edges from graph G
Step 3. e ← edge_betweenness_centrality(G)
▷ Evaluating edge betweenness centrality of edges of graph G
Step 4. e' ← sorted(e[1:k])
▷ Selecting top k edges based on edge betweenness centrality of 
edges of graph G
Step 5. Tr ← Tr ∪ e'
▷ Adding edges form step 4 to Tr
Step 6. m ← GCN(G, Tr, learningrate, layersize, ReLu)
▷ Obtaining the trained GCN model m
Step 6. classication_report ← SoftMax(m, Te)
▷ Testing the model over test set and generating classification report
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Fig. 11. PubMed: Training and Loss curve.

1.0

0.9

0.8

0.7

0.6

0.4

0 100 200 400300 500

0 100 200 400300 500

0.6

0.8

1.0

1.2

1.4

1.6

train

ac
c

lo
ss

epoch

validation

Fig. 13. AUC Curve for Citeseer network with accuracy (94.24%).
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of hidden layer which yield the best results. The number of iterations 
is identified based upon the training accuracy curve trajectory and, 
hence, the number of iterations is different for each network. The 
iterations’ convergence happens when the training accuracy starts to 
dip for several continuous iterations. So, further increasing the number 
of iterations will not yield good results and may tend the model to 
overfit. Similarly, the best results are obtained for a learning rate of 
0.0001 for the three benchmark datasets into consideration (CORA, 
Citeseer and PubMed). Fig. 14 shows that further reducing the learning 
rate causes a drop in the performance efficiency of the model for CORA 
dataset. Fig. 15 presents the trend analysis of the performance of the 
model with number of epochs. At 500 epochs, keeping the learning rate 
fixed at 0.0001 and hidden layer size of 4096  4096, the performance 
attained by the model is optimum. Further increasing the number of 
epochs for model training is not helping the cause and the performance 
tends to deteriorate as the model starts overfiting. A similar analogy can 
be drawn for the size of hidden layer. Further, a similar kind of analysis 
can also be obtained for the two other kind of networks (Citeseer and 
PubMed). Thus, it can be inferred that learning rate of 0.0001 and 
hidden layer size of 4, 096 × 4, 096 is suitable for networks of different 
variety and structural formation in order to have an efficient training 
through Bet-GCN model. Number of epochs to attain the optimum 
accuracy may differ depending on the size of the network. However, 
all of these parameter settings are network dependent and vary slightly 
depending on the nature of the task.
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Epochs v/s Bet-GCN model’s accuracy

A
cc

ur
ac

y 
(%

)

Epochs

86

87

88

89

89.24

95.08 94.9

93.2 93.05

91.7

94

100 500 1500 3000 50001000 2000

90

91

92

93

94

95

96

Fig. 15. CORA: Epochs v/s Bet-GCN accuracy curve.

VGAE and GAE [25] uses a Gaussian prior distribution over the 
input features to learn embeddings. However, this has not proven to 
be a very good choice. MTGAE [27] gives impressive results for link 
prediction, but the accuracy of the method decreases when a larger 
number of edges are removed from the graph. This is because only the 
contribution of the available edges is considered. GLP [32] involves a 
lot of preprocessing, such as community identification, followed by 
extraction of optimized subgraphs. The link prediction task is then 
performed over these distributed subgraphs. The method is not suitable 
for networks with large diameters. The other link prediction strategies 
mentioned in the work of Gu et al. [33] are GCN-based methods where 
the selection of the training set is random. Our proposed method Bet-

GCN is also a variation of GCN technique where the training set is 
selected based upon the betweenness centrality score. This helps in 
capturing more neighborhood contribution for the model’s training. As 
a result, there is more neighborhood aggregation in the computational 
graphs. This will help the model to leverage the feature-based learning 
and generate more accurate embeddings. Traditional GCN approaches 
use random selection and, hence, they are not able to capture features 
which are betweenness centrality based. It is due to this reason that the 
method performs well in comparison to the other state of art methods.

In addition, the Bet-GCN model was also tested on two different 
types of networks (since all three networks mentioned above were 
citation networks): Amazon Product [39] and WikiCS [40]. The 
Amazon Product network was collected by crawling the Amazon 
website and contains product metadata and review information for 
548552 different products (Books, music CDs, DVDs, and VHS video 
tapes). WikiCS [40] is a web graph of Wikipedia hyperlinks collected 
in September 2011. Bet-GCN link prediction model for both datasets 
perform equally well as for the citation networks. Table V lists the 
accuracy and respective F1-score values for the network.

TABLE V. Accuracy and F1-score Values for Amazon Product and 
WikiCS Networks

Network Accuracy F1-Score Test Dataset
Amazon Product 0.879 0.8801 upto 45%

WikiCS 0.9113 0.90 upto 45%

Fig. 17 and Fig. 18 show the training accuracy curves for both 
networks using the Bet-GCN model. The results for the network 
indicate that the approach is scalable with network size and applicable 
to graphical networks of different domains. The results for these two 
networks were evaluated with the same parameter settings used for 
CORA, Citeseer, and PubMed, except for the layer size. Fig. 19 refers to 
the confusion matrix for all the five graphical networks, which shows 
the prediction capability of the proposed model Bet-GCN. Given the 
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Fig. 16. AUC Curve for PubMed network with accuracy (97.96%).
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large number of edges in the networks, the convolutional layer size 
used for the hidden layer is 512 × 512. As one increase the number 
of layers, the number of parameters that can be trained also increases, 
and so does the execution time. This may improve the performance of 
the model by a small percentage, but the tradeoff is very high.

The Betweenness centrality range for the networks in consideration 
is shown in Table VI. The betweenness centrality measure denotes that 
how often a particular edge (say ‘x’) gets visited among the total paths 
in the network across any two nodes. This value, thus, will be in the 
range 0 to 1. Also, availability of such paths passing through edge ‘x’ 
in comparison to the total number of paths between any two nodes in 
the network will be very low. Hence, the betweenness centrality value 
evaluated for each edge as per explanation in subsection B of section 
3, this value will be a very small number. However, the values can be 
normalized to any range/interval, but it will not affect the result as the 

magnitude of the betweenness centrality value increases for each edge 
by same factor.

TABLE VI. Citation Networks Accuracy

Network Minimum Maximum
CORA 0 0.0359

Citeseer 0 0.0462
PubMed 0 0.0134
Amazon 0 0.0055
WikiCS 0 0.0165

Bet-GCN performance over Facebook-Pages-Food Dataset: 
To further demonstrate the generalizability of Bet-GCN model in 
the perspective of social links of a social media platform, the model 
has been tested over Facebook-Pages-Food [43] network dataset. 
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0.9

0.8

0.7

0.6

0.5

1

0

2

0 100 200 400 500300

0 100 200 400 500300

3

4

5

6

7

8

train

ac
c

lo
ss

epoch

validation

Fig. 17. Training and Loss Accuracy Curves for Amazon Product Network.
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Most social media platforms, including Facebook, can be structured 
as graphs. The registered users are interconnected in a universe of 
networks. The objective of link prediction is to identify pairs of nodes 
that will either form a link or not in the future. Here, we worked on a 
graph dataset in which the nodes are Facebook pages of popular food 
joints and well-renowned chefs from across the globe and if any two 
pages (nodes) like each other, then there is an edge (link) between 
them. For calculating node embeddings we have applied node2vec [44] 
on the graph. Then, Bet-GCN model is trained on 2259 edges and tested 
for 2522 edges. On training for 1500 epochs we get f1-score of 0.9442, 
which is a major improvement when compared to f1-score of 0.7817 
for logistic regression in [43]. The model hyperparameter settings 
have been kept same as for the above models. The training and loss 
accuracy curves have been shown in Fig. 20 represents the training 
and loss accuracy curve for the same. This further demonstrates the 
prediction capability of Bet-GCN model with high accuracy on a 
different variety of real world graphical networks.

Reason of selection of GCN based methods over classical 
Machine learning and neural network techniques: The problem 
with social media data is the availability of the feature for every 
node in the graphical network. So, using correlational analysis and 
belief propagation techniques are not suitable as these techniques 
require features to be compared to calculate the similarity between 
the nodes and their behavior. In the absence of feature-based 
information, graphical structure information needs to be employed. 
The proposed high betweenness edge centrality based selection will 
lead to generation of computation graphs with more number of nodes 
(in average) during training. Since, feature set aggregation is directly 
proportional to number of nodes in the underlying computational 
graph, a better training of the GCN model is guaranteed using 
proposed approach. This in turn enhances the prediction capability of 
the model. In the state of the art literature there are many evidences 
where GCN based methods are outperforming traditional machine 
learning methods. Jiang et al. [45] have shown that the performance 

of GCN model to predict synergistic drug combinations in particular 
cancer cell lines in comparison to classical machine learning 
algorithms like Support Vector Machine, Radial Basis Function, Deep 
Neural Networks etc. is much better. Tayal et al. [46] have shown that 
the performance of GCN based techniques for text classification task 
is superior in comparison to other ML and DL techniques like TF-
IDF with Logistic regression, CNN, Char CNN etc. The performance 
improvement is of approximately 2% with reduced dataset for training. 
Cao et al. [47] have shown in their comprehensive review article that 
how GCNs surpassed the performance of various CNN models. From 
these discussions, we can conclude that GCNs have high prediction 
capability due to added power of network structural information. 
Moreover, they can work well with limited feature availability and 
information about many data points in the network.

Lastly, lets have a look on the computational complexity of the 
model. The time complexity for calculating betweenness centrality of 
edges in the network is given as O(|V|.|E|) [48], where, |E| are the 
number of edges and |V| are the number of nodes or vertices in the 
network. Further, the time complexity of GCN based training is given 
as O(L.|V|.|F2|) [49]. Here, ‘L’ represents the number of layers of the 
neural network, ‘V’ represents number of vertices and ‘F’ represent 
feature vector corresponding to each node of the graphical network. 
Then, overall complexity for the algorithm can be given as:

 (26)

For real world networks, |E| > > |V|, but |E| < |V|2. Therefore,

 (27)

Also, L<<|V| and is a constant value, so it can be omitted. Since, 
F<|V|, this means that F2<<V2. Therefore, from equations (26) and 
(27), we have,

 (28)

Hence, the overall time complexity of Bet-GCN model evaluates 
out to be of cubic order as a function of number of vertices. This 
means that solution is attainable in polynomial time. Moreover, the 
training process takes into consideration only 50 - 55% nodes into 
consideration. Given the advancements in computational power 
of modern day computers having GPU processors, the task can be 
accelerated significantly despite of cubic order time complexity of the 
process. Also, it is to be noted that even in case of traditional GCN the 
time complexity will be upper bounded by O(L.|V|.F2) ≈ O (|V|3). So, 
betweenness centrality based calculation do not hurt the overall time 
complexity of the task.

VI. Conclusions

The paper presents a variation of the traditional Graph 
Convolutional Network approach for the task of link prediction. 
An approach based on betweenness centrality was chosen for the 
selection of the edges to be trained. Thus, the top-k edges are selected 
to create the training set of edges that have a high value for edge 
centrality. This idea contributes to a significant improvement in model 
accuracy. The proposed model outperforms other state of the art based 
deep learning methods as the results are promising even with a high 
percentage of test dataset. The accuracy of the model was tested for up 
to 45% test dataset, while most state of the art models have reported 
accuracy over 5 - 10% test dataset. The reason for this improvement is 
the increased neighborhood span, which helps in generating rich node 
embeddings in GCN-based training for the model. The effectiveness 
of the results in the three datasets: CORA Citeseer and PubMed, was 
confirmed by the AUC curves. Moreover, the model has achieved 
impressive results on Amazon Product, WikiCS and Facebook Food 
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Web Page networks, which are very large and belong to a different 
category than the previous three, showing that the method is generic 
and can be applied to graphical networks of different domains. In 
summary, the key contributions of the manuscript are:

• Proposing an efficient GCN-based link prediction technique where 
the training set is selected based on edge betweenness centrality.

• Mathematical and experimental justifications of the improvement 
in GCN based training for link prediction.

• Detailed comparison of the results with the current state of the 
art methods for link prediction by performing experimental 
simulations over 6 different networks.

In future, the model can be tested with a larger number of complex 
network datasets to further verify the robustness of the proposed 
model. Moreover, the same model can be tested to determine the 
performance improvement on other tasks such as node classification, 
graph classification etc.

References

[1] M. Sun, J. Chen, Y. Tian, Y. Yan, “The impact of online reviews in the 
presence of customer returns,” International Journal of Production 
Economics, vol. 232, p. 107929, 2021, doi: 10.1016/j.ijpe.2020.107929.

[2] M. S. Ullal, C. Spulbar, I. T. Hawaldar, V. Popescu, R. Birau, “The impact 
of online reviews on e-commerce sales in india: A case study,” Economic 
Research- Ekonomska Istraživanja, vol. 34, no. 1, pp. 2408–2422, 2021, doi: 
10.1080/1331677X.2020.1865179.

[3] M. Caro-Martínez, G. Jiménez-Díaz, J. A. Recio- García, “Local model-
agnostic explanations for black- box recommender systems using 
interaction graphs and link prediction techniques,” International Journal 
of Interactive Multimedia and Artificial Intelligence, pp. 1–11, 2021, doi: 
10.9781/ijimai.2021.12.001.

[4] D. Medel, C. González-González, S. V. Aciar, “Social relations and 
methods in recommender systems: A systematic review,” International 
Journal of Interactive Multimedia and Artificial Intelligence, vol. 7, no. 4, 
pp. 7– 17, 2022, doi: 10.9781/ijimai.2021.12.004.

[5] N. N. Daud, S. H. Ab Hamid, M. Saadoon, F. Sahran, N. B. Anuar, 
“Applications of link prediction in social networks: A review,” Journal 
of Network and Computer Applications, vol. 166, p. 102716, 2020, doi: 
10.1016/j.jnca.2020.102716.

[6] S. Sledzieski, R. Singh, L. Cowen, B. Berger, “Sequence- based prediction 
of protein-protein interactions: a structure-aware interpretable deep 
learning model,” bioRxiv, 2021, doi: 10.1016/j.cels.2021.08.010.

[7] M. Lim, A. Abdullah, N. Jhanjhi, M. K. Khan, M. Supramaniam, “Link 
prediction in time-evolving criminal network with deep reinforcement 
learning technique,” IEEE Access, vol. 7, pp. 184797–184807, 2019, doi: 
10.1109/ACCESS.2019.2958873.

[8] H. Huang, J. Tang, L. Liu, J. Luo, X. Fu, “Triadic closure pattern analysis 
and prediction in social networks,” IEEE Transactions on Knowledge 
and Data Engineering, vol. 27, no. 12, pp. 3374–3389, 2015, doi: 10.1109/
TKDE.2015.2453956.

[9] M. S. Granovetter, “The strength of weak ties,” American journal of 
sociology, vol. 78, no. 6, pp. 1360– 1380, 1973.

[10] Y. Bi, W. Wu, L. Wang, “Community expansion in social network,” in 
International Conference on Database Systems for Advanced Applications, 
2013, pp. 41–55, Springer.

[11] E. Abbe, A. S. Bandeira, G. Hall, “Exact recovery in the stochastic block 
model,” IEEE Transactions on information theory, vol. 62, no. 1, pp. 471–
487, 2015, doi: 10.1109/TIT.2015.2490670.

[12] C. Matias, V. Miele, “Statistical clustering of temporal networks through 
a dynamic stochastic block model,” Journal of the Royal Statistical Society: 
Series B (Statistical Methodology), vol. 79, no. 4, pp. 1119–1141, 2017.

[13] A. K. Gupta, N. Sardana, “Significance of clustering coefficient over 
jaccard index,” in The International Conference on Contemporary 
Computing, 2015, pp. 463– 466, IEEE.

[14] D. Liben-Nowell, J. Kleinberg, “The link-prediction problem for social 
networks,” Journal of the American society for information science and 
technology, vol. 58, no. 7, pp. 1019–1031, 2007, doi: 10.1145/956863.956972.

[15] S. Cohen, B. Kimelfeld, G. Koutrika, “A survey on proximity measures for 
social networks,” in Search computing, 2012, pp. 191–206, Springer.

[16] S. Zhang, H. Tong, J. Xu, R. Maciejewski, “Graph convolutional networks: 
a comprehensive review,” Computational Social Networks, vol. 6, no. 1, pp. 
1–23, 2019, doi: 10.1186/s40649-019-0069-y.

[17] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, S. Y. Philip, “A comprehensive 
survey on graph neural networks,” IEEE transactions on neural networks 
and learning systems, vol. 32, no. 1, pp. 4–24, 2020, doi: 10.1109/
TNNLS.2020.2978386.

[18] T. Derr, Y. Ma, W. Fan, X. Liu, C. Aggarwal, J. Tang, “Epidemic graph 
convolutional network,” in Proceedings of the 13th International Conference 
on Web Search and Data Mining, 2020, pp. 160–168.

[19] H. Kashima, T. Kato, Y. Yamanishi, M. Sugiyama, K. Tsuda, “Link 
propagation: A fast semi-supervised learning algorithm for link 
prediction,” in Proceedings of the 2009 SIAM international conference on 
data mining, 2009, pp. 1100–1111, SIAM.

[20] R. Raymond, H. Kashima, “Fast and scalable algorithms for semi-
supervised link prediction on static and dynamic graphs,” in Joint 
european conference on machine learning and knowledge discovery in 
databases, 2010, pp. 131–147, Springer.

[21] A. K. Menon, C. Elkan, “Link prediction via matrix factorization,” in 
Joint european conference on machine learning and knowledge discovery in 
databases, 2011, pp. 437–452, Springer.

[22] S. Gao, L. Denoyer, P. Gallinari, “Temporal link prediction by integrating 
content and structure information,” in Proceedings of the 20th ACM 
international conference on Information and knowledge management, 2011, 
pp. 1169–1174.

[23] Z. Zeng, K.-J. Chen, S. Zhang, H. Zhang, “A link prediction approach using 
semi-supervised learning in dynamic networks,” in The International 
Conference on Advanced Computational Intelligence, 2013, pp. 276–280, 
IEEE.

[24] L. Berton, J. Valverde-Rebaza, A. de Andrade Lopes, “Link prediction in 
graph construction for supervised and semi-supervised learning,” in The 
International Joint Conference on Neural Networks, 2015, pp. 1–8, IEEE.

[25] T. N. Kipf, M. Welling, “Variational graph auto- encoders,” arXiv preprint 
arXiv:1611.07308, 2016.

[26] H. Yang, S. Pan, P. Zhang, L. Chen, D. Lian, C. Zhang, “Binarized 
attributed network embedding,” in IEEE International Conference on Data 
Mining, 2018, pp. 1476– 1481, IEEE.

[27] P. V. Tran, “Multi-task graph autoencoders,” arXiv preprint 
arXiv:1811.02798, 2018.

[28] R. Hisano, “Semi-supervised graph embedding approach to dynamic link 
prediction,” in International Workshop on Complex Networks, 2018, pp. 
109–121, Springer.

[29] S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, C. Zhang, “Adversarially 
regularized graph autoencoder for graph embedding,” arXiv preprint 
arXiv:1802.04407, 2018.

[30] X. Di, P. Yu, R. Bu, M. Sun, “Mutual information maximization in 
graph neural networks,” in The International Joint Conference on Neural 
Networks, 2020, pp. 1–7, IEEE.

[31] T. Zhang, K. Zhang, X. Li, L. Lv, Q. Sun, “Semi- supervised link prediction 
based on non-negative matrix factorization for temporal networks,” 
Chaos, Solitons & Fractals, vol. 145, p. 110769, 2021, doi: 10.1016/j.
chaos.2021.110769.

[32] E. Bastami, A. Mahabadi, E. Taghizadeh, “A gravitation-based link 
prediction approach in social networks,” Swarm and evolutionary 
computation, vol. 44, pp. 176–186, 2019, doi: 10.1016/j.swevo.2018.03.001.

[33] W. Gu, F. Gao, R. Li, J. Zhang, “Learning universal network representation 
via link prediction by graph convolutional neural network,” Journal 
of Social Computing, vol. 2, no. 1, pp. 43–51, 2021, doi: 10.23919/
JSC.2021.0001.

[34] M. Shabaz, U. Garg, “Predicting future diseases based on existing health 
status using link prediction,” World Journal of Engineering, 2021, doi: 
10.1108/WJE-10-2020- 0533.

[35] M. Wang, L. Qiu, X. Wang, “A survey on knowledge graph embeddings 
for link prediction,” Symmetry, vol. 13, no. 3, p. 485, 2021, doi: 10.3390/
sym13030485.

[36] F. J. Roethlisberger, W. J. Dickson, Management and the worker, vol. 5. 
Psychology press, 2003.

[37] R. Saxena, M. Jadeja, “Network centrality measures: role and importance 



International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº1

- 52 -

in social networks,” in Principles of Social Networking, 2022, pp. 29–54, 
Springer.

[38] U. Brandes, S. P. Borgatti, L. C. Freeman, “Maintaining the duality of 
closeness and betweenness centrality,” Social Networks, vol. 44, pp. 153–
159, 2016, doi: 10.1016/j.socnet.2015.08.003.

[39] O. Shchur, M. Mumme, A. Bojchevski, S. Günnemann, “Pitfalls of graph 
neural network evaluation,” arXiv preprint arXiv:1811.05868, 2018.

[40] P. Mernyei, C. Cangea, “Wiki-cs: A wikipedia-based benchmark for 
graph neural networks,” arXiv preprint arXiv:2007.02901, 2020.

[41] Z. Zhang, X. Wang, W. Zhu, “Automated machine learning on graphs: A 
survey,” arXiv preprint arXiv:2103.00742, 2021.

[42] M. Kaur, H. Kaur, “Implementation of enhanced graph layout algorithm 
for visualizing social network data using networkx library,” International 
Journal of Advanced Research in Computer Science, vol. 8, no. 3, 2017, doi: 
10.26483/ijarcs.v8i3.2998.

[43] R. Rossi, N. Ahmed, “The network data repository with interactive graph 
analytics and visualization,” in Twenty-ninth AAAI conference on artificial 
intelligence, 2015.

[44] A. Grover, J. Leskovec, “node2vec: Scalable feature learning for networks,” 
in Proceedings of the 22nd ACM SIGKDD international conference on 
Knowledge discovery and data mining, 2016, pp. 855–864.

[45] P. Jiang, S. Huang, Z. Fu, Z. Sun, T. M. Lakowski, P. Hu, “Deep graph 
embedding for prioritizing synergistic anticancer drug combinations,” 
Computational and structural biotechnology journal, vol. 18, pp. 427–438, 
2020, doi: 10.1016/j.csbj.2020.02.006.

[46] K. Tayal, R. Nikhil, S. Agarwal, K. Subbian, “Short text classification using 
graph convolutional network,” in NIPS workshop on Graph Representation 
Learning, 2019.

[47] P. Cao, Z. Zhu, Z. Wang, Y. Zhu, Q. Niu, “Applications of graph 
convolutional networks in computer vision,” Neural Computing and 
Applications, pp. 1–19, 2022, doi: 10.1007/s00521-022-07368-1.

[48] N. Kourtellis, G. D. F. Morales, F. Bonchi, “Scalable online betweenness 
centrality in evolving graphs,” IEEE Transactions on Knowledge and 
Data Engineering, vol. 27, no. 9, pp. 2494–2506, 2015, doi: 10.1109/
ICDE.2016.7498421.

[49] W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, C.-J. Hsieh, “Cluster-gcn: 
An efficient algorithm for training deep and large graph convolutional 
networks,” in Proceedings of the 25th ACM SIGKDD international 
conference on knowledge discovery & data mining, 2019, pp. 257–266.

Rahul Saxena

He is currently working as an Assistant Professor in 
Department of Information technology, Manipal University 
Jaipur, since 2015 and pursuing PhD from Malaviya 
National Institute of Technology, Jaipur since 2019. He 
completed his Masters from Manipal University Jaipur in 
the year 2015. He has been awarded with Gold Medal for 
Excellence in Education in Masters. He completed his B.E. 

from Birla Institute of Technology, Mesra in year 2013. His areas of research 
and interest includes Social Networks Analysis, Machine Learning, Graph 
Algorithms, Parallel processing etc. He has several conference, journal articles 
and book chapters published in Springer, IEEE etc. in the related domains of 
research.

Spandan Pankaj Patil

She received B.tech in Electrical engineering degree in 
2022 from NIT Jaipur. She is currently working as a full-
time Data Scientist at Micron Technology. Her research 
interests include Graph neural networks, social network 
analysis, machine learning, and computer vision.

Pranshu Vyas

He received his B. Tech. in computer science and 
engineering from MNIT Jaipur. He is currently working as 
a software developer at D. E. Shaw India Private Limited. 
His fields of interest are Data structure, Algorithms, and 
Machine learning, with a special focus on Neural network 
approaches for graphical data such as GCN.

Atul Kumar Verma

He received his B.Tech degree in computer science and 
engineering from VBS Purvanchal University, Jaunpur, 
UP, India in 2009 and M.Tech degree in computer science 
and engineering from Dr. A.P.J. Abdul Kalam Technical 
University UP, India in 2016. He is currently pursuing PhD 
at the Department of computer science and engineering, 
Malaviya National Institute of Technology, Jaipur India. 

His areas of interest are Social Networks Analysis, Machine Learning, Deep 
Learning and Graph Algorithms.

Mahipal Jadeja

He received his Ph.D. degree from Dhirubhai Ambani 
Institute of Information and Communication Technology 
(DA-IICT) in the field of Theoretical Computer Science. 
He currently works at Malaviya National Institute of 
Technology (MNIT Jaipur) as an assistant professor. His 
research interests include Theoretical Computer Science, 
Social Network Analysis, and Machine Learning on 

Graphs (Graph Neural Networks). He has published several journal articles, 
book chapters, and a reference book (Springer) in these domains. His research 
work is presented at reputed international conferences including GSB-SIGIR 
2015 (Chile), WAAC 2016 (Japan), and SCAI-ICTIR 2017 (Netherlands).

Vikrant Bhateja

Vikrant Bhateja is associate professor in Department 
of Electronics Engineering Faculty of Engineering and 
Technology, Veer Bahadur Singh Purvanchal University, 
Jaunpur, Uttar Pradesh, India. He holds a doctorate in ECE 
(Bio-Medical Imaging) with a total academic teaching 
experience of 19+ years with around 190 publications in 
reputed international conferences, journals and online book 

chapter contributions; out of which 35 papers are published in SCIE indexed 
high impact factored journals. Among the international conference publications, 
four papers have received “Best Paper Award ''. Among the SCIE publications, 
one paper published in Review of Scientific Instruments (RSI) Journal (under 
American International Publishers) has been selected as “Editor Choice Paper 
of the Issue” in 2016. He has been instrumental in chairing/co-chairing around 
30 international conferences in India and abroad as Publication/TPC chair and 
edited 50 book volumes from Springer-Nature as a corresponding/co-editor/
author on date. He has delivered nearly 20 keynotes, invited talks in international 
conferences, ATAL, TEQIP and other AICTE sponsored FDPs and STTPs. He has 
been Editor-in-Chief of IGI Global--International Journal of Natural Computing 
and Research (IJNCR) an ACM & DBLP indexed journal from 2017-22. He has 
guest edited Special Issues in reputed SCIE indexed journals under Springer-
Nature and Elsevier. He is Senior Member of IEEE and Life Member of CSI. 

Jerry Chun-Wei Lin

He received his Ph.D. from the Department of Computer 
Science and Information Engineering, National Cheng 
Kung University, Tainan, Taiwan in 2010. He is currently 
a full Professor with the Department of Computer Science, 
Electrical Engineering and Mathematical Sciences, Western 
Norway University of Applied Sciences, Bergen, Norway. 
He has published more than 500+ research articles in 

refereed journals (with 90+ ACM/IEEE transactions journals) and international 
conferences (IEEE ICDE, IEEE ICDM, PKDD, PAKDD), 16 edited books, as 
well as 33 patents (held and filed, 3 US patents). His research interests include 
data mining and analytics, natural language processing (NLP), soft computing, 
IoTs, bioinformatics, artificial intelligence/machine learning, and privacy 
preserving and security technologies. He is the Fellow of IET (FIET), ACM 
Distinguished Member (Scientist), and IEEE Senior Member.


