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Abstract

At present, artificial intelligence is in a period of rapid development, and deep learning has begun to be applied 
in various fields. Data, as a key part of the deep learning, its efficiency and stability, will directly affect the 
performance of the model, so it is valued by people. In order to make the dataset efficient, many active learning 
methods have been proposed, the dataset containing independent identically distribution (IID) samples is 
reduced with excellent performance; in order to make the dataset more stable, it should be solved that the 
model encounters out-of-distribution (OOD) samples to improve generalization performance. However, the 
current active learning method design and the method of adding OOD samples lack guidance, and people 
do not know what samples should be selected and which OOD samples will be added to better improve the 
generalization performance. In this paper, we propose a dataset containing a variety of elements called a dataset 
with Complete Sample Elements(CSE), the labels such as rotation angle and distance in addition to the common 
classification labels. These labels can help people analyze the distribution characteristics of each element 
of an efficient dataset, thereby inspiring new active learning methods; we also construct a corresponding 
OOD test set, which can not only detect the generalization performance of the model, but also helps explore 
metrics between OOD samples and existing dataset to guide the selected method of OOD samples, so that it 
can improve generalization efficiently. In this paper, we explore the distribution characteristics of efficient 
datasets in terms of angle element, and confirm that an efficient dataset tends to contain samples with different 
appearance. At the same time, experiments have proved the positive influence of the addition of OOD samples 
on the generalization performance of dataset.

DOI: 10.9781/ijimai.2023.01.007

Dataset and Baselines for IID and OOD Image 
Classification Considering Data Quality and 
Evolving Environments
Zhuo Zhang1, Yang Li1,2*, Yicheng Gong1, Yue Yang1, Shukun Ma1, Xiaolan Guo1, Sezai Ercisli3

1 School of Electrical and Information Engineering, Tianjin University, Tianjin (China)
2 College of Mechanical and Electrical Engineering, Shihezi University, Shihezi (China) 
3 Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum (Turkey)

Received 20 March 2022 | Accepted 3 October 2022 | Early Access 24 January 2023 

I. Introduction

In recent years, with the development of artificial intelligence, deep 
learning is widely used in various fields, such as the detection and 

prevention of plant diseases and pests, the intelligent recognition of 
medical images and so on [1]–[6]. However, deep learning needs a 
large amount of data as the basis, which brings problems such as high 
data cost, difficult data acquisition and so on. In order to solve the 
demand problem of a large amount of data, people put forward few-
shot learning, which is committed to learning from a small amount of 
labeled data and obtaining generalization ability [7]–[10]. Methods in 
the field of few-shot learning have solved the problem of large-scale 
data dependence to a certain extent. However, although selecting 
samples with high information quality for training can effectively help 
neural networks improve performance, little attention has been paid 
to the quality of sample information. A sample with high information 

quality not only has less noise, but also has a large difference with 
the existing samples in the data set. That is, conducting data quality 
assessments can improve the model performances under the same 
budget, and reduce the sample collection budget with the same 
model performances. Therefore, it is of great significance to carry 
out data quality assessment and establish relevant baselines in typical 
applications such as identification and classification.

In addition to considering the problem of data quality, the changeable 
test environment is a practical problem that can not be ignored, which 
widely exists in industrial processing and manufacturing, automatic 
driving, field environment and so on [11]. For this problem of poor 
generalization of the model caused by the change of test data, also 
known as the difference of out of distribution(OOD), it is necessary 
to establish a data set that fully considers the change of scene factors 
to provide a fair comparison platform for relevant research. Although 
there have been many studies on the generalization of model 
algorithms, there is still a lack of data set construction. In particular, 
considering the changes of environmental factors, the construction of 
high-quality data sets without watermark and error label is of great 
significance to the promotion of subsequent related research.
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In order to solve the above problems, this work has built an all 
element image acquisition platform and formed a Complete Sample 
Elements (CSE) data set, which can support the research and analysis 
of independent identically distribution (IID) and OOD. Probability 
entropy and distance entropy are proposed to evaluate the quality 
of the data set and establish relevant test baselines. In the aspect 
of OOD test, taking the real shooting data in the actual dynamic 
environment as the test, the relevant baseline is established, and the 
impact of distribution differences on the performance of the algorithm 
is explored.

The structure of this document is as follows: section II introduces 
the relevant work at home and abroad, section III introduces the CSE 
data set, section IV is the experimental part of this paper, and section 
V presents the conclusions and future works.

II. Related Works

Image quality evaluation is a basic and challenging problem in 
the field of image processing. Traditional image quality evaluation 
is realized by human visual system (HVS) or objective image quality 
assessment (IQA) [12]–[14]. It can evaluate the distorted images such 
as blur, JPEG compression and noise, and realize the discrimination 
of distortion types. However, these quality evaluation criteria serve 
human subjective visual perception and have nothing to do with the 
improvement of machine vision task performance. The development 
of artificial intelligence has promoted people to pay attention to data 
quality from the perspective of improving task performance. Recently, 
some work has also paid attention to the data quality of classification 
task guidance, such as the active cleaning of data labels proposed by 
Bernhardt in 2021 [15]. In addition, some works have paid attention to 
the influence of sample information quality on model performances, 
and they have proposed some sample information quality assessment 
methods on this basis [16], [17]. However, current methods lack 
validation on large-scale datasets containing constituent elements.

In the real scene, there are differences between train data and test 
data. How to effectively improve the test effect is a very valuable 
research direction. Under the guidance of this research direction, 
a variety of theoretical research methods on task generalization 
represented by transfer learning have been formed, so as to reduce the 
dependence on a large number of target domain data [18]. From the 
perspective of research subjects, transfer learning can be divided into 
data-based transfer learning, feature-based transfer learning, model 
parameter based transfer learning and so on. The data-based transfer 
learning method focuses on the transfer of knowledge through the 
adjustment and transformation of data; the feature-based method 
transforms each original feature into a new feature representation; 
model based transfer learning uses sub modules such as classifier, 
extractor or encoder to make accurate prediction results for the target 
domain, such as classification or clustering results [19]–[23]. However, 
these works focus more on theoretical research, and the data used are 
still quite different from the real scene.

III. CSE - A Dataset With Complete Sample Elements

In this section, we propose a dataset with complete sample 
elements, abbreviated as CSE. This dataset will facilitate the following 
two research topics:

• In addition to the common classification labels, the dataset also 
labels the remaining elements. When the train and test sets exhibit 
IID distributions, the element distribution characteristics of 
efficient datasets can be analyzed.

• When the train and test sets exhibit OOD distributions, the influence 
of OOD samples on generalization performance can be analyzed.

The dataset is divided into 11 categories, each class can be 
subdivided into 5 subclasses, so there is a total of 55 subclasses, 
each subclass is sampled from the same object. In Fig. 1, we show a 
representation of the images in it. Each subclass has 216 images, with 
72 degrees and 3 distances. The background of the dataset is unified 
as a large checkerboard, and the size of the collected data is unified as 
640×480. Since there are objects with small size in this dataset, in order 
to ensure that the collected sample subject is located in the center, we 
use a cylindrical heightening pad to support tiny objects. The dataset is 
publicly available for researchers to download and study1.

0° 60° 120° 180° 240° 300°
(a)

(b)
Apple Bo�le Car Container Cup Doll Fleet Headphone Milk Pepper Plant

Fig. 1. Some samples of the CSE train set. (a) The examples of rotation; (b) All 
classes of the CSE dataset.

A. The Need to Structure Element-complete Datasets

1. For IID
For the train set and test set of IID distribution, there is redundancy 

within the train set. According to our test situation on the CIFAR-10 
dataset, the sub-train set selected by the active learning method can 
obtain performance close to the entire dataset on fewer datasets, 
which will greatly improve the training efficiency. However, the 
current active learning methods has shortcomings such as relying on 
the selection of base classes, and the results are not robust. Therefore, 
if we can provide a dataset with complete elements, and understand 
why these samples will improve the performance of the dataset from 
the distribution level of elements, this will help us in the evaluation of 
sample information selecting. It should be noticed that in the class of 
doll and fleet, the objects are too small that it should be supported by a 
cylinder. To minimize the impact caused by the cylinder, we crop these 
samples, so it would be like Fig. 2.

Fig. 2. Some samples of the "doll" class in the CSE dataset. Objects in the "doll" 
class are tiny, so all samples of this class are cropped. The front, side, and back 
of this class of samples look very different, so if the network has only seen 
some of them (such as the front and the side), the rest of the samples (the back) 
are high-informative.

2. For OOD
For the train set and test set of OOD distribution, the information 

about the test set provided by the train set is insufficient, which will 
lead to a plummeting performance of the network model. If OOD 

1 Here: http://aimip.tju.edu.cn/rgzn.htm
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samples are added to the train set, the network performance of the 
model will be improved; in future research, we will also try to calculate 
the distance between the train set and the test set and measure the 
similarity, and use the parts with high similarity to train the neural 
network, which will make the network more generalizable to the OOD 
test set.

B. How to Obtain a Dataset With Complete Elements
In order to make the sampling process automatic and controllable, 

we built a multi-DOF sampling platform, as shown in Fig. 3. The 
device is composed of three servo motors, which can realize front and 
rear, left and right, and up and down transforms, thereby changing the 
angle of the view captured by the camera.

Fig. 3. The platform to sample the CSE dataset.

C. Variable Settings Supported by IID Train Set
After selection, we decided to design the following three variables 

to control:

1. Rotation Angle
It is well known that for most asymmetric objects, the difference in 

viewing angle affects the observation results, and the same is true for 
neural networks. For example, as shown in Fig. 2, this figure shows 
the different angles of the front, side and back of the doll. For neural 
networks, especially those without any pre-training, they tend to 
think that these three angles are of different samples. The process of 
training is also the process of grouping samples of the same object 
from different angles into one group. The original intention of our 
design of the angle variable is how to choose an appropriate angle to 
reduce the number of samples in the train set as much as possible and 
improve the test accuracy as much as possible. We believe that this 
topic will be very helpful for future dataset simplification and dataset 
information Quantitative work.

When constructing the CSE dataset, we collect a sample every 5˝, 
and each sample can collect 72 images at the same camera distance. 
As for why 5˝ was chosen instead of 10˝ or 1˝, we have the following 
considerations. First, we believe that a full-featured dataset should be 
linear and smooth, so the angle of acquisition should be as small as 
possible, or as imperceptible as possible. However, collecting samples 
from an angle that is too small will greatly increase the number of 
samples, and many problems will follow: first, an excessively large 
number of samples will cause a serious burden on storage; second, 
an excessively large number of samples will prolong the training 
time; third, and most important point, repeatedly feeding a large 
number of samples with the same background and similar appearance 
to the model can easily make the model overfit, and even learn the 
background, object tray, and other elements incorrectly, which will 
cause a serious problem with the network model on which the object 

selecting method(distance entropy, probability entropy, etc.) relies. 
Therefore, considering the reasons above, we choose to collect a 
sample every 5˝.

2. Distance Between Object and Camera
The distance of the camera determines the proportion of the object 

in the sample. The farther the distance between the object and the 
camera is, the smaller the area of the object in the sample and the 
larger the area of the background. At the same time, the distance of 
the camera will also affect the viewing angle, as shown in Fig. 4. The 
farther the object is, the narrower the range that can be seen, which 
may bring an extra amount of information to the learning of the 
network model.

(b)

(a)

Fig. 4. The distance between object and camera also affects the sample. (a) 
Three distances when sampling a car; (b) Details of the farthest sample and 
the nearest sample under the same placement angle. As the text says, the 
connection line (orange) on the underside of the wheel varies with distance.

D. Design of OOD Test Set
Out-of-distribution test samples are encountered in some specific 

tasks. There are many reasons for the existence of OOD samples. For 
example, the initial design of the data set is not well thought out, or 
the data itself is difficult to collect in large quantities, and the train set 
can only be generated by simulation. How does the model make use 
of the OOD sample information it encounters? This is also the original 
intention of our design of the OOD test set.

Fig. 5. The comparison between train samples and the corresponding OOD 
sample.
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As shown in Fig. 5, when shooting the OOD test set, we randomly 
changed the background, randomly rotated the shooting angle, and 
randomly raised the shooting angle. These operations are very similar 
to the situation of OOD samples encountered in industry, since there 
are no such samples in the dataset. At the same time, the OOD samples 
are taken by mobile phones. Compared with the camera used to collect 
the train set, the default focal length of the mobile phone is shorter, 
and the captured samples will have some deformation compared with 
the train set, which is also a feature of the OOD samples.

IV. Results and Analysis

A. List of Backbones and Training Configuration
In order to verify whether the dataset we construct can effectively 

reflect the IID distribution and OOD distribution, we conducted several 
experiments with multiple backbone networks: ResNet [24], VGG [25] 
and WRN [26]. When we verify IID distribution, we use a uniform 
sampling of 25% of the train set as the IID test set. The purpose of this 
is to make the IID test set show a uniform distribution, and because 
the original train set is uniformly sampled, this sampling method will 
make this new IID test set present a similar distribution to the original 
train set, so the new IID train and test set can be approximated. When 
we verify OOD distribution, we directly use the test set and train set for 
OOD training and testing. All subsequent experiments are conducted 
under a single server with an Intel Core i7-12700KF CPU, dual nVidia 
GeForce RTX 3080Ti GPU and 128 GB memory with PyTorch.

B. Backbone Network Performances on IID and OOD Test Sets
The results obtained by training and testing on the backbone 

network are shown in Table 1. Note that the three backbone networks 
we listed all get 100% test accuracy on the IID combination, which 
proves that the IID train and test sets are IID distributions of each 
other, which is consistent with our assumption in IV.A. However, the 
three backbone networks perform poorly in the OOD combination. 
Given the undisputed high performance of the three backbone 
networks, it can also be shown that the OOD train and test sets are 
distributed in OOD.

In particular, we add a set of pre-trained comparison experiments 
in Table I. The control group has essentially the same parameters as 
the experiments using the three backbones, but with the ImageNet 
pre-trained model. It can be seen that a group of experiments using 
the ImageNet pre-training model is significantly higher in testing 
accuracy than the group that does not use ImageNet, which confirms 
the prediction in III.C.1. Using a train set with an interval of 5° has 
caused the model to overfit, as explained below. The result of VGG is 
a little bit lower, it is because the performance is weaker than ResNet 
and WRN.

TABLE I. The Test Accuracy of Several Backbones

settings ResNet VGG WRN
IID, non-pre-training 100% 100% 100%

OOD, non-pre-training 18.808% 17.636% 20.268%
OOD, pre-training 29.256% 26.343% 36.696%

Experiment parameters: batch size: 32; Epoch: 50; initial learning rate: 
ResNet & WRN: 0.01; VGG:0.1; step learning rate: decay epoch: [20, 30, 40], 
gamma: 0.1

First, using ImageNet and reducing the learning rate is to make 
the model "remember" the ImageNet distribution as much as possible. 
Second, ImageNet is similar to our OOD test set collection method, 
and the background environment is more variable, which it also does 
in OOD test set. It can be considered that ImageNet has a similar 
distribution to the OOD test set. Third, since the pre-trained model 

achieves convergence in the later stage, it means that the model 
has also learned the distribution of the OOD train set, and so it 
does in non-pre-training group. In the comprehensive comparison 
experiment, the test performance of the ImageNet group is higher 
than that of the non-pre-training group. Therefore, we have reason to 
believe that the use of ImageNet pre-trained network can effectively 
suppress the overfitting phenomenon. The information of ImageNet 
makes the model not affected by factors such as background and thus 
overfit. While the non-pre-training group appears some overfitting 
phenomenon, which further deteriorates the performance on OOD 
test sets. When we use the Grad-CAM [27] method to visualize the 
attention of the network, we can see that the non-pre-training group 
totally cannot pay attention to the objects, but the pre-training group 
can accurately recognize them, as it can be seen in Fig. 6.

Non-pre-trained

Pre-trained

Fig. 6. When visualizing the model by Grad-CAM, we can see clearly that the 
non-pre-trained group has a stronger overfitting phenomenon than the pre-
trained group.

C. Rotation Angle Distribution Features of Efficient Datasets
In order to explore the element distribution characteristics of 

efficient datasets derived from IID train set, we use two methods in 
active learning: distance entropy [28] and probability entropy [29]. 
We design a series of experiments: first, select 88(1%) IID samples as 
the base, add 88(1%) samples in each round of experiments, a total 
of 9 rounds. The subsets selected by these methods are re-trained on 
the ResNet18 network, and the IID test accuracy is shown in Fig. 7. It 
can be seen that the test accuracy of the subset obtained by selecting 
528(6%) samples can already reach 99%. We take the subset with 
528(6%) samples selected by distance entropy as an efficient train set 
for subsequent analysis.

Test acc. with IID train subset selected by di�erent active learning methods

Te
st
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.

Select No.
100 

65%

70%

75%

80%

85%

90%

95%

Distance Entropy
Probability Entropy

100%

200 300 400 500 600 700 800 900 

Fig. 7. The IID test accuracy of models trained on subsets selected by distance 
entropy method and probability entropy method.
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1. Irregular Objects
When an irregular object rotates around to collect several samples, 

each sample has a large change from other samples, such as samples 
of cars, ships, dolls, etc. We take the sample from the third doll in the 
nearest position as an example to explore the rotation angle element 
distribution characteristics of irregular samples in an efficient dataset.

As shown in Fig. 8, the samples with high information content are 
distributed at 110º-205º and 270º-330º. At these degrees, the object is 
basically at the front or back angle, and the sample taken after rotation 
changes greatly, so it brings more information; while the side angle 
of the object is almost the same as the 205º, 270º samples, so less 
information. In the repeated experiments, we also did a set of similar 
experiments with cars, and the results were similar, as shown in Fig. 9, 
except that the side is high information, and the front and back are low 
information. This shows that the wider surface with larger rotation 
variation of irregular samples has high information content.

110 ° 115 ° 125 ° 130 ° 150 ° 155 ° 165 °

175 ° 185 ° 190 ° 195 ° 205 ° 270 ° 275 °

285 ° 290 ° 295 ° 310 ° 315 ° 325 ° 330 °

Fig. 8. The dolls selected by active learning method. In the CSE dataset, the 
front and back samples of this doll are of much more information, but the side 
samples are of less information.

5 ° 10 ° 15 ° 25 ° 30 ° 35 ° 45 °

50 ° 55 ° 65 ° 70 ° 90 ° 95 ° 145 °

150 ° 155 ° 165 ° 170 ° 175 ° 185 ° 190 °

225 ° 355 °
Fig. 9. The cars in the efficent dataset. Different from the dolls in Fig. 8, the 
side samples are of more information.

2. Rotation-Invariant Objects
Some objects are rotationally invariant, such as apples, containers, 

etc. Their characteristic is that samples taken from any angle are 
similar. Our experiments show that the number of rotation-invariant 
samples in the efficient dataset is much less than the number of 
irregular samples, such as the first apple corresponding to only seven 
samples (in contrast, each subclass of dolls generally selects at least 
50 samples), and the angle has no regularity. Similar to our previous 
proof, rotation-invariant samples only need to find a few samples as 
representatives to obtain most of the information.

3. Approximately Rotation-Invariant Objects
There are also some objects that are approximately rotationally 

invariant in this dataset. Their main parts are rotationally invariant, 
but they also have other components that make them rotationally 
invariant, such as the handle of a cup. The characteristic of this type of 
object is that when the components that affect its rotation invariance 
are occluded, the samples have high similarity, as shown in Fig. 10. We 
take the sample of the second cup at the farthest position as an example 
to explore the rotation angle element distribution characteristics of 
approximately rotation-invariant samples in an efficient dataset.

0 ° 60 ° 120 °

180 ° 240 ° 270 °

Fig. 10. Examples of approximate rotation-invariant objects. When the rotation 
angle comes from 240˝ to 270˝, the cup seems nearly the same, which means 
the low information in the samples.

As shown in Fig. 11, the samples with high information content 
are distributed between 45º- 70º, 185º-210º, and 305º-355º. Under these 
several degrees, the cup handle is on the side or front of the cup body, 
and the change is more obvious when rotating the object, and the 
samples of the cup handle behind the cup are relatively similar, so only 
a few samples can be selected. At the same time, when the handle is in 
front of the cup, since the color of the handle is closer to the cup, and 
the difference when it is rotated is smaller than that when the handle 
is on the side (only the 70º samples are sampled).

45 ° 50 ° 70 ° 185 ° 195 °

210 ° 305 ° 310 ° 315 ° 325 °

330 ° 335 ° 345 ° 350 ° 355 °
Fig. 11. The cups in the efficent dataset. when the handle is behind the cup, it 
will be unlikely selected.

At the same time, after our further statistics, we found that the 
irregular objects samples have the highest ratio in efficient datasets, 
the approximate rotation-invariant samples are in the middle, and the 
rotation-invariant samples are the lowest. The above analysis not only 
verifies the hypothesis that the IID train set has high redundancy, but 
also classifies the sample features with high information. It is found 
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that the active learning methods will tend to select more differentiated 
samples to form a dataset, so that the selected samples have high 
information.

D. Effect of Adding OOD Samples on Generalization Performance 
of Models

In order to explore whether the addition of OOD samples will 
affect the generalization performance of the classification model, we 
designed the following experiments: 2% of the OOD train set samples 
of each class were selected to join in the OOD train set for training 
and the rest of the samples were used for testing, adding a total of 10 
rounds, up to 20%. The experimental results are shown in Table II. As 
with our assumption, a small number of OOD samples can greatly 
improve the generalization performance. It is worth mentioning that 
after reaching a certain threshold, more OOD samples will not improve 
the accuracy. In contrast, using the added 20% samples for training and 
testing the remaining samples, the accuracy even slightly exceeds the 
results of the OOD train set + 20% OOD samples. This is because IID 
samples bring little information gain to the OOD test set classification 
problem, and may even drag back.

TABLE II. The Test Accuracy of Adding OOD Samples, Tested on 
ResNet18

train IID Add OOD Test
100% 0% 18.808%
100% 2% 46.684%
100% 4% 62.132%
100% 6% 61.507%
100% 8% 71.484%
100% 10% 74.069%
100% 12% 83.008%
100% 14% 83.112%
100% 16% 80.446%
100% 18% 82.188%
100% 20% 84.635%
0% 20% 84.659%

V. Conclusion and Future Works

In this paper, we construct a dataset called CSE, which has various 
element labels such as rotation angle, object category, distance, etc., 
which can be used to explore the distribution of each element of the 
high-informative train set samples, and how to add samples to the 
OOD test set, which can improve the generalization of the model. 
We believe that the CSE dataset we constructed can promote the 
development of active learning interpretability and active learning 
algorithm design. At the same time, we also believe that analyzing and 
designing active learning algorithms from the perspective of elements 
will be a direction of active learning development.

We use the backbone network to obtain the performance of the 
dataset under the IID and OOD test sets, confirming that the dataset 
we constructed exhibits IID and OOD distributions. We put forward 
the conclusion that the active learning model tends to select more 
differentiated samples. In the IID experiment, after using the active 
learning algorithm on the IID train set to extract the efficient train 
set, the rotation angle is divided into three basic types for statistical 
analysis, which confirms this assertion. We put forward the conclusion 
that adding OOD samples will greatly improve the generalization 
performance of the model, and verified this thesis by gradually 
adding OOD samples for training and testing in the OOD experiment. 
Among them, the experimental results of IV.B and IV.D also prove that 
OOD will bring low performance, and even if the model complexity 

increases, it will not bring noticeable performance improvement. So 
when creating datasets in various fields, researchers should pay strict 
attention to how well the training data fits the ground truth or testing 
data distribution.

However, we also noticed that batch addition of active learning 
algorithms brings some problems, such as the possibility of similarity 
between samples added in the same batch. In future work, we will 
expand the element information (such as pitch angle, background, etc.) 
of the CSE dataset to establish a more complete dataset for subsequent 
research.
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