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Abstract

Machine Learning (ML) has extended its use in several domains to support complex analyses of data. The 
medical field, in which significant quantities of data are continuously generated, is one of the domains that can 
benefit from the application of ML pipelines to solve specific problems such as diagnosis, classification, disease 
detection, segmentation, assessment of organ functions, etc. However, while health professionals are experts 
in their domain, they can lack programming and theoretical skills regarding ML applications. Therefore, it is 
necessary to train health professionals in using these paradigms to get the most out of the application of ML 
algorithms to their data. In this work, we present a platform to assist non-expert users in defining ML pipelines 
in the health domain. The system’s design focuses on providing an educational experience to understand how 
ML algorithms work and how to interpret their outcomes and on fostering a flexible architecture to allow the 
evolution of the available components, algorithms, and heuristics.
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I. Introduction

MACHINE Learning (ML) has become a powerful approach to 
tackle complex tasks that involve analyzing significant amounts 

of data. Data-intensive contexts, such as the health domain, benefit 
directly from applying ML algorithms to their data, supporting tasks 
such as identifying patterns, clustering, classification, predictions, 
etc., that could become time- and resource-consuming if approached 
through manual paradigms. The application of ML to health data has 
proven its usefulness in specific challenges like diagnoses, disease 
detection, segmentation, assessment of organ functions, etc. [1] -[3].

However, applying ML approaches is not straightforward. More 
specifically, using them in sensitive domains (such as health) could be 
hazardous if practitioners do not fully understand the results derived 
from the models. 

ML does not only consist of applying a set of pre-defined functions. 
It needs a deep understanding of the input data, the transformations 
that need to be performed to fit a model, the selection of a proper 

model, and its quality metrics before using trained models in 
production. Otherwise, the outputs could lead to wrong conclusions, 
losses, discrimination, and even negligence [4] -[7].

Therefore, it is necessary to balance data domain knowledge and 
ML expertise. While ML experts have a wealth of knowledge about ML 
algorithms, they can lack understanding regarding the input data. The 
same applies to health professionals; they have a profound knowledge 
of the data domain, but they would not obtain quality models without 
programming or ML skills.

In this scenario, it is necessary to provide practitioners with tools 
that alleviate this knowledge gap, enabling health professionals to 
implement ML pipelines and learn how, when, and why to apply 
specific models or functions to their data. This way, the introduction 
of ML in medical tasks could yield complementary support to 
automate and enhance decision-making processes without consuming 
an excessive quantity of resources and time.

In this context we pose the following research question:

RQ1. Which features can ease the application of ML algorithms in 
the medical context? 

Driven by this research question, we present a graphical platform 
(KoopaML) to offer intuitive and educational interfaces to build and 
run ML pipelines to tackle these challenges. The primary target 
audience of this platform is non-expert users interested in learning 
and applying ML models to their domain data. We followed a user-
centered design approach to capture relevant requirements and 
necessities from potential user profiles involved in this context. 
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In addition, we focused on providing a flexible architecture to 
allow expert users to extend the platform’s functionality through 
new custom algorithms, components, or new heuristics to guide the 
definition of ML pipelines. 

In this paper, we describe the design process, the platform’s 
architecture, its underlying processes, and the feedback obtained from 
experts regarding the first development stages of the system.

The rest of the work is structured as follows. Section 2 provides 
an overview of similar tools for learning and building ML and data 
science pipelines. Section 3 describes the methodology followed for 
eliciting requirements and the technologies employed to implement 
the platform. Section 4 details the platform’s architecture and 
modular decomposition, while section 5 describes the implemented 
functionalities. Finally, sections 7 and 8 discuss the results and 
conclude the work, respectively.

II. Related Work

Plenty of helper tools has been developed due to the increasing 
popularity of ML. Specifically, there are three main categories: 
programming frameworks and libraries, platforms for experts and 
non-experts, and platforms that support learning and understanding 
regarding how ML algorithms and pipelines work.

The first category encloses several well-known programming 
libraries:  TensorFlow [8], Apache Mahout [9], and other Python 
frameworks like PyTorch (https://pytorch.org/), Scikit-learn (https://
scikit-learn.org/), or Keras.io (https://keras.io/). These libraries 
provide an abstraction layer to implement ML models, but they require 
programming skills to employ them properly.

The second category focuses on visual environments that assist 
users through intuitive interfaces in creating and defining ML 
pipelines. Weka, for instance, provides a collection of algorithms for 
data mining tasks. One of its environments enables users to define data 
streams by connecting nodes representing data sources, preprocessing 
tasks, evaluation methodologies, visualizations, or algorithms, among 
other [10], [11].

On the other hand, Orange Data Mining Field [12] allows the 
definition of data mining workflows, with several methodologies, 
operations, and visualizations available through a user-friendly 
interface. The possibility of introducing customized dashboards [12] 
-[14] to present the outcomes of ML tasks an extremely valuable 
feature to ease the comprehension of the pipeline stages. Another 
tool with similar features is Rapid Miner [15], which follows a 
node-and-link philosophy to specify and define ML workflows. 
These applications provide robust and complex features through 
intuitive interfaces and interaction methods, adding abstraction to 
programming libraries.

The last category refers to platforms whose primary goal is to offer 
a didactic experience and learning resources to ease understanding 
ML algorithms and workflows. Tools within this category provide 
user-friendly and simple graphical interfaces avoiding technical 
details.  Examples include Machine Learning for Kids (https://
machinelearningforkids.co.uk/) or LearningML (https://web.
learningml.org/).

Although several solutions are developed to assist non-expert 
users in the definition of ML pipelines, it is difficult to adapt them 
to specific contexts with particular necessities and requirements. For 
these reasons, we opted to develop a customized tool focused on the 
provenance of an educative experience for health professionals that 
want to start applying ML models to support their tasks.

III. Methodology

A. Requirements Elicitation
We identified the main features and specifications of the platform 

through a requirements elicitation process. Specifically, we interviewed 
potential users and domain experts, including physicians, computer 
scientists, and managers.

The output of this process was the description of the platform’s 
basic features:

1. Definition of ML pipelines

2. Execution of ML pipelines

3. Interpretation of ML results

4. Visualization of ML results

5. Data validation

6. Heuristics management

The first two features are related to implementing ML pipelines by 
connecting different tasks, including data preprocessing and cleaning, 
ML algorithms, and evaluation functions. The platform allows users to 
choose different ML algorithms and configure their parameters. Users 
can personalize their pipelines by connecting nodes and analyzing 
each step’s intermediate results.

Features 3 and 4 are related to the outcomes obtained during 
the execution of the pipelines. Each stage will output new results, 
and these results need to be understood to gain insights. For these 
reasons, the platform needs to provide methods to convey and assist 
the interpretation of the pipeline outputs through explanations, 
annotations, and data visualizations. This process is vital because a 
wrong interpretation of the results could lead to useless results and 
lose all its potential benefits.

On the other hand, the quality of the training process not only 
depends on the algorithm’s configuration but also on the quality of 
input data. The platform needs to support validation processes and 
emphasize cleaning and preprocessing functions before training ML 
models. This feature focuses on providing information regarding the 
applicability of the available algorithms to the input data and potential 
issues (missing values, data imbalance, data samples, data types, etc.).

The last functionality refers to applying heuristics to assist non-
expert users in the definition of ML pipelines. The management of 
heuristics and recommendation rules should be flexible to support the 
evolution of the suitability of algorithms depending on the context. 
Therefore, the platform will allow the modification and addition of 
new heuristics to provide more flexibility and build customized rule-
based recommenders.

During the elicitation process, two user roles were identified. 
This categorization of users is essential to adapt the functionalities 
depending on the role, as well as their privileges:

• Non-expert users. The primary users of the platform. Non-
expert users (mainly physicians) who know the data domain are 
interested in IA and ML but don’t have enough skills to create ML 
pipelines programmatically.

• AI experts. Experts will have access to the ML pipelines workspace, 
but they will also have privileges to define and modify heuristics 
to configure the recommendations or preferred workflows of the 
platform.

B. Development
As introduced, one of the main goals of this work is to provide a 

flexible platform with the capability to evolve to include discoveries 
in ML. Therefore, it is crucial to rely on flexible technologies and 
paradigms that support the reusability of components.

https://pytorch.org/
https://scikit-learn.org/
https://scikit-learn.org/
https://keras.io/
https://machinelearningforkids.co.uk/
https://machinelearningforkids.co.uk/
https://web.learningml.org/
https://web.learningml.org/
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ML pipelines share common features and can be represented 
through abstract elements to leverage their commonalities and foster 
the reusability of core assets. We followed the software product line 
(SPL) paradigm and domain engineering to capture ML pipelines and 
tasks’ commonalities and variability points and arrange the software 
components accordingly [16] - [20].

With this approach, it is possible to reuse these “building blocks” 
and modify/add new ones without impacting the rest of them. 
On the other hand, building each pipeline task as an independent 
component with well-defined inputs and outputs also meets the 
requirement of inspecting intermediate results and even executing 
pipelines step by step.

We materialized the variability of pipelines through SciLuigi 
(https://github.com/pharmbio/sciluigi), a wrapper for Spotify’s Luigi 
Python library (https://github.com/spotify/luigi), which supports the 
definition of dynamic workflows avoiding hard-coded dependencies 
[21], [22].

C. Validation
To validate the first version of KoopaML, we carried out an expert 

judgement [23] validation with experts from the medical and AI fields. 
Three experts were recruited to thoroughly test the platform and seek 
for issues regarding its contents and interaction mechanisms.

The three participants are AI developers in the medical domain, so 
they were able to test the platform from the two perspectives. 

IV. Architecture

Providing flexible and extensible architecture is crucial in this field, 
as approaches constantly improve and evolve. This section outlines 
the platform’s architecture and the mechanisms employed to support 
the evolution of its components.

A. Modules
The architecture of KoopaML is based on different modules 

connected by information flows. One of the primary purposes of this 
design is to provide flexible pipelines with reusable components. 

In this regard, we followed a domain engineering approach through 
the previously described requirements elicitation process with 
potential users and literature reviews. 

Following this approach, we propose four general functional blocks 
that will interact and collaborate among them to provide support for 
the implementation of flexible ML workflows:

• User management module

• Heuristics management module

• Pipelines management module

• Tasks management module

The user management module provides the services related to 
authentication, sessions, and roles. The heuristics management module 
allows IA experts to modify the heuristics through a graphic interface. 
The pipelines management module provides a workspace to create ML 
pipelines using visual elements. Finally, the tasks management module 
defines the operations related to each ML pipeline potential stage.

Fig. 1 shows the schematic overview of the platform’s architecture 
with the C4 model notation [24]. 

B. Pipelines’ Structure
While the previous functional blocks provide flexibility to evolve 

the system’s features, they still need fine-grained flexibility regarding 
the implementation of ML pipelines.

Following the software product line architecture paradigm [16] 
-[20], we divided ML pipelines into fine-grained tasks with well-defined 
inputs and outputs. Through this approach, the tasks management 
module acts as a repository of loosely coupled ML-related tasks, in 
which algorithms and operations can be added and modified without 
impacting the features of the remaining modules/tasks.

As explained in the methodology section, this encapsulation of 
ML tasks is achieved through the SciLuigi library. Fig. 2 outlines the 
structure of the pipelines following this approach. 
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Fig. 2. Outline of programming approach. Each task contains its own logic and 
belongs to a specific category. Inputs and outputs compatibilities (in terms of 
information flows) are computed from each node’s logic.
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Fig. 1.  Outline of the platform’s architecture.

https://github.com/spotify/luigi
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Tasks are categorized following their high-level functionality 
(tasks related to data upload, data preprocessing, ML algorithms, or 
evaluation metrics). Then, more specific tasks are implemented; for 
example, within the “ML algorithms” category, we can find particular 
algorithms such as Naïve Bayes, Random Forest, Linear Regression, etc.

Users can instantiate nodes from each category and connect them 
through their inputs and outputs. These inputs and outputs are also 
categorized to ensure that information flows are compatible among 
the instantiated nodes.

The connection restrictions between nodes are implemented in the 
interface to ensure that the SciLuigi pipeline is correctly instantiated. 
With this method, the construction of the final SciLuigi pipeline is 
straightforward. 

The simplified code in Fig. 3 outlines the implementation of a 
SciLuigi workflow through the pipeline specification defined by 
the user in the graphical interface. The main challenge was related 
to the dynamic connection of inputs and outputs. SciLuigi requires 
knowing the specific inputs/outputs names beforehand to connect 
them through explicit attribute value assignment. Lines 14-17 (Fig. 3) 
show how this issue was solved using the setattr and getattr Python 
methods, allowing dynamic access to class attributes.

Fig. 3. Algorithm to materialize a pipeline specification into a SciLuigi 
workflow (syntax simplified for readability). 

This solution provides more flexibility and eases the addition and 
modification of new tasks, as the whole pipeline can be instantiated 
without hard-coding specific dependencies or class types.

V. KoopaML

A. Prototype
A prototype was developed and evaluated to complement 

the requirement elicitation process through a focus group. This 
methodology enabled us to capture more requirements and validate 
the platform’s conceptual design before its implementation.

Fig. 4 shows a screenshot of the interface for defining ML pipelines 
through node-link structures.

The focus group involved different user profiles, including 
physicians and AI experts related to the health domain. The outcomes 
of this study can be consulted in [25]. The feedback was positive and 
helpful for starting the implementation of the tool.

B. Functional System
As explained throughout this work, a crucial characteristic of the 

interface is that it should be simple to avoid overwhelming users with 
several complex concepts at once and robust to enable the definition 

of ML pipelines with enough detail. This section provides an overview 
of the interface proposal and the different features of the first version 
of KoopaML.

1. ML Pipelines
When creating a new project or pipeline, the system displays an 

empty workspace with a toolbar containing the tasks included in the 
ML workflow. As introduced in previous sections, tasks are divided into 
high-level categories to ease users’ search of specific nodes (Fig. 5).

Fig. 5. New project workspace and available nodes.

Users can click on specific tasks or drag and drop them into the 
workspace to start configuring the pipeline. Fig. 6 shows the “Upload 
CSV” node. This node is particularly complex because several 
circumstances need to be considered when uploading data:

1. CSV files can be separated by different characters, such as commas 
or semicolons. For this reason, the node allows the configuration 
of varying separator values through a text input.

2. Some nodes could take as an input a single column (or a subset of 
them). That is why each dataset’s columns need to be considered 
single outputs and be accessible to create connections among nodes.

3. The whole dataset is also considered a single output (“Data” 
socket in Fig. 6) to avoid multiple column connections and ease 
the data flows. This output includes the whole dataset (the set of 
all columns contained in the uploaded file).

4. Related to the previous point, some columns might be discarded 
from the dataset (i.e., columns that hold several missing values or 
aren’t relevant to the problem). A checkbox beside each column 
allows users to select the columns that will be part of the dataset.

5. Finally, data related to the health domain can hold a significant 
quantity of variables. However, showing all variables as outputs in 
the “Upload CSV” node at once could impact the user experience. 
For this reason, a threshold has been configured to show only 
the first five columns of a dataset, allowing the user to add the 
remaining columns through a multiple selection input. This way, 
users can focus only on variables that need explicit connections 
through their ML pipeline.

Fig. 4. Prototype of the workspace to define ML pipelines.
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Fig. 6. A node for uploading CSV files.

Fig. 7 shows a simple ML workflow in which: 

1. Categorical data is encoded through a Label Encoder.

2. The output from the label encoding process is then split into training 
and test sets. This node needs to know the variable to predict to 
perform the division of data. In this specific case, the variable 
“group” will be the one to be expected through this pipeline.

3. Training datasets are connected to a Random Forest classifier.

4. Finally, the trained model and the test datasets are connected to an 
evaluation node to measure the model’s accuracy.

Users can execute the pipeline whenever they want by clicking 
the “Run” button, triggering the backend to build the pipeline by 
connecting tasks using the algorithm presented in Fig. 3. Once the 
pipeline has been executed, the workspace displays the results (or 
any error) individually in each node (bottom image of Fig. 7). Storing 
intermediate results leverages one of the main benefits of using 
SciLuigi, which is the possibility of re-running failed tasks individually 
without triggering the whole pipeline again. 

Fig. 7. Execution and results of an ML pipeline. Intermediate results of each 
node can be consulted by clicking on the top-right icon of each node.

Through this approach, intermediate results can also be inspected 
individually. On the one hand, Fig. 8 displays the intermediate results 
from the test/train splitting node. This node yields four results: test 
and training datasets separated by the column to predict. The fig. 8 
shows two of these intermediate results (the test datasets). 

Evaluation metrics are also treated as intermediate results. In this 
case, the measurement of the accuracy of the trained model yielded 
33% of correct predictions (Fig. 9).

2. Data Validation
Data validation and exploratory analysis are crucial steps when 

building successful ML pipelines. If data is not properly inspected and 
preprocessed, trained models could yield useless results. KoopaML 
provides a summary screen to assist users in the exploration process. 
This section is divided into three main blocks.

The first block provides a table view of the whole dataset. This view 
allows users to see all columns and rows of the uploaded data files and 
navigate through them in detail (Fig. 10).

Fig. 8. Results were derived from splitting the uploaded data into test and 
training datasets.

Fig. 9. Accuracy of the trained model. Note that low accuracy is related to the 
small dataset that illustrates the system’s functionalities.

Fig. 10. Results were derived from splitting the uploaded data into test and 
training datasets.

Fig. 11. Information dashboard of the input dataset characteristics.
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The second summary block is a data dashboard in which practical data 
details, such as the distribution of values, data types, number of missing 
values, or a correlation matrix, are presented visually to ease the analysis 
of the dataset characteristics (Fig. 11). The dashboard is automatically 
generated and tailored according to the user needs [26] - [28].

Finally, the last block is focused on alerting users regarding potential 
issues of the dataset (Fig. 12), such as columns with significant 
quantities missing values, mixed data types, unbalanced categories, 
etc. Users are encouraged to consider or solve these issues through 
this feature before using the dataset in a pipeline.

Fig. 12. Validation screen.

3. Heuristics Management
As explained before, one of the goals of the platform users is to 

learn from the experience of developing pipelines and build skills 
related to the application of ML. However, this learning experience 
needs to be guided by expert knowledge.

 We have tackled this challenge through the definition and 
management of custom heuristics. KoopaML allows expert users to 
design heuristics in graphical decision trees to yield recommendations 
and guide the implementation of pipelines.

Heuristics are represented through the DSL provided by the 
flowchart.js (https://github.com/adrai/flowchart.js) library. This 
library allows textual and graphical representation of flow charts, 
providing a fine-grain manipulation of heuristics and rule-based 
recommendations (Fig. 13).

Fig. 13. Example of the definition of a heuristic.

VI. Expert Validation

The results of the expert validation were favorable. Overall, the 
platform was rated as useful to overcome the difficulties of creating 
ML pipelines in a medical context.

Regarding the issues encountered, apart from minor bugs that were 
fixed, the following can be highlighted:

• Error reports. The experts pointed out the possibility of having 
a variety of errors related to the execution of the pipeline. In the 
current version of KoopaML, these errors were displayed through 
tooltips associated to each node. However, experts indicated that 
it might be useful to have an unified report listing every error or 
warning raised during the execution of the pipeline.

• Model metrics. KoopaML allows the computation of different 
metrics to validate the trained models. For this matter, the user 
needs to select and connect every metric they want to calculate. 
This could be time-consuming if several metrics are to be analyzed. 
In this sense, the experts advised the possibility of unifying every 
metric on a node, and let the user select the metrics directly from 
there instead of carrying out the selection one by one. 

• Data visualizations. The data summary presented in the previous 
section was highly valued by the experts. Following this idea, they 
recommended implementing a dashboard with visualizations 
related to model metrics as well.

• Cross validation. The experts pointed out that, in practice, 
they use cross validation [29], and thus, that the platform should 
support this approach.

Other comments were related to the addition of a wide set of 
algorithms and metrics, as well the possibility of configuring the 
hyperparameters of the algorithms through the interface.

VII. Discussion

This work presents the first version of KoopaML: a platform for 
automating and learning the definition of ML pipelines. We followed 
a user-centered approach for the design and development process, 
considering the primary goal of the system: to ease the application of 
ML for non-specialized users.

This version has been subject to iterative development with 
continuous feedback from experts. For instance, the “Upload CSV” 
node design shown in Fig. 6 resulted from different evaluations 
in which domain experts exposed issues encountered or potential 
improvements when uploading their domain data.

Although there are commercial tools that tackle the automation of 
these processes, the specific requirements that arise from the medical 
context asked for a customized platform that aligns with the necessities 
of end-users (in this case, physicians with lack of data science skills 
but that are interested in applying ML). 

On the other hand, another related benefit of the customized tool 
is implementing communication mechanisms among other already 
developed devices for the cardiology department at the University 
Hospital of Salamanca [30]. Connecting different platforms would 
foster the creation of a technological ecosystem [31] with powerful 
and transparent data management and data science features adapted 
to the health sector requirements.

The platform’s architecture is designed to allow flexibility and 
evolution due to the changing nature of AI and ML methods. The 
abstraction of pipelines into tasks with well-defined inputs and outputs 
has facilitated the user interface design and the final implementation 
of the workflows through libraries such as SciLuigi, matching the 
same node-link structures. 

In addition to the workspace for instantiating pipelines, the platform 
also provides an interface to support the exploratory analysis of data. 
This interface was included after the evaluation of the platform by 
expert users, who asked for more feedback related to the input data.

Finally, one novel feature of KoopaML is the heuristics management 
module. This module enables the definition of heuristics through a 
DSL and its graphical representation. Heuristics can be stored to 
rely on different knowledge bases depending on the data domain, 
for example. The dynamic heuristic definition fosters the flexibility 
of the recommendations and guided support provided within the 
workspace during the implementation of ML pipelines. Moreover, 
their structured format allows the inclusion of external heuristics from 
other knowledge bases stores [32], [33].

https://github.com/adrai/flowchart.js
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Regarding the expert validation, the results were highly valuable 
and useful to set the foundations of new improvements and features, 
as well as to identify minor bugs. Having experts from both AI and 
medical fields enabled the identification of issues and shortcomings of 
the current version of the platform. For these reasons, we will continue 
performing this kind of evaluations, as they provide insights related to 
theoretical concepts that will be difficult to reach with lay users.

Following the research question posed in the introduction and 
the results of the expert validation, the platform has been developed 
taking into account the necessities of the medical domain. The 
implementation of an interface with simple and visual mechanisms 
(such as drag and drop or visually connecting two nodes to instantiate 
a pipeline) set the foundations for a platform that can be used by non-
expert users.

On the other hand, the development of the heuristics management 
module will also allow the definition of recommendations that could 
be adapted to any kind of user. These features will provide additional 
assistance while creating and interpreting ML pipelines. 

VIII.   Conclusions

This work describes the design process, architecture, and features 
of KoopaML: a graphical platform for building machine learning 
pipelines adapted to health professionals.

The platform has been designed to support the evolution and 
addition of new tasks related to ML pipelines through abstraction 
mechanisms. The abstraction of tasks has allowed simplifying the 
user interface and the automatic implementation of the graphically 
instantiated pipelines.

KoopaML assists users in the definition of ML pipelines, execution 
of ML pipelines, interpretation and visualization of ML results, data 
validation, and heuristics management.

Future research lines will involve further expert validations of the 
platform, as well as in-depth user tests to measure the usability, ease 
of use, and effectiveness of the tool.
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