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Abstract

Bird species identification is becoming increasingly crucial for avian biodiversity conservation and assisting 
ornithologists in quantifying the presence of birds in a given area. Convolutional Neural Networks (CNNs) 
are advanced deep learning algorithms that have proven to perform well in speech classification. However, 
developing an accurate deep learning classifier requires a large amount of data. Such a large amount of data 
on endemic or endangered creatures is frequently difficult to gathered. Also, in some other fields, such as 
bioinformatics and robotics, the high cost of data collection and expensive annotation limit their progress, so 
large, well-annotated data creating a set is also difficult. A transfer learning method can alleviate overfitting 
concerns in a deep learning model. This feature serves as the inspiration for transfer learning, which was 
created to deal with situations where the data are distributed across a variety of functional domains. In this 
study, the ability of deep transfer models such as VGG16, VGG19 and InceptionV3 to effectively extract and 
discriminate speech signals from different species of birds with high prediction accuracy is explored. The 
obtained accuracies using VGG16, VGG19 and InceptionV3 were equal to 78, 61.9 and 85%, respectively, which 
are very promising.
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I. Introduction

Birds not only enhance nature's charm and beauty but also help 
maintain the balance of the new environment of the world. 

Because they are essential parts of natural systems, birds have 
ecological importance. Birds manage insects and rodents, pollinate 
crops, spread seeds, and serve humans directly. Bird vocalizations 
are very noticeable, which makes them a helpful tool for population 
monitoring and biodiversity assessment. Bird vocalization includes 
both calls and songs. Birds are essential to our ecology. For instance, 
birds keep our globe beautiful by controlling pests, pollinating crops, 
and preserving the ecology of an island. There are around 10,000 
species on earth, according to [1]. Birds make sounds for many 
reasons, including locating territories, which is important for male 
birds, inviting a mate to mate, reacting to their environment, and 
determining whether or not they are in danger [2]. People often find 
it difficult to distinguish between a bird's song and a call, especially if 
they are unfamiliar with birds. An audio recording of a bird's voice is 
an essential tool for identifying the species of a bird for a biologist who 
is interested in the study, management, and conservation of birdlife 
[3]. There are many bird calls, and it is hard for people to figure out 

which ones have a place with animal categories. The manual recording 
and recognition of avian sounds is inconvenient and can sabotage bird 
conservation efforts. As a result, accurate, scalable, and automated bird 
species recognition is essential for wildlife monitoring and can help 
conserve avian biodiversity [4]-[7]. The identification of bird species 
is a classic pattern recognition problem, and most research includes 
sections on signal pre-processing, feature extraction, and classification 
[8], [9]. Deep learning has received increased attention from 
researchers recently since it has been successfully used in a number 
of practical applications. To stop the rapid loss of avian variety in 
this area, deep-learning algorithms for bird detection are appropriate 
[10]. In this context, several automated bird detection models were 
developed. Additionally, a test has been performed on a system that 
can recognize new bird songs and learn from previously recorded 
annotated bird sounds. This system may provide accurate information 
on the presence or absence of a target species as well as the overall 
biodiversity status of a region. Deep learning algorithms are superior 
to conventional machine learning techniques because they can extract 
high-level characteristics from enormous amounts of data [11]. On the 
other hand, traditional machine learning approaches need users to 
construct features, which demands significant manual work.

On the other hand, deep learning approaches automatically extract 
data features using a hierarchical feature extraction method and an 
unsupervised or semi-supervised feature learning methodology 
[12]-[14]. Deep learning can be defined as a representation learning 
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algorithm in machine learning that is based on large data. Although 
deep learning models can achieve good predictive performance, such 
models require a huge number of unique data points to achieve this 
performance and this turns out to be challenging for endangered or 
endemic birds, as inadequate data overwhelms deep learning models. 
One of the fundamental problems of deep learning is data dependency. 
Deep learning is more dependent on training data than traditional 
machine learning methods since it needs a lot of data to find latent 
patterns in the data. Inadequate training data is unavoidable in 
some deep-learning applications. For instance, the high cost of data 
collection and expensive annotation, which impedes development, 
make it difficult to produce a sizable, thoroughly annotated dataset 
for each sample in a bioinformatics dataset [15], [16],[17]. The issue 
of overfitting in a deep model can be solved using a transfer learning 
technique [18]. Because transfer training makes the condition that the 
training data be independent and distributed equally with the test data 
simpler, it can address the issue of a lack of training data. Transfer 
learning drastically reduces the amount of training data and time 
needed for the target domain, because it does not require training and 
testing data or starting from scratch to train the target domain model.

In this experimental study, 7 different bird species were correctly 
identified using 16387 test samples from the xeno-canto database. 
Due to the limited sample size, several data augmentation techniques 
have been studied, and the underlying hypotheses were thoroughly 
evaluated. It was interesting to note that such type of augmentation 
techniques results in overfitting of the models. In light of these 
considerations, the idea of transfer learning was chosen for this 
investigation. By using transfer learning, a total of 36 species were 
classified rather than 7. Because of the limited availability of high-
quality data, pre-trained models have been used in the identification 
of 37 different categories of birds. To develop this investigation on 
the local bird recognition in Sundarban, West Bengal, India, two 
deep learning models were used. Hence, InceptionV3 and MobileNet 
were initially tested without the use of transfer learning technology, 
and then they were tested once again with it. Finally, the findings 
were compared using MobileNet and transfer learning, employing 
performance evaluation metrics such as accuracy and F1 score. In the 
experiment, the result showed that in the VGG16 model the training 
accuracy was 75%, while the test one accuracy was 78%. Respectively 
in the VGG19 model, the training accuracy was 64%, while the test 
accuracy was 61.9%. On the InceptionV3 model, which was employed 
in additional tests, an accuracy of 95% was reached during training, 
while an accuracy of 85% was achieved which obtained the best 
result. In the InceptionV3 model, ImageNet was used as a weight, and 
average pooling was employed.  The rest of this article is organized 
in the following way. Section 2 describes the related research. The 
methodologies used are detailed in Section 3.  Section 4 shows the 
results and their analysis, which are followed by a discussion and 
conclusion in section 5, and concludes what future work can be done.

II. Literature Survey

Different researchers have proposed different features for the 
audio sounds of birds, and artificial intelligence techniques have been 
used to voice classification. CNN models that use Mel spectrogram or 
mel frequency cepstral coefficient (MFCC) derived from audio data 
have been observed to dominate the most promising solutions [19]. 
However, recent trends show that the best results were achieved by 
the works that used Convolutional Neural Networks with transfer 
learning [20]. The best results were for the most part from using Resnet, 
Inception, and VGG models Additionally, Fritzler et al. [21] propose 
the Inception-v3 pre-trained convolutional neural network-based bird 
recognition system. The technology was enhanced with 36,492 audio 

recordings of 1,500 different bird species for the BirdCLEF 2017 task. 
The audio recordings were afterward transformed into spectrograms 
and used for data augmentation. According to this study, optimizing a 
pre-trained convolutional neural network trumps starting from scratch 
in terms of performance. For acoustic bird detection, Ntalampiras [22] 
introduced a transfer learning framework employing the probability 
density distribution of ten musical genres to determine the degree of 
affinities between different bird species and various musical genres. 
Deep learning models based on CNNs are efficient categorization 
models. However, getting numerous training samples in specialist 
disciplines like bird acoustics is expensive and difficult as they require 
a large amount of data for training. To address this issue, transfer 
learning is one method that can classify data with a limited number 
of training examples. DB Efremov et al. [23] assessed the effectiveness 
of birdcall classification utilizing transfer learning from a bigger base 
dataset to a smaller target dataset using a ResNet-50 CNN in this 
regard. A bird recognition model built on Inception-v3 was presented 
by J. Bai et al. [24] can identify and categorize 659 different bird species 
from supplied audio recordings. Inception-v3 is used to recognize bird 
sounds by using log-Mel spectrograms as features.

To enhance the model’s performance, several data augmentation 
strategies were employed. In order to categorize the cries of 24 species 
of birds and amphibians discovered in environmental field recordings, 
Zhong M. et al. [25] created a deep convolutional neural network. 
Their primary objective was to prepare enough training data, which is 
a significant difficulty for many deep-learning applications. To tackle 
this problem, they created a pre-trained deep convolutional neural 
network by fusing the idea of transfer learning with a supervised 
pseudo-labeling technique and an eigen loss function. In order to 
categorize grouper species based on the courtship-related noises they 
make during spawning aggregations, Ibrahim suggests a transfer 
learning technique, A. K. [26]. On the other hand, Rajan R. et al. [27] 
suggested a method for learning bird vocalizations utilizing sliding 
window analysis on the Mel spectrogram and a pre-trained Deep 
Convolutional Neural Network (DCNN), a VGG16 model. Using a deep 
learning model, Henri, E. J. et al. [28] created a method for classifying 
Mauritius bird sounds from audio recordings. Many categorized 
recordings from the birdsong-sharing website Xeno-canto were utilized 
as input for this model. Following that, they improved three previously 
trained CNN models: InceptionV3, MobileNetV2, and RestNet50, as 
well as a brand-new model. With 84% of accuracy, transfer learning 
was successfully applied to develop the study’s model. However, to 
create an effective deep-learning classifier, a substantial amount of data 
is needed. It is typically difficult to gather such vast amounts of data 
about endemic or endangered organisms. By separating two acoustic 
features, mainly, the Mel spectrogram and the Mel frequency cepstral 
coefficient, from each data point, Gunawan, K.W. et al. [29] established 
a transfer learning model that restricts overfitting in deep models and 
a method to maximize the dataset used. In order to incorporate and 
learn from both audio data, the researchers employed a two-input 
scalable convolutional neural network constructed from EfficientNet. 
On the test set, they had 99.9% of accuracy. A classification system for 
the sounds of 17 species of Indian owls was developed by Nayak S. et al. 
[30]. For the transfer learning model created in this study, four model 
architectures were used: InceptionV3, Resnet152, InceptionResnetV2, 
and VGG16, with all models sharing the same model parameters. The 
InceptionV3 network, which had an accuracy of 85.3%, produced the 
most precise results. ResNet50, DenseNet201, InceptionV3, Xception, 
and Efficient Net were just a few of the deep transfer learning models 
employed by Kumar Y. et al. [31] to create an intelligent system for 
predicting various bird species from a massive collection of audio data 
sets. DenseNet201 has the highest classification accuracy in the group, 
which was of 97.43%. A methodology for automatically classifying and 
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processing images and sounds to identify bird species from bird videos 
was presented by Sharma N. et al. [32]. On image and sound datasets 
containing recordings of 137 different bird species, classification 
models for images and sounds were developed using pre-trained 
neural networks ResNet 50V2 and EfficientNet B0. The final model’s 
overall accuracy was equal to 90%, while the test accuracy for the two 
models was 97.1 and 92.4%, respectively.

Deep learning techniques would be a practical solution, 
according to the aforementioned discussion of previously developed 
methodologies [33], [34]. The creation of a useful classification model 
that optimizes performance for numerous species using transfer 
learning and convolutional neural networks is the major contribution 
of the current study. Ornithologists and other researchers are aware of 
the potential benefits that may come from combining developments 
in bioacoustics with transfer learning models, which could provide 
a new study dimension. Additionally, there have been a few works 
completed, some of which we have discussed here; nonetheless, all of 

those efforts have certain restrictions. Table I lists state of art studies 
on automated bioacoustics bird species identification by using transfer 
learning models.  It has been noted that exceptionally lengthy files may 
sometimes break apart into pieces. It is essential to determine whether 
or not the Transfer Learning-based strategy can manage feature spaces 
that span a broad range of sizes. Following the deployment of transfer 
learning models, it was shown that the categorization of multiple-
label birds might be a challenging task at times due to overlaps in 
their vocalizations. Additionally, misclassifications were found in 
certain classes. Utilizing transfer learning models has not resulted in 
a significant amount of additional work being done for the purpose of 
recognizing calls from low-quality audio. During the pre-processing 
step, a number of noise-reduction filtering techniques need to be 
employed in order to get a higher recognition rate. Our main focus of 
this work is to provide a technique that can identify a large number 
of species from their audio and also the system must be cost-effective 
and scalable.

TABLE I. State of Art Studies on Automated Bioacoustics Bird Species Identification

Author(s) Dataset(s) Technique(s) Limitation(s) Results

Sprengel, E. 
et al.

(2016)
LifeCLEF plant challenge 2016 Dataset CNN Longer files create chunks Accuracy: 84%

M Lasseck
(2018)

LifeCLEF 2018
DCNNs pre-trained on 

ImageNet

Results can be further enhanced 
by combining models with 

various features
Accuracy: 93%

Ntalampiras, S.
(2018)

GTZAN corpus and http://www.Xeno-canto.org/
Transformation based 
on Reservoir Networks

It is necessary to assess whether 
the Transfer Learning-based 
approach can handle feature 

spaces with a wide range of sizes

There were obtained 92.5 
and 81.3% classification 

accuracy on average

Efremova et al.
(2019)

From http://www. Xeno-canto.org: Base “SoundNet” 
Dataset, Target Dataset, Negative Dataset

ResNet-50 CNN Results can be further improved

In 5-fold cross-validation, 
the target dataset’s 
average validation 

accuracy was of 79%

Bai, J., et al.
(2019)

BirdCLEF2019 Inception-v3
Ensemble of networks could 

significantly improve the results

The classifications mean 
average precision was of 

0.055 (c-mAP)

Rahman, M. M., 
et al.

(2020)
Seven local birds’ images

MobileNet and 
Inception-v3

Need to evaluate whether this 
model is suitable for a large 
number of various species

Accuracy: 91%

R Rajan., st al.
(2021)

Xeno-canto bird sound database

VGG16 through 
a sliding window 
analysis on Mel 

spectrogram

The classification of multiple-
label birds is a difficult 
undertaking because of 

vocalization that overlaps

Average F1-score: 0.65

Henri, E. J., 
et al.

(2021)
Xeno-canto bird sound database

InceptionV3, 
MobileNetV2 and 

RestNet50

Misclassifications were detected 
in some classes

Accuracy: 84%

Gunawan, K. 
W., et al.

(2021)
Xeno-canto database

Scalable with two 
inputs, EfficientNet’s 
Convolutional Neural 

Network (CNN)

It is difficult to gather the vast 
amount of high-quality data on 
endemic or threatened animals 

that are required to create a 
powerful model

Accuracy: 99.27%

Nayak, S., et al.
(2022)

Xeno-canto database

The ImageNet 
dataset was used to 
train the pre-trained 
InceptionV3 network

Need to detect the calls in poor 
quality audio

Accuracy: 85.3%

Kumar, Y., et al.
(2022)

https://www.kaggle.com/c/birdsongrecognition/data 

InceptionV3, 
Xception, ResNet50, 
DenseNet201, and 

Efficient Net

To increase the recognition rate, 
various noise reduction filtering 
must be applied during the pre-

processing stage

DenseNet201 and 
ResNet50 classification 

models achieved an 
accuracy of 97.43% on 

the validation set.

Sharma, N., 
et al.

(2022)

With 264 bird species, Cornell Bird Call 
Identification - 200 dataset offers roughly 150 

recordings for each one

ResNet50V2 and 
EfficientNetB0

Need to detect the calls in poor 
quality audio and need to remove 

ambient noise

EfficientNetB0 accuracy: 
92.4%
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III. Methodology

This section outlines the procedure followed in this study. The 
employed methodology incorporates transfer learning, deep learning, 
and audio-processing ideas. First, input comes from an audio recording 
of the bird under analysis. After that, features are extracted from the 
audio input using signal pre-processing techniques. The processed 
components are then fed into a powerful classification model that 
makes use of Convolutional Neural Networks [35], [36] and the idea 
of Transfer Learning [37], [38] to produce the best results for a wide 
range of species. The used three models are built on pre-trained 
networks called VGG16, VGG19, and InceptionV3, which were trained 
using data from 37 different bird species. In Fig. 2, the implementation 
process for this study is shown. First, from Xeno Canto, particular 
regional data is chosen, then data cleaning is performed, and after that 
data augmentation technique is used. Then, all the data is inputted 
into pre-trained models and classified. 

Database:
Xeno-Canto

Data cleaning

Performance
Evaluation

Decision Making

Data is ready to feed into
Models for Prediction

MFCC

Data augmentation
Audio track to log
Mel Spectrogram

conversion

Greyscale the
images and invert

colors

Fig. 2. Proposed bird sound identification solution.

A. Data Collection
The widely used Xeno-canto bird sound database served as the 

foundation for this study’s dataset. Volunteers from all across 
the world can record bird calls and sounds for the Xeno-canto 
Foundation, an online database of bird noises that includes more 
than a million bird sounds from more than 10,000 distinct species. 
Birdsong captured at Sundarban, West Bengal, India, served as the 
particular dataset for this study. Information on 37 different species 
was gathered. Fig. 1 shows the dataset utilized in this study. Each 
audio file was modified to contain a single vocalization lasting 1.5 
seconds (sampling rate: 16000 Hz). In total, 11325 files were included. 
The models were trained with augmented data, which were validated 
using the original 453 files.

B. Data Cleaning
Data cleaning is the process of removing inaccurate, corrupted, 

malformed, duplicate, or incomplete data from a dataset. There is 
a substantial risk of data duplication or mislabeling when merging 
multiple data sources. Background noise in the downloaded audio 
files was minor, which was confirmed manually. Hence background 
noise treatment was unnecessary. Parts of the audio files that had 
no or minimal sound were eliminated as follows: firstly, it was 
determined what the median sound power was, and the audio 
segments whose energy level or functional ability was below 50% 
of the median were removed, and lastly, the remaining audio files 
were reassembled.

C. Feature Extraction Technique

1. Mel Spectrogram
The audio sample was converted to Mel spectrogram in a different 

way and at different frequencies. Humans always perceive frequency 
logarithmically. A time-frequency representation, a perceptually 
appropriate amplitude representation, and ultimately a perceptually 

80

70 68

2

9

23

54

21

40

4
1 1

8

44

15

29

67

14 15

Audio files

15

27
22

59 58

22

12
9

6 6 8
54

1
5

8 8

2 23

1.    Ashy_prinia

5.    Black_capped_kingfisher

9.    Brown_fish_owl

13.   Common_flameback

17.   Grey_headed_fish_eagle

21.   Lemon_rumped_warbler

25.   Pallass_fish_eagle

29.   Red_whiskered_bulbul

33.   Swamp_francolin

37.   White_bellied_sea_eagle

2.    Asian_openbill

6.    Black_hooded_oriole

10.  Brown_winged_kingfisher

14.   Common_myna

18.   Gull_billed_tern

22.   Lotens_sunbird

26.   Pin_striped_tit_babbler

30.   Scaly_breasted_munia

34.   Tree_pipit

3.    Bank_prinia

7.    Blue_throated_blue_flycatcher

11.   Cinnamon_bi�ern

15.   Common_woodshrike

19.   House_sparrow

23.   Mangrove_whistler

27.   Purple_heron

31.   Small_minivet

35.   Western_osprey

4.    Baya_weaver

8.    Brown_cheeked_fulve�a

12.   Collared_kingfisher

16.   Fulvous_breasted_woodpecker

20.   Indian_scimitar_babbler

24.   Pale_billed_flowerpecker

28.   Purple_sundbird

32.   Striated_babbler

36.   Western_yellow_wagtail

60

50

40

30

20

10

0

Fig. 1. List of the studied species data.
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relevant frequency representation make up ideal sound qualities. 
For the pitch, Mel is crucial. Convert the frequencies to the Mel 
scale, extract the short-time Fourier transform, and then convert the 
amplitude to Db.

The Mel scale conversion procedures for frequencies are:

• Determine the number of Mel Scales;

• Create banks of Mel filters;

• Use Mel filter banks for the spectrogram.

D. Data Set Pre-Processing
Data pre-processing is the first and most crucial stage in developing 

a classification model. The audio classification task is an image 
classification challenge in this study. Here, MFCCs are employed 
in sound identification tasks and can accurately map auditory 
information in a visual domain (Fig. 3.). In order to be used, CNN 
models for classification audio recordings must be represented in the 
optical environment. Different processing is frequently required to 
make the dataset acceptable for usage with a CNN model [39]. The 
data pre-processing steps include data sizing, labeling, and expansion. 
The database consists of audio of the 37 birds’ songs of Sundarban; 
among them, 19 birds’ themes are included, which are very few 
(below 10). This significant imbalance may influence the model’s 
performance and can lead to issues such as overfitting and difficulty 
learning the model.
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Fig. 3. Time domain representation of original audio of the ashy_prinia 
dataset.

1. Data Augmentation
A CNN model could not be used since the data collected for 

certain species was insufficient. Therefore, for those specific 
species, data augmentation was used. On the other hand, in order 
to prevent overfitting, data augmentation is needed. The term “data 
augmentation” refers to an increase in available data. Time shifting, 
adding noise, time stretching, and pitch augmentation is examples of 
audio data augmentation techniques. Time stretching, pitch scaling, 
and the addition of white noise were the three data augmentation 
methods used in this study. The aforementioned data-cleaning 
procedure has been applied to all used data.

a) Time Stretching
A method is known as “time stretching” allows one to increase the 

length or speed of an audio stream without changing its pitch or other 
parameters. For example, one can extend a sound to 200 milliseconds 
by decoding twice as many samples from each frame if uttered for 
100 milliseconds (10 frames) [40]. Librosa, a python utility for music 
modification, applies the time stretching simple. The rate settings 
can change the audio’s pace and duration. Fig. 4 represents the time 
stretching of 0.8 times of original audio. 

Raw wave

A
m

pl
it

ud
e

0.03

0.01

0.02

0.00

-0.02

-0.01

-0.04

-0.03

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 4. Time Stretching of an original bird call audio.

b) Pitch Scaling 
This technique serves as a wrapper for the librosa function. The 

pitch veers all over the place. When applying different rate values 
without altering the duration of the signal, pitch scaling is the reverse 
of time stretching [41], as can be seen in Fig. 5.
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Fig. 5. Pitch Scaling of an original bird call audio.

c) Noise Addition
Noise addition can generate syntactic audio data for the data 

augmentation process. Numpy makes it simple to deal with noise 
addition by adding a random value to the date. In Fig. 6, this technique 
can be seen.
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Fig. 6. Noise addition of an original bird call audio.

2. Dataset Splitting: Training & Testing
The total number of files that were selected from Sundarbans’s set 

consisted of 2265; after doing data augmentation, the total number of 
files was 11325. Then, the used dataset was split into 80% and 20%, for 
training and testing, respectively.
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E. Model Description
The use of deep learning in audio recognition is well-recognized. 

Neural networks have been applied to numerous facets of audio 
recognition since the development of deep understanding [42], [43]. 
The effectiveness of neural learning for sound recognition is influenced 
by the adaptability and predictive power of the increasingly accessible 
deep neural networks. The deep learning models utilized in the study 
are described in the following.

1. VGG16
VGGNet-16 has a relatively homogeneous architecture with 16 

convolutional layers. It only has 3x3 convolutions but a lot of filters 
[44]. The Visual Geometry Organization, or VGG for short, was a 
group that replaced Alex Net which was established in Oxford. It 
adopts and enhances some concepts from its forerunners and uses 
deep convolutional neural layers to increase accuracy. Comparatively, 
managing VGGNet’s 138 million parameters can be challenging.

VGG16 has thirteen convolutional layers, five Max Pooling layers, 
and three Dense layers for a total of twenty-one layers, but only 
sixteen weight layers or trainable parameters layers [45]. Each of the 
16 layers has one convolution and one pooling layer, Fig. 7. VGG16 can 
be enhanced through transfer learning.

Following the rectified linear unit (ReLu) activations, the image 
data is transmitted through the first of two convolutional layers with a 
minimum receiving area of 3X3. In each of these two layers, there are 
64 filters. One pixel serves as padding, while one pixel always serves 
as the convolution step. The first convolutional layer is responsible 
for capturing low-level information such as gradient and edge 
orientation, among other information. The spatial maxima are then 
binned with a step of 2 pixels in a 2x2 pixel window for activation 
maps. An activation’s size is cut in half. Consequently, the activations 
at the base of the first stack are 112x112x64 long. The activations then 
proceed via the 128 filters in the second stack as opposed to the 64 in 
the first one.

The size is 56x56x128 as a result after the second layer. A maximum 
pool layer and three convolutional layers make up the third layer. 
Because 256 filters are employed, the output stack size is 28x28x256. 

The following two sets of three convolutional layers have each 512 
filters. The final stack is of 7x7x512 size for both. Following stacks of 
convolutional layers with a flattened layer in between are the three 
fully connected layers. The last completely connected layer serves as 
the output layer, and has 1000 neurons, or 1000 potential classifications 
of the ImageNet dataset. The previous two fully connected layers have 
each 4096 neurons. The SoftMax activation layer, which is utilized 
for categorization, comes after the output layer. In order to adapt the 
architecture to high-level characteristics, additional layers are also 
helpful. The spatial size of the convolved feature is decreased by the 
pooling layer. The amount of processing power needed to process 
the data lowers as its dimension increases. Smooth training is made 
possible by the VGG16 model, which is useful for extracting rotation- 
and position-invariant dominating features.

2. VGG19
A 19-layer version of the VGG model is known as the VGG19 model, 

which has 16 convolution layers, three fully connected layers, 5 Max 
Pool layers, and 1 SoftMax layer, Fig. 8 [46]. An RGB image of fixed 
size (224*224) was provided to this network as input, indicating that 
the matrix was of the form (224,224,3). The only preprocessing was to 
take the mean RGB value for the entire training set and subtract it from 
each pixel [47]. The complete visual concept was then covered using 
kernels of size (3*3) with a step size of 1 (one) pixel. Spatial padding 
was then applied to preserve the spatial resolution of the image. 
Step two was then used to create maximum pooling in two * 2-pixel 
windows. Then, instead of using tanh or sigmoid functions, a ReLu 
was used to induce non-linearity and improve processing speed. Three 
final connected layers are then implemented, the first two of which 
are 4096 in size, followed by a 1000-channel ILSVRC classification 
layer, and finally a SoftMax activation layer, which is used for category 
classification. It has been used as a good classification architecture for 
various other datasets. The models were publicly available, so they 
can be used as is or with minor modifications for other similar work. 

3. InceptionV3
Convolutional neural networks are the foundation of the deep 

learning model known as InceptionV3, which was first developed as 
a Google network module for image analysis and object detection. 
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Inception Networks (Google Net/Inception v1) are more cost- and 
time-effective computationally than VGGNet in terms of the number 
of network parameters produced. It has 42 layers and a lower error 
rate than previous models, Fig. 9. To improve model adaptation, the 
InceptionV3 model uses a number of mesh optimization strategies. 

Inception Block

Previous
Activation

1x1 CONV

1x1 CONV

1x1 CONV

3x3 CONV

5x5 CONV1x1 CONV

Maxpooling
3x3 = 1
same

Channel
Concat

28x28x192

28x28x128

28x28x64

28x28x256

28x28x32

28x28x32

16

96

Fig. 9. Layers used in the InceptionV3 model.

The used approaches are factorized convolution, regularization, 
dimensionality reduction, and parallelized calculations [48]. The 
number of parameters in the network is decreased via factorized 
convolutions, which enhances computational effectiveness. It also 
benefits the network performance. Training becomes faster as smaller 
convolutions take the place of bigger ones. For instance, replacing a 5 5 
convolution with two 3 3 filters only requires 18 (3*3+3*3) parameters. 
In asymmetric convolutions, a 3 3 convolution can be swapped 
out for a 1 3 convolution followed by a 3 1 convolution. If the 3 3 
convolutions were switched out for a 2 2, there would be a lot more 
parameters than in the case of the described asymmetric convolution. 
The network suffers a considerable loss as a result of the losses caused 
by the little CNN that was added between the layers during training. 
In InceptionV3, a third classifier acts as a regularization term. Last 
but not least, pooling procedures are frequently used to achieve a 
grid size reduction strategy. The final building incorporates all of the 
principles previously mentioned. The InceptionV3 was used in this 
study because, while not slower than the Inception V1 and V2 models, 
it is more effective and has a deeper network [49]. The InceptionV3 
model is less expensive to calculate.

In Fig. 10, the proposed customized model is shown. First, the 
model was built with a standard structure, and later it was fine-tuned 
for respective models. Methodologies such as feature extraction, 
data augmentation, and three transfer learning models were used 
for the comparison purpose in this study. As because of the transfer 
learning concept is employed therefore there are no overfitting 
issues with the model. First, input comes from an audio recording of 
the bird under analysis. After that, features are extracted from the 
audio input using signal pre-processing techniques. After that, the 
data augmentation task is accomplished. The processed components 
are then fed into a powerful classification model and the idea of 
Transfer Learning to produce the best results for a wide range of 
species. The used three models are built on pre-trained networks 
called VGG16, VGG19, and InceptionV3, which were trained using 
data from 37 different bird species.

In the proposed VGG16 model, there are five convolutions’ blocks. 
Each block contains a convolution 2D model and max-pooling 2D 
layer. The input of the model is 224, 224 with three dimensions; after 
one complete convolution, the output size is (112, 112,64). Following 
another convolution, the output is (56,56,120) after block three, 
(28,28,256) in partnership four, (14,14,512) in partnership five, and 
(7,7,512) as input and output are 512 in partnership six. The included 
dropout layer has a very slight change, and the final dense layer has 
256 as an input and 37 as an output. Generally, all the layers of VGG16 
were frozen and a customized layer was added. The Sigmoid function 
is used as an activation function and optimizer. As a loss function, an 
Adam optimizer with cross-entropy was used. For the VGG19 model, 
ImageNet was used as a weight, and average pooling, a customized 
base layer, and convolution layers with 256 dense layers with activation 
function as ReLu with dropout 0.1 were used. Additionally, SoftMax 
with a learning rate of 0.00005 was employed in the final layer. During 
the course of the model-building procedure, the Adam optimizer and 
the loss function were used as the categorical cross-entropy. Lastly, for 
the InceptionV3 model, ImageNet was used as a weight, and average 
pooling was employed. Lastly, a customized model was built by adding 
custom layers. In the customized model, 256 dense layers with an 
activation function ReLU were used, and a dropout of 0.4 was used. 
With the Adam optimizer, the model was built using categorical cross-
entropy as the loss function.

IV. Experimental Results & Analysis

We have experimentally chosen three transfer learning models in 
this study: VGG16, VGG19, and InceptionV3 model. Table II, Table III, 
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Fig. 10. Proposed deep learning model.
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and Table IV show the individual performance of the VGG16, VGG19, 
and InceptionV3 models respectively. From these three tables, it is 
observed that the performance of the proposed InceptionV3 model 
shows better performance when it is compared with the VGG16 and 
VGG19 models. The experimental results of the InceptionV3 model 
are reported as 86% precision, 86% of recall, and 85% of F1-score. The 
classification results of VGG16 are as follows: 18 out of 37 bird sounds: 
ashy_prinia, brown_fish_owl, brown_winged_kingfisher, cinnamon 
bittern, collared kingfisher, common_woodshrike, fulvous_breasted_
woodpecker, grey_headed_fish_eagle, lotens_sunbird, red_whiskered_
bulbul, striated_babbler, swamp_francolin, tree_pipit, western_osprey, 

asian_openbill, baya_weaver, brown_cheeked_fulvetta, and western_
yellow_wagtail, were 100% detected from the test data. The overall 
accuracy achieved using the VGG16 model was equal to 78%. For 
the VGG19 model, the training accuracy obtained was of 64%, and 
the test accuracy was 61.9%. According to the categorization results, 
VGG19 obtained 100% of recognition in 17 of the 37 test cases. In the 
InceptionV3 model with a batch size of 32, the obtained train accuracy 
was 95%, and the test accuracy of 85%. As to the classification results, 
24 of the 37 species were 100% detected in the test dataset.

A. Accuracy

TABLE II. VGG16 Classification Model

Class precision recall f1-score support

0 0.80 0.29 0.42 14

1 1.00 1.00 1.00 12

2 0.73 1.00 0.85 11

3 0.67 0.57 0.62 14

4 1.00 1.00 1.00 14

5 0.50 0.55 0.52 11

6 0.42 0.62 0.50 13

7 0.71 0.62  0.67 16

8 1.00 1.00 1.00 12

9 1.00 1.00 1.00 10

10 1.00 1.00  1.00 10

11 0.93 1.00  0.96 13

12 0.87 1.00  0.93 13

13 0.80 0.67  0.73 18

14 0.90 0.75  0.82 12

15 100  0.85 0.92 13

16 1.00 1.00 1.00 13

17 1.00 1.001 100 11

18 0.50 0.25 0.33 12

19 0.70 0.54 0.61 13

20 0.62 0.45 0.53 11

21 0.56 0.42 0.48 12

22 1.00 1.00 1.00 11

23 0.37 0.64 0.47 11

24 0.92 1.00 0.96 12

25 1.00 0.46 0.63 13

26 0.92 0.92 0.92 12

27 0.50 0.42 0.45 12

28 0.37 0.64 0.47 11

29 1.00 1.00 1.00 10

30 0.45 0.77 0.57 13

31 0.71 1.00 0.83 12

32 1.00 1.00 1.00 12

33 1.00 1.00 1.00 11

34 1.00 1.00 1.00 10

35 0.92 0.85 0.88 13

36 1.00 1.00 1.00 10

accuracy 0.78 451

macro avg  0.81 0.79 0.78 451

weighted avg 0.80 0.78 0.78 451

TABLE III. VGG19 Classification Model

Class precision recall f1-score support

0 0.33  0.36  0.34  14

1 1.00  1.00  1.00  12

2 1.00  0.36  0.53  11

3 0.26  0.36  0.30  14

4 1.00  1.00  1.00  14

5 0.50  0.18  0.27  11

6 0.67  0.15  0.25  13

7 0.39  0.44  0.41  16

8 0.60  1.00  0.75  12

9 0.91  1.00  0.95  10

10 1.00  1.00  1.00  10

11 0.62  1.00  0.76  13

12 0.93  1.00  0.96  13

13 0.67  0.22  0.33  18

14 0.33  0.67  0.44  12

15 0.86  0.46  0.60  13

16 0.92  0.85  0.88  13

17 1.00  1.00  1.00  11

18 0.40  0.17  0.24  12

19 0.50  0.31  0.38  13

20 0.44  0.64  0.52  11

21 0.52  0.92  0.67  12

22 0.91  0.91  0.91  11

23 0.33  0.36  0.35  11

24 0.57  1.00  0.73  12

25 0.15  0.15  0.15  13

26 0.67  0.83  0.74  12

27 0.43  0.25  0.32  12

28 0.00  0.00  0.00  11

29 0.77  1.00  0.87  10

30 1.00  0.23  0.38  13

31 0.50  0.58  0.54  12

32 0.71  1.00  0.83  12

33 0.86  0.55  0.67  11

34 1.00  1.00  1.00  10

35 0.50  0.54  0.52  13

36 0.53  1.00  0.69  10

accuracy     0.62 451

macro avg 0.64  0.63  0.6 451

weighted avg 0.64  0.62  0.59 451
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In order to meaningfully evaluate a machine learning model’s 
performance, accuracy is a metric frequently used. A model’s accuracy 
is usually calculated once the parameters are specified and represented 
in terms of percentage, which is a statistic that shows how accurately 
the model’s performance contrasts with actual data. Figs. 11, 12, and 
13 show the accuracy curves for the built learning models. In the 
experiment using the baseline model of VGG16, only ten epochs with 
a batch size 32 were run, and the obtained train accuracy was of 75% 
and the test one was 78%. Similarly, the VGG19 model also run in 10 
periods with a batch size of 32, and 64% was train accuracy and 61.9% 
the test one. On the InceptionV3 model, which was used in further 

experiments, with 10 epochs, a training accuracy of 95% and a test 
accuracy of 85% were obtained.

B. Loss
A more accurate model is indicated by lower loss values. The loss 

is not expressed as a percentage, in contrast to accuracy. The built 
learning models’ loss curves are shown in Figs. 14, 15 and 16. The 
training loss of the VGG16, VGG19, and InceptionV3 models decreased 
over time, but the validation data revealed frequent variations and 
substantial loss. The loss function shown was in the 0.9 to 1.5 in range 
in the three studied models. In the training of the studied models, 
categorical_crossentrophy was used.
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Fig. 11. VGG16 model’s accuracy.
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Fig. 12. VGG19 model’s accuracy.
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Fig. 13. INCEPTIONV3 model’s accuracy.

TABLE IV. Inceptionv3 Classification Model

Class precision recall f1-score support

0 0.46  0.43  0.44  14

1 1.00  1.00  1.00  12

2 0.85  1.00  0.92  11

3 0.88  1.00  0.93  14

4 0.93  1.00  0.97  14

5 0.35  0.55  0.43  11

6 0.90  0.69  0.78  13

7 0.70  0.88  0.78  16

8 1.00  1.00  1.00  12

9 1.00  1.00  1.00  10

10 1.00  1.00  1.00  10

11 1.00  1.00  1.00  13

12 1.00  1.00  1.00  13

13 0.91  0.56  0.69  18

14 1.00  1.00  1.00  12

15 1.00  1.00  1.00  13

16 0.93  1.00  0.96  13

17 0.92  1.00  0.96  11

18 0.75  0.50  0.60  12

19 0.78  0.54  0.64  13

20 0.92  1.00  0.96  11

21 0.86  1.00  0.92  12

22 0.79  1.00  0.88  11

23 0.83  0.91  0.87  11

24 1.00  1.00  1.00  12

25 0.71  0.77  0.74  13

26 1.00  1.00  1.00  12

27 0.43  0.25  0.32  12

28 0.30  0.27  0.29  11

29 0.91  1.00  0.95  10

30 0.90  0.69  0.78  13

31 1.00  1.00  1.00  12

32 1.00  1.00  1.00  12

33 0.92  1.00  0.96  11

34 1.00  1.00  1.00  10

35 1.00  1.00  1.00  13

36 0.91  1.00  0.95  10

accuracy     0.86 451

macro avg 0.86  0.87   0.86 451

weighted avg 0.86  0.86  0.85 451
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Fig. 14. VGG16 model’s loss.
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Fig. 15. VGG19 model’s loss.
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Fig. 16. INCEPTIONV3 model’s loss.

C. Confusion Matrix
An evaluation of the performance of a classification model, or 

“classifier”, on a set of test data for which the true values are known 
is given by a confusion matrix, which is a table. The matrix also 
allows a comparison between the targets’ actual values and the model 
projections. To properly comprehend the classification findings, the 
confusion matrix for each of the three classification architectures were 
built, Figs. 17, 18 and 19.

Fig. 17. Confusion matrix obtained by VGG16.

Fig. 18. Confusion matrix obtained by VGG19.

Fig. 19. Confusion matrix obtained by INCEPTIONV3.
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V. Discussion 

Working with bird species of a more significant number of types 
is challenging. Deep learning architectures have improved speech 
recognition accuracy, and automated learning approaches have been 
developed. Transfer learning technique was used in this study as 37 bird 
species were addressed, and a large dataset with a wide range of bird 
sounds is required. In this research, the categorization of bird noises 
is accomplished via the utilization of three different deep-learning 
frameworks. These frameworks are VGG16, VGG19, and InceptionV3. 
All the models use the same model parameters. As was shown, the 
InceptionV3 model obtained the best result. However, M Lasseck 
et al. [50] showed 93% accuracy using ensemble models with deep 
convolution neuronal networks with a pre-trained model but using a 
more significant number of epochs. The proposed model outperforms 
the solutions proposed by earlier work that was carried out by other 
researchers. Previously, various models gave a visual representation 
of the sound, but the suggested model is capable of working directly 
with the unprocessed audio file. According to another finding, the 
InceptionV3 model performs better than the other two models in this 
regard. In addition, acoustic properties were gathered from bird calls 
and were classified using various feature extraction techniques. It has 
been demonstrated that the proposed strategy is capable of boosting 
prediction accuracy. A novel method for identifying a large number of 
bird species in the Sundarban region of West Bengal, India was devised 
using existing recordings of their sounds.

VI. Conclusion

The suggested model may be put into low-cost devices via the use 
of a technique that is both cost-effective and scalable; hence, more 
devices can be employed to cover more land. In this experiment, it was 
shown that a transfer-learned network that had previously been trained 
on ImageNet shows a better predictive capability and accelerates 
convergence when compared with the same network architecture that 
is trained from scratch. The experiment was conducted in order to 
demonstrate this. When there are a limited number of high-quality 
datasets available, it is advantageous to utilize a model that has already 
been pre-trained because of the benefits it provides. In terms of practical 
uses, the suggested approach may be of great use to ornithologists by 
making the identification of bird species a straightforward process, 
In the future, in order to enhance the recognition rate, we want to 
use a variety of noise reduction filtering techniques during the pre-
processing step. In addition, another problem that should be addressed 
is the overlapping of sounds.

References

[1] M. A. Tabur and Y. Ayvaz, “Ecological importance of birds,” in Second 
International Symposium on Sustainable Development Conference, 2010, 
Jun., pp. 560-565.

[2] S. D. H. Permana et al., “Classification of bird sounds as an early warning 
method of forest fires using Convolutional Neural Network (CNN) 
algorithm,” Journal of King Saud University - Computer and Information 
Sciences. Inf. Sci., 2021.

[3] G. F. Budney and R. W. Grotke, “Techniques for audio recording 
vocalizations of tropical birds,” Ornithological Monographs, no. 48, pp. 
147-163, 1997, doi:10.2307/40157532.

[4] Available at: https://www.environmentalscience.org/birds-
environmental-indicators (last access date: 18/18/2022).

[5] Available at: https://www.ck12.org/biology/bird-ecology/lesson/
Importance-of-Birds-MS-LS/ (last access date: 18/12/2022).

[6] Available at: https://www.thespruce.com/bird-courtship-behavior 
-386714 (last access date: 18/12/2022).

[7] Available at: https://www.birdlife.org/worldwide/news/why-we-need-

birds-far-more-they-need-us (last access date: 18/12/2022).
[8] S. Fagerlund, “Bird species recognition using support vector machines,” 

EURASIP Journal on Advances in Signal Processing, vol. 2007, no. 1, pp. 
1-8, 2007, doi:10.1155/2007/38637.

[9] N. Das et al., Machine Learning Models for Bird Species Recognition 
Based on Vocalization: A Succinct Review. Information Technology and 
Intelligent Transportation Systems, 2020, pp. 117-124.

[10] C. Yüksel, 2020, Bird call detection using deep learning (Master’s thesis, 
Fen Bilimleri Enstitüsü).

[11] S. Bhattacharya et al., “Deep classification of sound: A concise” in 
Proceeding of First Doctoral Symposium on Natural Computing 
Research: DSNCR 2020, vol. 169. Springer Nature, 2021, Mar.

[12] N. Das et al., “Building of an edge-enabled drone network ecosystem 
for bird species identification,” Ecological Informatics, vol. 68, p. 101540, 
2022, doi: 10.1016/j.ecoinf.2021.101540.

[13] S. Bhattacharya et al., “Deep analysis for speech emotion recognization” 
in Second International Conference on Computer Science, Engineering 
and Applications (ICCSEA), vol. 2022. IEEE, 2022, Sept., pp. 1-6, 
doi:10.1109/ICCSEA54677.2022.9936080.

[14] K. Lan et al., “A survey of data mining and deep learning in bioinformatics,” 
Journal of Medical Systems, vol. 42, no. 8, pp. 139, 2018, doi:10.1007/
s10916-018-1003-9.

[15] Y. Wu et al., “Learning models for semantic classification of insufficient 
plantar pressure images,” International Journal of Interactive Multimedia 
and Artificial Intelligence, vol. 6, no. 1, pp. 51-61, 2020, doi:10.9781/
ijimai.2020.02.005.

[16] H. Chang et al., “Unsupervised transfer learning via multi-scale 
convolutional sparse coding for biomedical applications,” IEEE 
Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 5, 
pp. 1182-1194, 2018, doi:10.1109/TPAMI.2017.2656884.

[17] R. Wald et al., “Hidden dependencies between class imbalance and 
difficulty of learning for bioinformatics datasets” in 14th International 
Conference on Information Reuse & Integration (IRI), vol. 2013. IEEE. 
IEEE, 2013, Aug., pp. 232-238, doi:10.1109/IRI.2013.6642477.

[18] C. Tan et al., “A survey on deep transfer learning” in International 
conference on artificial neural networks. Cham: Springer, 2018, Oct., pp. 
270-279.

[19] L. Muda et al., 2010, Voice recognition algorithms using mel frequency 
cepstral coefficient (MFCC) and dynamic time warping (DTW) 
techniques. arXiv preprint arXiv:1003.4083.

[20] C. Y. Koh et al., 2019, Sept., “Bird sound classification using convolutional 
neural networks” in Clef [Working notes].

[21] A. Fritzler et al., 2017, “Recognizing bird species in audio files using 
transfer learning” in Clef [Working notes].

[22] S. Ntalampiras, “Bird species identification via transfer learning from 
music genres,” Ecological Informatics, vol. 44, pp. 76-81, 2018, doi: 
10.1016/j.ecoinf.2018.01.006.

[23] D. B. Efremova et al., “Data-efficient classification of birdcall through 
convolutional neural networks transfer learning” in Digital Image 
Computing: Techniques and Applications (DICTA), vol. 2019. IEEE, 2019, 
Dec., pp. 1-8, doi:10.1109/DICTA47822.2019.8946016.

[24] J. Bai et al., 2019, “Inception-v3 based method of LifeCLEF,” vol. 2019 Bird 
Recognition in Clef [Working notes].

[25] M. Zhong et al., “Multispecies bioacoustic classification using 
transfer learning of deep convolutional neural networks with pseudo-
labeling,” Applied Acoustics, vol. 166, p. 107375, 2020, doi: 10.1016/j.
apacoust.2020.107375.

[26] A. K. Ibrahim et al., “Transfer learning for efficient classification of 
grouper sound,” Journal of the Acoustical Society of America, vol. 148, 
no. 3, pp. EL260, 2020, doi:10.1121/10.0001943.

[27] R. Rajan and A. Noumida, “Multi-label bird species classification using 
transfer learning” in 2021 International Conference on Communication, 
Control and Information Sciences (ICCISc), vol. 1. IEEE, 2021, Jun., 
doi:10.1109/ICCISc52257.2021.9484858.

[28] E. J. Henri and Z. Mungloo-Dilmohamud, “A deep transfer learning 
model for the identification of bird songs: A case study for Mauritius” in 
International Conference on Electrical, Computer, Communications and 
Mechatronics Engineering (ICECCME), vol. 2021. IEEE, 2021, Oct., pp. 
1-6, doi:10.1109/ICECCME52200.2021.9590917.

[29] K. W. Gunawan et al., “A transfer learning strategy for owl sound 



- 12 -

International Journal of Interactive Multimedia and Artificial Intelligence

classification by using image classification model with audio spectrogram,” 
International Journal on Electrical Engineering and Informatics, vol. 13, 
no. 3, pp. 546-553, 2021, doi:10.15676/ijeei.2021.13.3.3.

[30] S. Nayak et al., “Whose hoot? Identification of owl species using call 
recognition with neural networks,”, SSRN Journal, 2022, doi:10.2139/
ssrn.4020038.

[31] N. Sharma et al., “Automatic identification of bird species using audio/
video processing” in International Conference for Advancement in 
Technology (ICONAT), vol. 2022. IEEE, 2022, Jan., pp. 1-6, doi:10.1109/
ICONAT53423.2022.9725906.

[32] Y. Kumar et al., “A novel deep transfer learning models for recognition of 
birds sounds in different environment,” Soft Computing, pp. 1-14, 2022.

[33] S. Bhattacharya et al., “Emotion detection from multilingual audio using 
deep analysis,” Multimedia Tools and Applications , pp. 1-30, 2022.

[34] E. Sprengel et al., 2016, Audio-based bird species identification using 
deep learning techniques (No. CONF, pp. 547-559).

[35] E. Cakir et al., “Convolutional recurrent neural networks for bird 
audio detection,” 25th European Signal Processing Conference 
EUSIPCO, vol. 2017, 2017. 2017-Janua, pp. 1744-1748, doi:10.23919/
EUSIPCO.2017.8081508.

[36] J. Kim et al., “Acoustic classification of mosquitoes using convolutional 
neural networks combined with activity circadian rhythm information,”, 
International Journal of Interactive Multimedia and Artificial Intelligence, 
vol. 7, no. 2, 2021, doi:10.9781/ijimai.2021.08.009.

[37] S. Ahuja et al., “Deep transfer learning-based automated detection of 
COVID-19 from lung CT scan slices,” Applied intelligence (Dordrecht, 
Netherlands), vol. 51, no. 1, pp. 571-585, 2021, doi:10.1007/s10489-020-
01826-w.

[38] M. Singh et al., “Transfer learning–based ensemble support vector 
machine model for automated COVID-19 detection using lung 
computerized tomography scan data,” Medical & Biological Engineering 
& Computing, vol. 59, no. 4, pp. 825-839, 2021, doi:10.1007/s11517-020-
02299-2.

[39] D. A. Pitaloka et al., “Enhancing CNN with preprocessing stage in 
automatic emotion recognition,” Procedia Computer Science, vol. 116, 
pp. 523-529, 2017 [doi:10.1016/j.procs.2017.10.038].

[40] M. Morrison et al., 2021, Neural pitch-shifting and time-stretching with 
controllable LPCNet. arXiv preprint arXiv:2110.02360.

[41] P. B. Baptista and C. Antunes, “Bioacoustic classification framework 
using transfer learning,” Model Decision Artificial Intelligence, vol. 35, 
2021.

[42] A. Bhaik et al., “Detection of improperly worn face masks using deep 
learning-A preventive measure against the spread of COVID-19,” 
International Journal of Interactive Multimedia and Artificial Intelligence, 
vol. 7, no. 7, 2021, doi:10.9781/ijimai.2021.09.003.

[43] K. He et al., “Deep residual learning for image recognition” in IEEE 
Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 
2016, vol. 7, no. 3, 2016, pp. 770-778, doi:10.1109/CVPR.2016.90

[44] Available at: https://iq.opengenus.org/vgg16/ [Last Access Date: 
18.12.2022].

[45] S. K. Rahut et al., “Bengali abusive speech classification: A transfer 
learning approach using” VGG-16 in Emerging Technology in 
Computing, Communication and Electronics (ETCCE), vol. 2020. IEEE, 
2020, Dec., pp. 1-6.

[46] A. Ashurov et al., “Environmental sound classification based on transfer-
learning techniques with multiple optimizers,” Electronics, vol. 11, no. 15, 
p. 2279, 2022 [doi:10.3390/electronics11152279].

[47] M. J. Horry et al., “COVID-19 detection through transfer learning using 
multimodal imaging data,” IEEE Access, vol. 8, pp. 149808-149824, 2020 
[doi:10.1109/ACCESS.2020.3016780].

[48] Available at: https://blog.paperspace.com/popular-deep-learning-
architectures-resnet-inceptionv3-squeezenet/ [Last Access Date: 
18.12.2022].

[49] Y. Shen et al., “Urban acoustic classification based on deep feature 
transfer learning,” Journal of the Franklin Institute , vol. 357, no. 1, pp. 
667-686, 2020 [doi:10.1016/j.jfranklin.2019.10.014].

[50] M. Lasseck, “Acoustic bird detection with deep convolutional neural 
networks” in Proc. Detection and Classification of Acoustic Scenes and 
Events 2018 Workshop (DCASE2018), 2018, Nov., pp. 143-147.

Nabanita Das

Nabanita Das is a Ph.D. Research Scholar with the 
Department of Computer science and engineering, GIET 
University, Gunupur, Orissa, India. Currently, she is an 
Asst. Professor in the Department of Computer Science 
and Engineering, Bengal Institute of Technology, India. She 
received the M. Tech. degree from MAKAUT, West Bengal, 
India, and has more than ten years of teaching experience. 

She is actively involved in research in the domains of Machine Learning, Deep 
Learning, IoT, Software Engineering, and Computer Aided Diagnosis.

Neelamadhab Padhy

Neelamadhab Padhy received his Ph.D. in 2018 from Sri 
Satya Sai University of technology and medical science, 
Sehore, India. He is now employed as an Associate 
Professor in the Department of Computer science and 
engineering, GIET University, Gunupur. His research 
topics are machine learning, deep learning software 
engineering, image processing, etc. He published more 

than 30 peer-reviewed journal and conference papers. He is a life member of 
CSI and a member of the IE and Soft Computing Society.

Nilanjan Dey

Nilanjan Dey is an Associate Professor in the Department 
of Computer Science and Engineering, Techno International 
New Town, Kolkata, India. He is a visiting fellow of the 
University of Reading, UK. He also holds a position of 
Adjunct Professor at Ton Duc Thang University, Ho Chi 
Minh City, Vietnam. Previously, he held an honorary position 
of Visiting Scientist at Global Biomedical Technologies Inc., 

CA, USA (2012–2015). He was awarded his PhD from Jadavpur University in 
2015. He is the Editor-in-Chief of the International Journal of Ambient Computing 
and Intelligence, IGI Global, USA. He is the Series Co-Editor of Springer Tracts 
in Nature-Inspired Computing (SpringerNature), Data-Intensive Research 
(SpringerNature), Advances in Ubiquitous Sensing Applications for Healthcare 
(Elsevier). He is an associate editor of IET Image Processing and editorial board 
member of Complex & Intelligent Systems, Springer Nature, Applied Soft 
Computing, Elsevier etc. He is working in the area of medical imaging, machine 
learning, computer aided diagnosis, data mining, etc. He is the Indian Ambassador 
of the International Federation for Information Processing—Young ICT Group 
and Senior member of IEEE.

Sudipta Bhattacharya

Sudipta Bhattacharya is an Asst. Professor in the Department 
of Computer Science and Engineering, Bengal Institute of 
Technology, India. He is a Ph.D. Research Scholar with 
the Department of Computer science and engineering, 
GIET University, Gunupur, Orissa, India. He received his 
Bachelor of Technology, (IT) from West Bengal University 
of Technology, India, and Master of Technology (IT) from 

the Indian Institute of Engineering Science and Technology, Shibpur, India. His 
area of research interest is Pattern Recognition and Speech emotion Recognition.

João Manuel R.S. Tavares

João Manuel R.S. Tavares received the degree in mechanical 
engineering and the M.Sc. and Ph.D. degrees in electrical 
and computer engineering from the Universidade do Porto, 
Portugal, in 1992, 1995, and 2001, respectively, and the 
Habilitation degree in mechanical engineering, in 2015. He 
is currently a Senior Researcher in the Instituto de Ciência e 
Inovação em Engenharia Mecânica e Engenharia Industrial 

(INEGI), and a Full Professor in the Department of Mechanical Engineering 
(DEMec), Faculdade de Engenharia da Universidade do Porto (FEUP). He 
is the co-editor of more than 80 books, the co-author of more than 50 book 
chapters, 650 articles in international and national journals and conferences, 
and three international and three national patents. He has been a committee 
member of several international and national journals and conferences. He 
is the Co-Founder and the Co-Editor of the book series Lecture Notes in 
Computational Vision and Biomechanics (Springer), the Founder and Editor-



- 13 -

Article in Press

in-Chief of the journal Computer Methods in Biomechanics and Biomedical 
Engineering: Imaging & Visualization (Taylor & Francis), the Editor-in-Chief 
of the journal Computer Methods in Biomechanics and Biomedical Engineering 
(Taylor & Francis), and the Co-Founder and the Co-Chair of the International 
Conference Series, such as CompIMAGE, ECCOMAS VipIMAGE, ICCEBS, 
and BioDental. Additionally, he has been the co-supervisor of several M.Sc. 
and Ph.D. thesis and a supervisor of several postdoctoral projects. He has 
participated in many scientific projects both as a Researcher and as a Scientific 
Coordinator. His research interests include computational vision, medical 
imaging, computational mechanics, scientific visualization, human-computer 
interaction, and new product development. (More information can be found at 
https://www.fe.up.pt/~tavares).


