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Abstract

Enhancing the visibility of medical images is part of the initial or preprocessing phase within a computer vision 
system. This image preparation is essential for subsequent system tasks such as segmentation or classification. 
Therefore, quantitative validation of medical image preprocessing is crucial. In this work, four metrics are 
studied: Contrast Improvement Index (CII), Enhancement Measurement Estimation (EME), Entropy EME 
(EMEE), and Entropy. The objective is to find the best parameters for each metric. The study is performed on 
five medical image datasets, three retinal fundus sets (DRIVE, ROPFI, HRF-POORQ), and two mammography 
image sets (MIAS, DDSM). Metrics are calculated using a binary mask image to discard the background. 
Using the fundus and mask datasets, the best results were obtained with the EMEE and EMEE metrics, which 
achieved mean improvements of up to 186% and 75%, respectively. For mammography datasets and using 
masks of the region of interest, the two metrics with the highest percentage improvement were CII and EMEE, 
which obtained means of up to 396% and 129%, respectively. Based on the experimental results provided, we 
can conclude that EMEE, EME, and CII metrics can achieve better enhancement assessment in this type of 
medical imaging.
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I. Introduction

MEDICAL imaging is of great importance in helping specialists to 
diagnose many diseases. In principle, the specialist analyzes the 

image, sometimes with the aid of a computer-assisted diagnosis (CAD) 
system. These CAD systems belong to the field of computer or artificial 
vision. Artificial vision systems (AVS) for image analysis usually 
have the phases of preprocessing, segmentation, postprocessing, and 
feature computation or defect classification [1]. The preprocessing 
step produces an image of better quality or in a suitable condition for 
computational analysis in the following phases.  The research of this 
paper focuses on the preprocessing phase. The objective is to study 
quantitative metrics that measure how much a preprocessed medical 
image has been improved. The behavior of four metrics on two types 
of medical images is studied.

The images are enhanced through several filters that modify their 
contrast and brightness to distinguish the parts of interest. Usually, 
a qualitative visual analysis is carried out in the preprocessing step, 
while the validation is focused on later phases. If the outcome is not as 
expected, the researchers may be forced to go back to the initial phase 
and try other preprocessing filters.

Concerning the impact of preprocessing tasks on a computer vision 
system performance, the Master’s Thesis [2] examined the effect of 
preprocessing algorithms on the performance of Convolutional Neural 
Networks (CNNs) including transfer learning to detecting pneumonia 
and classifying cats or dogs. This research was conducted using the 
original images and five enhancement algorithms: the contrast limited 
adaptive histogram equalization (CLAHE), the successive means of the 
quantization transform (SMQT), the adaptive gamma correction, the 
wavelet transform, and the Laplace operator. The chest X-ray and pets’ 
datasets were acquired from Kaggle Challenge. The results reported 
that LeNet5 CNN performance was improved with some enhancement 
algorithms, but transfer learning performance slightly decreased with 
pre-trained VGG16 CNN for pet images.

In contrast, the work [3] obtained better performance when its transfer 
learning model was tested with enhanced images. The authors studied 
the impact of enhancing chest X-ray images for COVID-19 detection 
by applying transfer learning. This study used the large X-ray dataset 
COVQU, which contains 18,479 CXR images where 8,851 are normal, 
6,012 are non-COVID lungs, and 3,616 are COVID-19 CXR images. 
Additionally, COVQU includes the ground truth lung masks. The study 
involves classifying each image as normal, lung opacity, or COVID-19 
with and without image enhancement. Five image enhancement 
procedures were used: histogram equalization (HE), contrast limited 
adaptive histogram equalization (CLAHE), image complement, gamma 
correction, and balance contrast enhancement technique (BCET). 
Transfer learning was carried out from six pretrained Convolutional 
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Neural Networks (CNNs): ResNet18, ResNet50, ResNet101, InceptionV3, 
DenseNet201, and ChexNet, and the last eleven layers were re-trained.  
This study achieved seventy-two experiment settings (six pre-retrained 
CNNs with two datasets, and each dataset has been tested with no 
enhancement and with five different enhancing methods). The result 
showed that the image enhancement preprocessing improved the 
classification performance. Original images (without enhancement) 
were classified using InceptionV3 obtained 93.46% on accuracy average, 
and the best experiment setting using gamma correction and ChexNet 
reached 96.29% on accuracy average.

Other studies also reported higher performance after including 
some enhancement tasks. A pedestrian detection model based on the 
YOLOv3 convolutional neural network architecture that analyzes 
outcomes with and without preprocessing phase is presented in [4]. 
The preprocessing contrast enhancement is achieved using the Retinex 
method. The entire proposed model obtained 90% and 94% accuracy, 
without and with preprocessing, respectively. 

In [5], a convolutional neural network (CNN) proposal for 
recognizing six basic emotions is implemented using several 
preprocessing methods. The main intention of this study is to 
investigate how preprocessing practices affect CNN performance. Face 
detection using a single pre-processing phase achieved a significant 
result with 86.08 % accuracy. However, combining some techniques 
increased the performance of CNN and achieved 97.06% accuracy.

The importance of the preprocessing phase in a computer vision 
system for detecting melanoma has been studied in [6]. Authors recall 
that preprocessing is the first and fundamental step for improving 
image quality. In this AVS, preprocessing is designed for removing noise 
and irrelevant portions against the background of skin photographs. 
This study applied different pre-processing methods utilized on skin 
cancer photos. These studies experimentally validated that a suitable 
preprocessing could increase accuracy. 

Most of the research mentioned so far has experimented with the 
effect of enhancing the images before using them in the learning 
model of the computer vision system. On the other hand, the image 
enhancement was not quantified, or at least, it is not reported. To 
overcome this non-objective scenario, a quantitative image evaluation 
becomes significant. This research aims to analyze the behavior of 
quantitative metrics. As a result of this study, this paper recommends 
appropriate metrics for evaluating the enhancement in each type of 
image, and studies the values of the relevant algorithms’ parameters.

The scientific literature is reviewed in this work, and several 
metrics used to quantify contrast in medical imaging are studied. Four 
metrics have been chosen: Enhancement Measure Estimation (EME), 
Enhancement Measure Estimation by Entropy (EMEE), Contrast 
Improvement Index (CII), and Entropy. The metrics are applied to 
two cases of studies: fundus and mammography images, on five data 
sets. These datasets contain healthy and pathological images. Another 
point is that some of these datasets include images of poor quality. 

The remainder of this article is organized as follows. Section 2 presents 
a review of related works. Section 3 describes the metrics and their 
theoretical foundations, the types of images used, and the preprocessing 
algorithms. Section 4 shows the analysis of the parameters of each metric 
and its behavior on each dataset. Section 5 provides a discussion of the 
obtained results. Finally, some conclusions are given.

II. Background

This section presents a review of research works that use metrics 
to evaluate the performance of the preprocessing filters. Works are 
presented according to the type of images. First, a cellular medical 
image work is analyzed; after that, some results corresponding to 

mammograms are described; finally, studies of retina images of 
prematurely born children are included.

The work in [7] enhances the contrast of several types of cellular 
medical images. The enhancement performance is quantified using 
the CII measure. Cellular images can present complex shapes and 
textures. Thus, the research concludes that CII is a suitable measure 
for analyzing the enhancement of these types of images.

A recoloring algorithm, named RGBeat, is presented in [8] in order 
to assist patients with protanopia and deuteranopia. It is applied to 
images and text. The proposal uses CIE and RGB color spaces. This 
method converts a range of values of the hue channel to achieve a 
better understanding by these types of patients, while preserving the 
main characteristics. A validation of the modified image is performed. 
Consistency is addressed by ensuring that all pixels of the same color 
in an input image will have the same output color after applying the 
recoloring method. In addition, naturalness is measured by using a 
quadratic difference in the CIE Lab color space [9]. A small value 
indicates that the naturalness has been maintained in the recolored 
image. And the altered contrast measurement is based on a squared 
Laplacian [10].

The research in [11], which applies deep neural networks for 
diagnosing congenital heart diseases (CHDs) using echocardiographic 
ultrasound images, considers the possibility of preprocessing the 
ultrasound contrast. The authors mention that they are motivated 
by the work presented in [3], that demonstrated the improved 
performance of learning methods with contrast-enhanced images.

The contrast of mammography images is enhanced and validated 
using the CII measure [12]. This research presents a method based on 
the following filters: Laplacian Gaussian, Contrast Limited Adaptive 
Histogram Equalization (CLAHE), and morphological filters (openings 
and closings) to improve the contrast.

A metric based on the high and low-frequency range is proposed 
in [13]. This metric is used for assessing contrast quality in 
mammographies. According to the experiments, when the original 
image is compared with its enhancement, specific conditions of the 
frequency values are met. The contrast enhanced image has better 
quality. A private mammographies dataset was used. It contained 179 
images, among benign, malignant, and normal mammographs. The 
study concluded that using multiple filters produces better results and 
that filter behavior varies between image types.

The machine vision system proposed in [14] aims to recognize the 
area of distortions in breast images. The distortion classification is 
mainly performed through an improved pulse-coupled neural network 
(PCNN). This research utilized the Digital Database for Screening 
Mammography (DDSM) dataset. In the preprocessing phase, the 
filters used are top-bottom hat and gamma transformation. Their 
improvement is validated through the Equivalent Number of Looks 
(ENL) and Contrast Improvement Index (CII) metrics.

Some measures in [15] are studied to validate contrast enhancement 
of mammography and tomography pathological images. In this study, 
ten images for each case are taken. Results are shown in terms of the 
metrics: EME, EMEE, Logarithmic Michelson Contrast Measure (AME), 
Logarithmic AME by Entropy (AMEE), Mean Squared Error (MSE), Peak 
Signal-to-Noise Ratio (PSNR), Absolute Mean Brightness Error (AMBE), 
Discrete Gray Level Energy (GLE), Relative Entropy (RE), Second-Order 
Entropy (SOE), Edge Content (EC). The authors classified EME and 
EMEE as Complex Measures of Contrast, which are convenient metrics 
for medical images where the background is uniform.

In [16], a method for adjusting the contrast level in a windowed 
mammogram is proposed. The technique is called GRAIL (Gabor-
Relying Adjustment of Image Levels), and it is regulated by a measure of 
mutual information (MI). MI is the relation between the decomposition 
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of the original 12-bit inputs and its screen-displayed 8-bit version. 
The mutual information metric between the original instance and its 
Gabor-filtered derivations is applied to X-ray images [17], and the 
results show a better performance in terms of subjective interpretation.

Regarding retinal studies, a new CLAHE version method is 
presented in  [18], and its improvement is evaluated using the Entropy 
measure, tested on the public DRIVE and STARE fundus image 
datasets. Those datasets contain adult fundus images of normal and 
pathological cases.

A private fundus images dataset is used in the research reported 
in [19]. Authors apply a guided filter for the preprocessing phase of 
fundus images of children. Healthy and pathological images are used. 
This filter is assessed through EME, Entropy, Standard Deviation, and 
Spatial Frequency.

A second work that uses a private set of children’s fundus images is 
[20]. Contrast is enhanced using adaptive filters based on the features 
of each image. The parameters for each filter are computed employing 
an artificial neural network. The enhancement is validated using CII 
and qualitative analysis.

Based on the related works that could be identified at the time of 
performing this work, the following section details the metrics that 
are tested, and the datasets of the two case studies that are the object 
of this research.

III. Materials and Methods

This section describes the metrics, datasets, and preprocessing 
filters used in this work, which focuses on fundus and mammography. 
Different algorithms are used to preprocess these types of images to 
highlight regions of interest. Preprocessing filters reported positively 
in the literature were selected. Those enhanced images are then used 
in the subsequent phases of artificial vision systems. 

Metrics were implemented using Matlab 2020a. Only the entropy 
metric is available as a function in Matlab, and the rest of the metrics 
were coded.

A. Metrics
The metrics described below are applied to two-dimensional images 

represented as matrixes. The measurement for an entire image is based 
on partial calculations by blocks without overlapping. Therefore, the 
first step for computing them is to define a block size and divide the 
image horizontally and vertically into as many blocks as possible (see 
Fig. 1). Then, a partial measurement is calculated in each block, and 
the average of these measurements is considered the value of the 
metric, taking into account the particularities of each metric.

Fig.  1. Example of a fundus medical image divided into square blocks of L × L 
size.

1. Enhancement Measure Estimation (EME)
EME is a quantitative measure of contrast enhancement of two-

dimensional or grayscale images [21]. The enhancement measure 

is a modification of Weber’s law and Fechner’s law. Weber’s law 
establishes that the visual perception of contrast is independent 
of luminance and low spatial frequency and determines that the 
perceived change in intensity is proportional to the initial one. On 
the other hand, Fechner’s law states that perception and stimulation 
are linked logarithmically (i.e., the visually perceived intensity value is 
proportional to the logarithm of the actual intensity).

For the calculation of the EME metric, the two-dimensional discrete 
image of M × N size is divided into small blocks. M and N are the width 
and the height of the image in pixel number, respectively; the size 
of the square block is L × L, for L = 3, 4, ..., n. Then, the minimum 
and maximum intensity of each block are found, the contribution 
of each block is calculated as a natural logarithm function. Finally, 
the EME value for the whole image is equal to the average. EME is 
mathematically expressed in (1), where k1 = M/L, is the number of 
horizontal blocks; k2 = N/L, it is the number of vertical blocks;  y  

 are the maximum and minimum pixel intensity values in a block 
(m, l), respectively. The size of the block L affects the EME value.

 (1)

Note the mathematical equivalence in (2), where Il,m ∈ 1, 2, 3, …, 256 
corresponds to the intensity values shifted by 1 to avoid the 
indeterminacy of ln(0). So that, the computation of the logarithm 
is possible, ln (Il,m) ∈ {ln (1),ln (2), …, ln (256)}. That is, ln (Il,m) ∈ 
{0,0.6931, …, 5.5452)}. Therefore, the difference between the maximum 
value and the minimum value remains controlled. Additionally, the 
expression uses the constant 20 to amplify the difference and provide 
a higher significance value for EME.

 (2)

2. Enhancement Measure Estimation by Entropy (EMEE)
This metric is the entropy measure that relates the contrast for each 

block, scaled by a parameter (α), and averaged over the entire image 
[21]. The value of α, for 0 < α < 1, is proportional to the emphasis of 
the entropy. The variable α helps to manage more randomness. The 
calculation formula is shown in (3). The impact of the block size (L) 
and the entropy emphasis (α) over EMEE calculation will be discussed 
in the Results section.

 (3)

The factor  highlights the logarithmic amplitude of Il,m, 
increasing the large and compressing minor ones (See Fig. 2). This 
measure could be more suitable for images that have greater visible 
variability.
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Fig.  2. Weighting factor , α = 1/2, Imin ≤ Imax.
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3. Entropy
Entropy is a statistical measure of randomness. It could characterize 

textures from an image or photograph [15], [22]. The texture within an 
image is an element that holds qualities perceived through sight and 
touch. Texture depicts aspects of the surfaces of photographed objects 
or subjects. The entropy is calculated on a grayscale image from its 
histogram. The entropy formula is defined in (4) and (5).

 (4)

 (5)

In the equation (5), P(Ij) ∈ [0,1] and P(Ij) is the probability of 
occurrence of the jth intensity, according to the image histogram.

4. Contrast Index CI and Contrast Improvement Index (CII)
The Contrast Index (CI) is a measure that establishes the 

relationship between the background and the foreground of an image. 
This ratio is calculated by blocks, and the average among these blocks 
will be the CI measure of the entire image [4]. A high CI value means a 
more significant difference between background and foreground, and 
therefore the image presents a good CI. The contrast measure of an 
image is expressed in (6).

 (6)

To establish the improvement of an image, CII is defined in the 
equation (7). CII is the ratio between the contrast index of the resulting 
image and the contrast index of the original image. If this ratio is 
greater than one, the contrast is considered to have been improved.

 (7)

B. Fundus Datasets
Fundus images are obtained by examining the retina during 

pathology inspections. The retinal datasets used in this work contain 
images of adults and children. Adult datasets are predominant. 
Although there is a very active scientific community applying 
machine vision to diagnose child retinal pathologies, there is a lack 
of public data. Both adults and children may have eye diseases. Some 
retina diseases are Retinopathy of Prematurity (ROP), Retinopathy of 
Hypertension, Diabetic Retinopathy, Glaucoma, etc.

1. ROPFI Dataset
Retinopathy of Prematurity Fundus Images (ROPFI) is a set of 

children’s images with Retinopathy of Prematurity [20]. This set 
entails 64 images captured with a RetCam Shuttle camera (Clarity 
Medical Systems, Inc.). The average size of an image is 640 x 480 pixels. 

2. DRIVE Dataset
Digital Retinal Images for Vessel Extraction (DRIVE) is a public 

database of adult fundus images [23]. It comprises 40 images whose 
dimension is 565 x 584 pixels on average. DRIVE is widely used to 
validate vascular network segmentation algorithms. 

3. HRF POOR-QUALITY Dataset
This database contains images of adult patients, and it belongs to 

a collaborative research group to support comparative studies about 
automatic segmentation algorithms [24]. It is a set of eighteen images 
that are of lower quality than others of the same project. The average 
dimension is 640 x 460 pixels. 

4. Masks Acquisition
ROPFI dataset provides the masks that were obtained automatically 

[20]. Additionally, DRIVE dataset also contains its corresponding 

masks [23]. While the HRF POOR-QUALITY dataset does not include 
masks, they have been computed performing the automatic procedure 
in [20]. First, an Otsu binarization was performed on the green 
channel. Then a convolution was applied to find borders, and finally 
the maximum contour was selected to set the binary mask.

C. Mammogram Datasets

1. MIAS Dataset
The Mammographic Image Analysis Society database (MIAS) is a 

set of 100 labeled and annotated images [25]. The database is suitable 
for performing and understanding mammograms’ technical and visual 
analysis for research purposes, such as anomalies detection algorithms 
and other technological derivations that allow computerized assistance 
to medical specialists. This mammography database is in PGM format, 
and it contains one hundred images. The average size of the images is   
475 x 933 pixels.

2. DDSM Dataset
The Digital Database for Screening Mammography (DDSM) 

has been published by the University of Florida [26]. DDSM 
dataset contains 31 mammograms. This dataset is a resource for 
the mammographic image analysis research community. The main 
objective of the database is to facilitate research for the development 
of computer algorithms to assist in the detection of mammography 
anomalies. It includes the diagnosis and development of assistance 
aids through software for medical specialists.

3. Automatic Mask Creation
MIAS and DDSM mammogram datasets do not provide masks. 

Hence, the automatic procedure based on [20] was applied.

D. Filters for Processing Fundus Images
In both infant and adult fundus images, it may not be possible to 

distinguish attributes of the retina, such as the presence of vessels. It 
could cause a misdiagnosis by a medical specialist. In [20], this problem 
is indicated: childhood retinal images present difficulty recognizing 
retinal elements because they are low in contrast and brightness, have 
small, curved lines, and present noise. Thus, the authors propose to 
apply some filters in sequence: contrast, brightness, gamma correction, 
and CLAHE.

A general image processing operator is a transformation that takes 
an input I image and computes an output image G. If the image is 
color, for example, in the red, green, and blue (RGB) color space, the 
image is usually split into its channels. After applying the filter to each 
channel, the image can be reconstructed into a color image from its 
modified channels [27].

The brightness and contrast transformation of one channel at a 
time can be expressed as in (8):

 (8)

The c and b parameters represent the contrast and brightness 
values that will modify the image, respectively; I(x) describes the 
intensity image in a pixel x; and h denotes the particular red, green, 
or blue channel.

Then, a reverse gamma correction filter [27] is applied. This filter 
removes the non-linear schema of the input image that has been 
acquired with a digital camera and provides a brighter image using a 
correction value greater than one. The reverse gamma correction filter 
is mathematically expressed in (9), where γ is the gamma correction 
parameter. The gamma transformation is applied to each color image 
channel. The modified channels are combined, and an image in the 
same color space as the original image I(x) is obtained. 
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 (9)

The last filter of the sequence proposed by the authors is the 
CLAHE [28]. This filter is applied to the L channel of the CIELab 
color space. The implemented function to process this filter is shown 
in expression (10), where k and cl represent the variables kernel size 
and transformation limit, respectively, and L denotes the luminance 
channel in the corresponding color space.

 (10)

E. Filters for Processing Mammogram Images
Mammography images are pre-processed with filters CLAHE y Fast 

Local Laplacian (FLL) in [29]. The CLAHE filter is used to improve 
mammography contrast, and FLL is employed to reduce noise and 
smooth the image. The mathematical representation of CLAHE was 
given in expression (10). The FLL filter is represented mathematically 
in (11), where 𝑢 and 𝑣 are the coordinates over the 𝑥 and 𝑦 axis, 
respectively, and σ is the standard deviation.

 (11)

IV. Results

This section begins by analyzing the parameters of each metric and 
observing how they affect the calculation of the image improvement. 
Then, the quantitative enhancement of every dataset through each 
metric is assessed.

A. Analysis of EME Variables
The calculation of EME is based on the size of the block (L). It 

determines the partial area used to calculate each sum given in (1). 
EME has been computed for the five datasets shown in the previous 
section, setting L values from 5 to 19. The analysis of L values is 
supported by analyzing the plot of the five datasets. As illustrative 
examples, Fig. 3 and Fig. 4 display the behavior of L in the datasets 
DRIVE and MIAS, respectively. According to the behavioral analysis of 
the metric, it has been observed that, with low values of L, the metric 
reports a low weight as well, which indicates a minor improvement. 
In contrast, high L values increase the value of the metric. Based on 
that, and to obtain significant values showing an improvement in the 
image, a value of L equal to 19 was selected.
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Fig.  4. Computation of EME metric using MIAS dataset, and varying the block size L. The line color represents a different L value, L = {3, 7, 9, 11, 13, 15, 17, 19, 
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Fig.  3. Computation of EME metric using DRIVE dataset, and varying the block size L. The line color represents a different L value, L = {3, 7, 9, 11, 13, 15, 17, 19, 
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B. Analysis of EMEE Variables
As mentioned above, the EMEE metric has two variables that will 

influence the calculation: the entropy effect (α) and the block size (L). 
The behavior of α between 0.1 and 0.9 is analyzed. L is set to the value 
of 19, as commented in the previous section.

The influence of the variable α for each dataset was analyzed 
by calculating and plotting EMEE for each dataset. As illustrative 
examples, Fig. 5 and Fig. 6 show the EMEE metric using both DRIVE 
of fundus and MIAS of mammograms datasets, respectively. These 
plots show EMEE as function of α. The EMEE calculation obtained 
significant values when alpha was set equal to 0.7, 0.8, and 0.9. Taking 
a middle point alfa has been chosen equal to 0.8. This value will be 
used for the calculation of the EMME metric.

C. Evaluation of the Improvement on the Fundus Datasets
Images from DRIVE, ROPFI, and HRF POOR-QUALITY datasets 

were improved using the enhancement method proposed in [20], and 
detailed in Subsection III.D. An important point is to use a mask for 
delimiting the region of interest (ROI). The mask is a binary image 
with values 0 and 255, where the pixels with an intensity value equal 
to 255 constitute the ROI. The discarded part of the image is in black.

Fig. 7, Fig. 8, and Fig. 9 show an image example of DRIVE, ROPFI, 
and HRF POOR-QUALITY, respectively, that have been preprocessed. 
Original, original in grayscale, mask, and enhanced images are 
included. The complete datasets were enhanced with the corresponding 
algorithm, and subsequently images were evaluated with each metric.

Considering that (6) represents CII as the ratio between the 
improved image and the original image. Similarly, the ratio of the 
rest of the measures has been computed. These improvement rates on 
average for the DRIVE, ROPFI, and HRF POOR-QUALITY datasets are 
shown in Table I. 

TABLE I. Performance of the Fundus Images Enhancement. The 
Parameters Used Were L = 19, and α = 0.8. Average of Enhancement 

(AE) Rate. Average of Enhancement Percentage (AEP)

Dataset Performance CII EME EMEE Entropy

DRIVE
AE Rate 1.18 1.55 2.37 1.02
AEP (%) 18.11 55.42 137.47 1.95

ROPFI
AE Rate 1.03 1.75 1.34 1.09
AEP (%) 3.59 75.32 34.40 8.98

HRF 
POOR-Q

AE Rate 1.4195 1.66 2.86 1.02
AEP (%) 41.95 66.45 186.40 1.95
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The average improvement in the DRIVE dataset has been 137%, 
55%, 18%, and 2%, applying EMEE, EME, CII, and entropy, respectively. 
Looking at the report of each metric and considering the averages in 
Table I, it is possible to conclude that the metrics that achieve the best 
quantitative distinction are EMEE and EME.

The ROPFI dataset’s average improvement percentages reported 
by EME, EMEE, entropy, and CII have achieved 75%, 64%, 9%, and 4%, 
respectively. Looking at the report of each metric in Table 1, the metrics 
that achieve the best quantitative distinction are EME and EMEE.

Concerning the HRF POOR-QUALITY dataset, the improvement 
percentages on average of 186% and 66% of EME, EMEE, respectively, 
have achieved the best quantitative distinction. 

D. Evaluation of the Improvement on the Mammogram Datasets
As previously mentioned, the MIAS and the DDSM datasets are 

mammography images. Using the preprocessing method proposed in 
[27], these sets were improved and commented in Subsection III.E. 

Analogously to the evaluation of the fundus images, original 
and mask images are employed. Each mammography has been pre-
processed, and the contrast measurement has been calculated in both 
the original and preprocessed images. The contrast measurement is 
only computed for the region of interest using the mask image. The 
contrast measurement on average for the original and improved 
images has been calculated, and, finally, the improvement ratio has 
been obtained. The rate and percentage enhancement on average are 
stated in Table II.

TABLE  II. Enhancement Performance of Mammography Datasets. The 
Parameters Used Were L = 19, and α = 0.8. Average of Enhancement 

(AE) Rate. Average of Enhancement Percentage (AEP)

Dataset Performance CII EME EMEE Entropy

MIAS
AE Rate 4.96 2.70 4.53 1.06

AEP (%) 396.55 170.11 353.39 6.05

DDSM
AE Rate 2.30 1.57 1.82 1.04

AEP (%) 129.92 56.97 82.04 4.16

A pair of improved images of the MIAS and DDSM datasets are 
presented in Fig. 10 and 11, respectively. These figures incorporate 
original in color, original in grayscale, mask, and preprocessed, 
respectively.

In the case of the MIAS dataset, CII and EMME indicated the 
highest enhancement values, 396% and 353% on average, respectively. 
EME also presents a high average value with respect to the Entropy 
average, 160%, and 2%, respectively.

With respect to the DDSM dataset, CII is the most significant 
value, which reported 129% on enhancement average.  EMEE, EME, 
and entropy registered 66%, 57%, and 4% on enhancement average, 
respectively. Thus, EMEE is close to the EME value, and both are quite 
large with respect to the Entropy.

(a) (b) (c) (d)

Fig.  7. First image of the DRIVE dataset. (a) original image, (b) original in grayscale, (c) mask, (d) enhanced image.

(a) (b) (c) (d)

Fig.  8. First image of the ROPFI dataset. (a) original image, (b) original in grayscale, (c) mask, (d) enhanced image.

(a) (b) (c) (d)

Fig.  9. First image of the HRF POOR-QUALITY dataset. (a) original image, (b) original in grayscale, (c) mask, (d) enhanced image.
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(a) (b) (c)

Fig.  10. First image of the MIAS dataset. (a) original image, (b) mask, (c) 
enhanced image.

(a) (b) (c)

Fig.  11. First image of the DDSM dataset. (a) original image, (b) mask, (c) 
enhanced image.

V. Discussion

In a computer vision system, contrast and brightness enhancement of 
images is part of the first phase named preprocessing, and it is essential 
for the following phases. This research deals with fundus images of 
the retina and mammograms, including healthy and pathological 
cases. The improvement algorithms could be assessed through experts’ 
criteria and quantitative validation.  Expert criteria agreement may 
require the analysis of several experts and could be subjective. 

In the literature review, it has been commented that it is not 
common in artificial vision systems to report the image improvement 
quality using quantitative metrics. It seems that scientists rely on 
visual perception or on trial and error. On the other hand, there have 
been a few works that have been considered quantitative aspects, as 
discussed in previous sections.

Subsequent phases of the computer vision system may receive 
an image with a non-satisfactory enhancement, and brightness and 
contrast alteration may need to be performed again. Consequently, 
appropriate quantitative measures are quite valuable.

In this research, medical images of retina fundus and mammograms 
have been selected to study and quantify contrast measurements. 
These two types of pathological images are of broad interest to 
physicians and informatics specialists. Because fundus images usually 
are colored, and mammograms are grayscale, these datasets permit to 
evaluate the proposed measures in both colored and grayscale images. 
Regarding the similarities, it can be observed that both types examine 
anatomical parts of the human body, and that the background is a 
large portion of the image (so that binary masks are used to delimit 
the area of interest). Because of these common characteristics, it was 
possible to examine both datasets using similar scripts.

Previous works agree that a high metric value represents a better 
distinction of the parts of interest versus the background [2], [6], 
[12]. However, the parameter’s values were not reported. Due to this, 
the first effort of this work has been to establish the most suitable 
parameters of each metric through mathematical analysis and 
experimentation. Those most suitable parameters have been identified 
as the block size (L = 19), and the entropy emphasis, (α = 0.8), as 
treated in the Results Section.

In our case studies, in mammograms, CII and EMEE reported the 
highest contrast enhancement rates of up to 396% and 353%, respectively, 
and EME of up to 170%; and, regarding retinal datasets, EMEE, CII, 
and EME metrics reported enhancements of up to 186%, 75%, and 
41%, respectively. Entropy is the measure with the smallest margin of 
distinction in both fundus and mammography images. However, there 
is a high improvement ratio in the case of mammograms compared to 
fundus images. The improvement percentage of the entropy metric 
ranges from 2% to 8%. Accordingly, it can be recommended using the 
EMEE, EME and CII metrics to quantitatively validate the contrast and 
brightness improvement of medical images.

An analysis of the behavior of the measurement as a function 
of parameters L and α was carried out. This being so, the chosen 
parameters allow differentiating better the image improvement. The 
values of each parameter have been studied and reported precisely, 
with the intention that researchers who need to use those metrics 
know the most convenient parameters.

In Section I, it was commented that the image enhancement 
algorithm influences and improves, in most cases, the performance 
of the artificial vision system. We have presented how the metrics can 
achieve more significant improvements in certain types of images. 
Therefore, for images similar to the cases studied in the paper, the 
preprocessing and metric values presented could be applied. For other, 
quite different images, the analysis and guidelines presented in the 
paper can be adapted to perform the analysis and parameter selection.  

The scope of this work has been to study evaluation metrics of 
image enhancement algorithms. Also, this work has been considered 
mammography and fundus images. In order to include various types 
of healthy and pathological images, three different fundus datasets 
and two different mammography datasets were included. 

This research work could be most valuable for researchers that 
develop computer vision applications, in order to evaluate the quality 
of their preprocessed images and improve the applicability of their 
techniques. 

Since the amount and variety of datasets have not been extensive, 
the main future works are to extend this research by evaluating other 
sets of related medical images, reproduce a complete computer vision 
method, and report the relation between quantitative enhancement 
and the computer vision system performance.

VI. Conclusion

The review of related works indicated that the image pre-
processing phase affects the results achieved by subsequent steps of 
an artificial vision system. As reported, the correct preprocessing of 
the input images accomplished that deep neural network techniques 
could improve up to 4% their accuracy. Thus, the consideration of this 
early quantitative assessment of image quality could be incorporated 
into the design of machine vision systems in the medical imaging field. 

The need to quantitatively validate the enhancement of medical 
images in the first phase (or preprocessing) of a computer vision 
system was a main motivation of this research work. And, as discussed 
in the paper, metrics EMEE, EME and CII are valuable for measuring 
the enhancement of the studied medical images. 
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To apply these metrics in new datasets, an analysis of the metrics 
parameters following the approach of this paper is recommended. An 
important consideration is that the region of interest of images should 
be satisfactorily delimited. 

In future work, it is planned to initiate a collaboration with 
additional clinical specialists to gather their opinions and suggestions 
about the preprocessing phase, so that they could be taken into 
account in future developments.
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