
International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº6

- 54 -

* Corresponding author.

E-mail address: rberjonga@upsa.es

Keywords

Cloud Computing,
CloudEvents, Edge and
Fog Environments, Event
Driven Architecture,
Event Mesh, Internet of
Things.

Abstract

In IoT contexts, software solutions are required to have components located in different environments: mobile,
edge, fog or cloud. To design this type of application, event driven architecture (EDA) is used to develop
distributed, scalable, decoupled, desynchronized and real-time components. The interconnection between the
different components is done through event brokers that allow communication based on messages (events).
Although the design of the components is independent of the environment in which they are deployed, this
environment can determine the infrastructure to be used, for example the event brokers, so it is common to
have to make modifications to the applications to adapt them to these environments, which complicates their
design and maintenance. It is therefore necessary to have an event mesh that allows the connection between
event brokers to simplify the development of applications. This paper presents the SCIFI-II system, an event
mesh that allows the distribution of events between event brokers. Its use will allow the design of components
decoupling them from the event brokers, which will facilitate their deployment in any environment.

DOI: 10.9781/ijimai.2022.09.003

An Event Mesh for Event Driven IoT Applications
Roberto Berjón*, Montserrat Mateos, M. Encarnación Beato, Ana Fermoso García

Universidad Pontificia de Salamanca, Salamanca (Spain)

Received 21 April 2022 | Accepted 1 July 2022 | Early Access 19 September 2022

I. Introduction

CURRENTLY, all high performance IoT applications, regardless
of their computing paradigm: Cloud, Edge, Fog [1], Edge

mesh [2] and Cooperative-based systems [3], are developed
from an event-driven architecture based on microservices. An
IoT application based on microservices is structured through a
collection of loosely coupled distributed components that facilitate
the scalability and performance of the system. Moreover, the use of
event driven architectures allows the real-time processing not only
of a data stream coming from different data sources external to the
application [4], but also of the data flow exchanged between the
different microservices of the application.

There are two key elements to consider in these systems: how to
represent the data to be processed and the communication channels
through which to transport this data.

The data to be processed is represented in the form of an event.
Through it, a series of other elements can be included that can be
of great importance during its processing: its source, correlation,
transactionality, etc. For this reason, the Cloud Native Computing
Foundation (CNCF) promoted the CloudEvents specification [6] for
describing event data regardless of the format (json, avro, protocol
buffers, xaml) and protocol used for its transport (MQTT, AMQP,
Kafka, HTTP, ...), thus guaranteeing its portability and interoperability.
A CloudEvent contains two parts: data and metadata.

CloudEvent event data is the data represented through the event. It
can be text or binary information. If it is text, the value is included in
the “data” attribute of the cloud event. Conversely, if the data is binary,
its Base64 encoded value is included in the “data_base64” attribute.

CloudEvent event metadata provides contextual information.
It is a set of mandatory and optional attributes in the form of a key
value. Table I describes the attributes included in the specification. In
addition, if necessary, applications can add new attributes.

TABLE I. CloudEvent Metadata Attributes

Attribute Description Category

source Represents the identifier of the publisher
app that broadcast the event. It is
expressed as a URI.

Required

id Event identifier. The sender of the event
must ensure that two events from the
same source must necessarily have
different values for this attribute.

Required

type A publisher broadcasts different types of
events. This attribute (which is a string)
indicates the type of event.

Required

subject Identifies the context in which the source
emits the event. Usually, a consumer
subscribes to events broadcast by a given
source and subject.

Optional

datacontenttype Represents the content type of data value.
It is a string in RFC 2046 format.

Optional

dataschema It is a URI that identifies the schema in
which the data is structured.

Optional

time Represents the datetime at which the
publisher broadcasted the event. RFC
3339 encoded string.

Optional

When integrating distributed systems, it is necessary to use event
brokers through which data flows. Therefore, the components sending
and receiving data are coupled with respect to the event broker used.
As discussed above, one of the premises to be ensured when designing

 Special Issue on New Trends in Disruptive Technologies, Tech Ethics and Artificial Intelligence

- 55 -

a distributed system based on microservices is the loosely coupling
between its components. To ensure this, a middleware should be added
to make the microservices independent of the communication channel
through which data is sent and received. The simplest schematic of
this type of middleware is shown in Fig. 1. It allows the publisher
microservice to send data on the channel-X and the consumer
microservice to receive data on another channel-Y. This intermediate
layer connecting the event brokers is called event mesh.

An event mesh facilitates the simultaneous connection of
different types of event brokers. It therefore acts as an event router.
Depending on a set of rules, any event coming from any incoming
channel can be forwarded through any of its outgoing channels. This
allows great flexibility when integrating applications or extending
the functionalities (adding new microservices) of an application. As
can be seen in Fig. 2, consumer-1 is designed to receive events from
channel-1. Through the event-mesh, channel-1 could receive events
coming from channel-A, channel-B and channel-C issued respectively
by publisher-A, publisher-B and publisher-C. All this without the need
to modify the code of these components.

This is what SCIFI-II focuses on: the design and implementation of
an event mesh that is able to connect different types of event brokers.
Its mission will be to route incoming events to any of its outgoing
channels. The events will be described through the CloudEvent
specification. The event mesh will be configured through a dynamic
set of rules. These rules will determine the route(s) to be followed by
the event (to which outgoing channel to forward the event) based on
the event characteristics (mainly described by its metadata).

II. Event Mesh Related Work

The following is a study of the event meshes currently available
on the market and their main characteristics. Through this study, the
disadvantages of these systems will be analyzed, and SCIFI-II will be
presented as an alternative.

Knative Eventing [5]. It is an event mesh solution based on
CloudEvents specifications [6]. Events can be redirected to any
consumer if it has the ability to recognize and receive events using
HTTP. Triggers are used to perform the event subscription, triggers
are written using yml files, in which we indicate what values the
CloudEvents event attributes should have, as a template.

The solution has two main disadvantages, the first one is that
registration can only be done from addressable consumers applications
over HTTP and the second is that the way applications show their
interest in events is limited to the events meeting some characteristics
related to their context properties, but not to the data they might contain.

Solace PubSub+ [7]. this event mesh solution is also an event
broker that allows defining queues and hierarchical topics as
destinations. Thus, a consumer or producer application can receive
and/or send events to queues and hierarchical topics. Its main feature
is the ability to register other event brokers to act as consumers or
producers of these destinations, for example, an event that is directed
to a Solace PubSub+ queue can be received in a MQTT topic.

The main limitation is that it is not an event centric solution, so
a consumer is not self-sufficient in determining the type of events it
wishes to receive. It is only a solution that connects event brokers to
each other using previously configured destinations.

Argo Events [8]. It is a CloudEvents compliant solution.
It incorporates a wide variety of “Triggers” (consumers) and
“EventSources” (publishers). For the forwarding of events, we define
“Sensors” that oversee forwarding the events (triggering of the
“triggers”) when certain “dependencies” are met, which are related
through “Conditions”. The characteristics of the events are determined
by the dependencies from their data and/or their context.

The main limitations of this solution are its complexity in specifying
the redirection rules (defining dependencies, creating conditions to
relate the dependencies, including conditions within sensors) and the
fact that its event sources do not include communication with mobile
devices, despite including a greater number of event sources than
other solutions analyzed.

Fig. 1. Event mesh concept.

Fig. 2. Actual event mesh.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº6

- 56 -

Serverless.com event Gateway [9]. It is a serverless gateway that
can redirect the events it receives (using HTTP request) to previously
registered serverless applications. This solution allows to create sort of
topics (“spaces”) where event types are created. The way it works is as
follows: when registering an application, it is necessary to indicate the
event type and the space to which it subscribes, so that the events directed
to these coordinates are routed to the registered serverless functions.

This solution is not an event mesh per se, although at the serverless
level it can act as one. The main disadvantage found is that it is not an
event centric solution since the subscription is made according to the
destinations to which it is sent and not according to the characteristics
of the events.

Other event mesh solutions provided with cloud platforms include
the following: Azure Event Grid [10], Amazon EventBridge [11] or
Oracle Cloud Events Service [12]. Their main limitation is that they
are only cloud solutions designed to integrate the services of these
platforms. Moreover, only Oracle Events Service and Azure Event Grid
are CloudEvents compliant.

Table II summarizes the main characteristics of the analyzed
platforms. As we can see, only the Argo Events platform is event
centric, CloudEvent compliant, in which the redirection of events is
done through rules specified by each consumer, and which supports
multiple types of channels. Its main disadvantage is the excessive
complexity with which these rules are described and the fact that it
does not have channels for communication with mobile devices.

The following is a description of our SCIFI-II system that solves and
simplifies the described limitations.

III. SCIFI-II

SCIFI-II is a reactive event mesh implemented using the Quarkus
framework and therefore it is a cloud native system compatible with
Microprofile Reactive Messaging standard specification. It allows
dynamic registration of consumer and producer events applications.
When registering a producer application, the event broker through
which it emits the events must be indicated. As will be discussed later,
SCIFI-II supports many types of event brokers. These events must be
described using the CloudEvent specification. A consumer application
must specify during its registration which events it wishes to receive
and through which event broker. In order to specify the events, it
wishes to receive, the consumer application must provide a set of
rules. These rules must be enforced by incoming events so that they
can be forwarded by the event mesh to the consumer. These rules are
defined from the properties of the events, mainly from their metadata.
SCIFI-II is therefore a CloudEvent compliant and event centric event
mesh. A schematic of the different components of SCIFI-II is shown
in the Fig. 3.

To dynamically register all applications, SCIFI-II includes a REST
api. JSON is the format used to configure the application parameters.
The application configuration data is stored in a Google Cloud
Firestore database that feeds the apps registry module. This module
is responsible for dynamically creating the source and sink connector
instances linked to the incoming and outgoing channels of the
applications. Additionally, it creates the rules that determine when an
event must be redirected to a consumer application. All events received
by the incoming channels are processed by the router module. This

TABLE II. Comparative Overview of Event Mesh Platforms

Platform Event
centric

CloudEvent
compliant Redirection based on Rules

format Channels

Knative Yes Yes Consumer rules yaml Based on http
Solace PubSub+ No No Static routes - Many except specific to mobile devices
Argo Events Yes Yes Consumer rules yaml Many except specific to mobile devices
Serverless.com event Gateway No No Topics - Based on servless http
Azure Event Grid Yes Yes Azure triggers code Platform provided
Amazon EventBridge Yes No Rules based on source and type events Json Platform provided
Oracle Events Service Yes Yes Consumer rules Json Platform provided

Fig. 3. SCIFI-II components.

 Special Issue on New Trends in Disruptive Technologies, Tech Ethics and Artificial Intelligence

- 57 -

module checks for each event the compliance with the rules defined
by the applications. If a rule is fulfilled, router redirects the incoming
event to the sink connector corresponding to the application that
owns the rule.

As discussed above, in their registration, producer and consumer
applications (or those playing both roles) must provide different data.
Fig. 4 shows the json schema of the document to be provided in the
registration of an application.

When a publisher is registered, the incoming-config property must
indicate the channel on which it broadcasts its events. This attribute
contains properties to define the necessary parameters for SCIFI-II to
connect to that channel. When a consumer is registered, it is necessary
to include two properties: outgoing-config and rules. Outgoing-config
specifies the parameters required for SCIFI-II to connect to the
channel to which the consumer is linked. On the other hand, the rules
property defines the rules that the events must comply with in order
to be routed to the consumer.

Fig. 4. Publisher or Consumer application register schema.

Fig. 5 shows the structure of the JSON documents needed to register
both publisher and consumers. Of course, if an application plays both
roles, the JSON would be a merge of both. SCIFI-II allows consumer
applications to include additional properties which, as will be seen
later, can be used in the definition of the rules.

Fig. 5. Publisher and consumer register.

The connectors of the different event-brokers supported by SCIFI-II
are presented below.

A. Channels
This section explains the channels currently supported by SCIFI-

II. They are classified according to the type of application that uses
them. For each channel, the data to be provided in its registration is
specified.

• sensors/actuators: In IoT applications, MQTT is the main protocol
used [13], in fact this protocol has become the lingua franca in the
IoT world. The parameters that need to be included in incoming-
config or outgoing-config for this channel are shown in Fig. 6.

Fig. 6. MQTT channel properties schema.

On the other hand, SCIFI-II also provides a connector for Kafka.
Kafka is currently the leading distributed event streaming platform
on the market. The configuration parameters are shown in Fig. 7.

Fig. 7. Kafka channel properties schema.

• Mobile apps: Mobile applications are an indispensable component
in the development of IoT solutions for Smart cities [14] through
the Mobile CrowSensing paradigm. In this sense, SCIFI-II provides
connectors for different communication channels specific to
mobile technology. One of them is Firebase Cloud Message.
Through this channel it is possible to receive and send messages
through the XMPP protocol to specific mobile devices (Fig. 8).

Fig. 8. Firebase Cloud Message channel properties.

A message could also be sent to a topic. In this case all the mobile
devices subscribed to it receive the message. For this use case,
the channel could only be of type outgoing-config being their
properties those shown in Fig. 9.

Fig. 9. Firebase Cloud Message (topic target) outgoing channel properties
schema.

Another of the connectors available to SCIFI-II in this area is
to Google Cloud Firestore. Firestore is one of the main noSQL
databases in the cloud that is used by all types of apps (android,
Apple, or web apps). When an event is sent to this channel its
event data contains in json format the new data to be added to
a collection. The consumers of this channel receive events every
time there is a change in the data of a collection (either when it
is added, updated, or deleted). Its configuration properties are
described in Fig. 10.

Fig. 10. Google Cloud Firestore channel properties schema.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº6

- 58 -

• Proxies: In an application it is common to find components
running before or after the data processor that perform data
filtering and transformation tasks. Since one of the most used
channels in these situations is Redis Pub/Sub, SCIFI-II also has a
connector for it (Fig. 11).

Fig. 11. Redis Pub/Sub channel properties schema.

• Web applications: A typical use case in this context is the
development of web applications to monitor and manage devices
in real time. For this type of applications SCIFI-II provides a
connector for WebSocket because it allows to establish a full-
duplex asynchronous connection without the need for long
polling (Fig. 12).

Fig. 12. WebSocket channel properties schema.

B. Rules
In SCIFI-II consumer applications must describe which events

they wish to receive. To do so, they must indicate what features they
should have. In the event these features are generally included in their
context, which in the CloudEvents specification represents the event
metadata.

During the registration of a consumer application, rules must
be specified that incoming events must comply with in order to be
forwarded to that consumer. These rules are defined by means of
boolean expressions written with the Jakarta Expression Language
(EL) syntax. For each incoming event, all the rules defined in the
consumer applications are evaluated. The positive evaluation of
any rule will result in the redirection of the event to the consumer
application. In this way, an incoming event can be redirected to many
consumer applications. Likewise, an incoming event may not be
redirected to any consumer application.

In these ELs, the context bean “event” can be used to reference
through it all the attributes included in the event metadata of the
event. For example, the expression “event.type” shall refer to the
value of the mandatory type attribute in the CloudEvent specification.
For example, the rule in Fig. 13 will determine that the consumer
application will be interested in events of type “es.upsa.scifi.dtwins.
put” issued by “http://scifi.upsa.es/dtwins”.

Fig. 13. Consumer rule with “event” bean context.

In the same way, these ELs can also reference the context bean
“self”. Through it, all the attributes included in the consumer
application registry can be accessed. Remember that the json schema
of this registry (see Fig. 4) allows additional attributes to be included
as needed. For example, if the “from” attribute had been added to the
consumer application record to represent the URI of the publisher app
from which it expected to receive events, the rule in Fig. 13 could also
be expressed as shown in Fig. 14.

Fig. 14. Rule with “self” bean context.

The eventDataAsJsonObject() and eventDataAsJsonArray()
functions can also be used in the rules. Through these functions it
is possible to define rules based on the event data. The former is
evaluated as the JSON Object contained in the event data of the event.
The function checks that the CloudEvent event contains an event data
and its datacontenttype is “application/json”. Thus, through the value
returned by this function, the properties contained in the event data
can be accessed. The second function is like the first one, but in this
case, it is evaluated as a json array, so each of its items can be accessed
individually. Fig. 15 shows an example where a rule is created based
on the “source” and “type” attributes of the CloudEvent context and
the “temperate” attribute included in the json object representing the
event payload.

Fig. 15. Consumer rule with eventDataJsonObject() function.

IV. Conclusion

This paper presents the SCIFI-II framework. This framework is an
event mesh that allows the connection of multiple event brokers. Its
use facilitates the development of distributed applications based on
microservices and the integration of heterogeneous applications in a
reliable and simple way. It adds a software layer that allows decoupling
the event publisher and consumer components of a common event
broker. In this way, each component can freely determine the
infrastructure that suits it best.

Comparing this framework with others on the market, it is the most
versatile as it is the only one with the following characteristics: event
centric; CloudEvents compliant; event redirection is based on rules;
the rules are represented through Expression Language, a powerful
language that simplifies the creation of complex expressions based on
the payload and context (or metadata) of the event; it also has a wide
catalogue of channels from which to receive or send events, including
those oriented towards mobile devices.

The SCIFI-II framework can be used for the development of
applications based on event-driven architectures that can be deployed
in both cloud and edge environments, as well as in legacy contexts.

References

[1] J. He, J. Wei, K. Chen, Z. Tang, Y. Zhou and Y. Zhang, “Multitier Fog
Computing With Large-Scale IoT Data Analytics for Smart Cities,” IEEE
Internet of Things Journal, vol. 5, no. 2, pp. 677-686, 2018.

[2] Y. Sahni, J. Cao, S. Zhang and L. Yang, “Edge Mesh: A New Paradigm to
Enable Distributed Intelligence in Internet of Things,” IEEE Access, vol.
5, pp. 16441-16458, 2017.

[3] M. Rescati, M. De Matteis, M. Paganoni, D. Pau, R. Schettini and A.
Baschirotto, “Event-driven cooperative-based Internet-of-Things (IoT)
system,” 2018 International Conference on IC Design Technology
(ICICDT), pp. 193-196, 2018.

[4] P. Bellini, D. Nesi, P. Nesi and M. Soderi, “Federation of Smart City
Services via APIs,” 2020 IEEE International Conference on Smart
Computing (SMARTCOMP), pp. 356-361.

[5] Knative, “Knative Eventing,”. Accessed: Mar. 06, 2022. [Online]. Available:
https://knative.dev/docs/eventing/.

[6] “Cloudevents” Accessed Mar. 06 03 2022 [Online]. Available: https://

 Special Issue on New Trends in Disruptive Technologies, Tech Ethics and Artificial Intelligence

- 59 -

cloudevents.io.
[7] Solace, “Solace PubSub+”. Accessed Mar. 06 03 2022 [Online]. Available:

https://solace.com/.
[8] “Argo Events”. Accessed Mar. 06 03 2022 [Online]. Available: https://

argoproj.github.io/argo-events.
[9] serverless.com, “Serverless.com - Event Gateway”. Accessed Mar. 06 03

2022 [Online]. Available: https://github.com/serverless/event-gateway.
[10] Microsoft Azure, “Azure Event Grid”. Accessed Mar. 06 03 2022 [Online].

Available: https://azure.microsoft.com/en-in/services/event-grid.
[11] Amazon Web Services, “Amazon EventBridge”. Accessed Mar. 06 03 2022

[Online]. Available: https://aws.amazon.com/eventbridge.
[12] Oracle Corp., “Oracle Cloud Events Service”. Accessed Mar. 06 03 2022

[Online]. Available: https://www.oracle.com/cloud-native/events-
service.

[13] B. Mishra and A. Kertesz, “The Use of MQTT in M2M and IoT Systems: A
Survey,” IEEE Access, vol. 8, pp. 201071-201086, 2020

[14] A. Capponi, C. Fiandrino, B. Kantarci, L. Foschini, D. Kliazovich and
P. Bouvry, “A Survey on Mobile Crowdsensing Systems: Challenges,
Solutions, and Opportunities,” IEEE Communications Surveys Tutorials,
vol. 21, no. 3, pp. 2419-2465, 2019.

Roberto Berjón

Roberto Berjón received his PhD. in Computer Science
from the Universidad de Deusto in 2006. At present he
is Professor at the Universidad Pontificia de Salamanca
(Spain). He has been a member of the organizing and
scientific committee of several international symposiums
and has authored papers published in a number of recognized
journals, workshops and symposiums. Nowadays he is

member of the research group MARATON (Mobile Applications, inteRnet
of things, dAta processing, semanTic technologies, OpeN data) where he
currently focuses his work on IoT and mobile environments. At present time
he is Program Director of the Master in Mobile Applications at the Universidad
Pontificia de Salamanca.

Montserrat Mateos

PhD in Computer Science from Universidad de Salamanca
in 2006. At present, she is a Professor at the Universidad
Pontificia de Salamanca (Spain), and also, she is member
of the research group MARATON (Mobile Applications,
inteRnet of things, dAta processing, semanTic technologies,
OpeN data) where she develops her research works in
areas such as mobile technologies, IoT and Information

Retrieval. She has been a member of the organizing and scientific committee
of several international symposiums and has authored papers published in a
number of recognized journals, workshops and symposiums. On other hand, she
is external internship coordinator in Faculty of Computer Science.

M. Encarnación Beato

Mª Encarnación Beato (PhD.). Received a PhD. in
Computer Science from the University of Valladolid in
2004. She is professor at the Universidad Pontificia de
Salamanca (Spain) since 1997. At present she is a member
of the MARATON (Mobile Applications, inteRnet of
things, dAta processing, semanTic technologies, OpeN
data) research group at the Universidad Pontificia de

Salamanca. She has been a member of the organizing and scientific committee
of several international symposiums and has co-authored papers published in a
number of recognized journals, workshops and symposiums.

Ana Fermoso

PhD in Computer Science and Computer Engineering
from the University of Deusto. She is currently Professor
of Software Engineering at the Faculty of Computer
Science of the Universidad Pontificia de Salamanca. She
is a member of the MARATON research group, where
she works on research lines of this group related to data
retrieval, integration and processing, semantic technologies

and open data, as well as mobile technologies and IoT. As a researcher, she is

author and co-author of numerous scientific publications indexed in the main
reference rankings (JCR and SCOPUS), she has participated as a presenter
and has been a member of the scientific committee of numerous national and
international scientific conferences. She has also participated in competitive
research projects as principal investigator and collaborator and from which have
derived intellectual property registrations of the software products developed in
them. In addition, at present she is the Program Director of the Master’s degree
in IT project management and technological services. In regards to the topic
of the master’s degree, she has several certifications in the area. She is PMP
(Professional Project Management) certified by the PMI (Project Management
Institute), Scrum Master (PSM I) accredited by Scrum.org and by European
Scrum, as well as ITIL4 Foundations certification for IT service management.

