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Abstract

Clustering algorithms such as k-means depend heavily on choosing an appropriate distance metric that reflect 
accurately the object proximities. A wide range of dissimilarities may be defined that often lead to different 
clustering results. Choosing the best dissimilarity is an ill-posed problem and learning a general distance from 
the data is a complex task, particularly for high dimensional problems. Therefore, an appealing approach is to 
learn an ensemble of dissimilarities. In this paper, we have developed a semi-supervised clustering algorithm 
that learns a linear combination of dissimilarities considering incomplete knowledge in the form of pairwise 
constraints. The minimization of the loss function is based on a robust and efficient quadratic optimization 
algorithm. Besides, a regularization term is considered that controls the complexity of the distance metric 
learned avoiding overfitting. The algorithm has been applied to the identification of tumor samples using the 
gene expression profiles, where domain experts provide often incomplete knowledge in the form of pairwise 
constraints. We report that the algorithm proposed outperforms a standard semi-supervised clustering 
technique available in the literature and clustering results based on a single dissimilarity. The improvement is 
particularly relevant for applications with high level of noise.
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I. Introduction

CLUSTERING algorithms such as k-means depend heavily on 
finding an appropriate dissimilarity that reflects accurately the 

object proximities [1]. This depends on the nature of the data and 
project requirements [2]. In practice, a wide range of dissimilarities 
may be defined based for instance  on different features of the objects 
[3], [4]. Different dissimilarities lead often to significant changes in 
clustering results. Some researchers have addressed this problem 
learning a general distance from the data [5] but this is a challenging 
task for high dimensional applications [6]. Therefore, instead of 
considering a single distance metric an appealing approach is to learn 
a combination of dissimilarities from the data.

Several authors have developed learning algorithms for multiview 
clustering that are able to integrate a set of dissimilarities obtained 
from different features of the objects [7]. Following the same approach 
[8], Hu et al. [9] have proposed multiple kernel k-means clustering 
algorithms that might consider a set of dissimilarities using the kernel 
trick. However, these learning algorithms are unsupervised and may 
not provide metrics that help to increase the cluster separability [6].

For certain Bioinformatics applications, weak supervised 
information is available in the form of which pairs of proteins or genes 
are related [10]. This incomplete supervision may be incorporated 
into semi-supervised clustering algorithms formulated as pair-wise 
constraints [11], [12]. Must-link constraints when 𝑥𝑖 and 𝑥𝑗 belong to 
the same cluster and cannot-link constraints when 𝑥𝑖 and 𝑥𝑗 belong to 
different clusters.

Some researchers have proposed algorithms to learn the metric 
from a set of equivalence constraints based on the Mahalanobis 
distance [1], [6], [13]. However, they are based on a single metric that 
may not be appropriate for certain applications and do not perform 
well with high dimensional data with noise. Besides, they are prone to 
overfitting and are computationally intensive due to the large number 
of parameters involved. Other non-linear metric learning approaches 
have been developed based on kernel methods [14], [15]. Again they 
are based on a single dissimilarity and suffer from similar drawbacks.

In this paper, we follow the approach of multiple kernel clustering 
algorithms [16], [17], that learn a combination of kernels to improve 
the clustering results. However, this kind of researches relies 
on complex optimization algorithms and often are not designed 
to incorporate supervised information in the form of pairwise 
constraints. The main contribution of this paper is to propose a 
novel semi-supervised clustering algorithm that learns an ensemble 
of dissimilarities from incomplete knowledge in the form of pairwise 
constraints. The problem is formulated as learning the combination of 
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multiple kernels (similarities) that maximizes the separability among 
the clusters considering the pairwise constraints. The loss function is 
convex and quadratic without local minima and it is optimized in dual 
space efficiently. Besides, it incorporates a penalty term to control the 
complexity of the family of distances avoiding the overfitting.

The algorithm has been evaluated using several benchmark UCI data 
sets and two problems of cancer samples identification based on the 
gene expression profiles. The empirical results suggest that the method 
proposed improves the clustering results obtained considering a single 
dissimilarity and a standard supervised clustering method proposed by 
Xing et al. [13] that learns the metrics from pairwise constraints.

This paper is organized as follows: Section II presents the clustering 
algorithm proposed that learns a combination of dissimilarities using 
pairwise constraints. Section III illustrates the performance of the 
algorithm using several benchmark and two complex cancer samples 
identification datasets. Section IV discusses the contributions of this 
paper in the context of related work. Finally, Section V gets conclusions 
and outlines future research trends.

II. Material and Methods

In this section we present the semi-supervised clustering 
algorithm developed based on an ensemble of dissimilarities and the 
experimental datasets considered. First, sections A and B introduce 
the kernel version of k-means clustering algorithm and the empirical 
kernel map, that allow us to extend a kernel clustering algorithm 
to work with a given dissimilarity. Thus, the problem of learning a 
linear combination of dissimilarities may be formulated as learning a 
linear combination of kernels. Next, in section C an idealized kernel is 
defined for clustering applications that helps to reduce the intra-cluster 
distances while increasing the inter-cluster separability considering 
the available pairwise constraints. Section D presents the learning 
algorithm for the linear combination of kernels that best approximate 
the idealized kernel, subject to a set of pairwise constraints. Section 
E comments the meaning of the non-null Lagrange multipliers in the 
dual space as support vectors. Finally, section F describes the features 
of the benchmark and cancer datasets considered.

A. Kernel K-means Clustering
Let  be the training set, Zki the clustering 

indicator matrix defined as 1 if 𝑥𝑖 belong to cluster k and 0 otherwise. 
k-means clustering looks for a set of representatives  and a 
partition of the objects into C groups that minimize the sum of square 
distances to the cluster representatives:

 (1)

 (2)

This error function is optimized by an iterative algorithm in two 
steps. First the centroids for each cluster are computed, next each 
object is assigned to the group corresponding to the nearest centroid 
according to the euclidean distance. The use of the euclidean distance 
induces a bias towards spherical groups. K-means clustering has been 
extended to more general dissimilarities by mapping non-linearly the 
original samples to a high dimensional reproducing kernel Hilbert 
space ℱ [9]. Let Φ be the non-linear mapping to feature space ℋ. 
Kernel k-means optimizes the following sum of square errors in the 
reproducing kernel Hilbert space:

 (3)

 (4)

where  is the centroid for cluster k in the 
kernel feature space. Considering that in this feature space 

, the L2 norm can be written exclusively in terms 
of kernels evaluations as:

 (5)

The optimization of the square error function (3) in the feature 
space can be solved by algorithm 1.

Algorithm 1. Kernel k-means algorithm

1: Inputs K: kernel matrix, C: number of clusters

2: Initialize: The C clusters 

3: Set t = 0
4: For each 𝑥𝑖 compute the cluster with the nearest centroid: 

 using (5) 

5: Update the clusters 

6: Go to step 3 and update t = t + 1 if not converged

7: Return:  partitioning of the objects

B. The Empirical Kernel Map
We have mentioned earlier that the learning algorithm for the 

kernel k-means clustering can be written exclusively in terms of 
kernel evaluations. For certain applications only a dissimilarity matrix 
is available and it is often difficult to obtain a vectorial representation 
for the data. Therefore, the dissimilarity should be incorporated into 
the algorithm directly through the kernel definition. To this aim, we 
first map the dissimilarity to a feature space where the dot product 
defines a Mercer kernel [18]. Depending on the kernel definition, 
the map may transform linearly or non-linearly the original distance 
given rise to a wider family of dissimilarities. Next, we introduce the 
empirical kernel map proposed by [19].

Let 𝑑 : 𝒳 𝗑 𝒳 → ℝ be a dissimilarity and  a subset of 
representatives drawn from the training set. The mapping to embed a 
given dissimilarity to a feature space is defined as:

 (6)

where

 (7)

This mapping Φ embeds the dissimilarity into a functional 
Hilbert space where feature j is given by 𝑑 ( . , 𝑥𝑗). The number of 
representatives considered determines the dimensionality of the 
feature space. Now, the dot product in feature space defines the kernel 
for a given dissimilarity:

 (8)
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An interesting property of the kernel matrix is that it is symmetric 
and positive semi-definite [18]. This characteristic will help to define 
a convex quadratic loss function for the clustering algorithm that can 
be optimized efficiently. Obviously, a clustering based on kernels can 
be extended easily to work with a given dissimilarity just considering 
the definition (8) for the kernel.

C. The Idealized Kernel of Dissimilarities
Let  be a set of objects. We are given weak supervised 

information to learn the distance metric in the form of similarity/ 
dissimilarity constraints. Must link constraints provide pairs of 
objects that are considered similar and cannot link constraints identify 
dissimilar ones. Let S and D be the subset of object pairs known to be 
similar/dissimilar. Mathematically they are defined as:

𝒮 = {( 𝑥𝑖,  𝑥𝑗) :  𝑥𝑖 is similar to 𝑥𝑗} (9)

𝒟 = {( 𝑥𝑖,  𝑥𝑗) :  𝑥𝑖 is dissimilar to 𝑥𝑗} (10)

Next, the idealized kernel is defined with the aim of maximizing 
the separability among different clusters. First, notice that the kernel 
function is a dot product in feature space  [18]. 
Therefore, it can be considered a similarity measure defined in the 
reproducing kernel Hilbert space [20]. For clustering applications, the 
ideal similarity (kernel) should be large for pairs of similar objects 
and small for dissimilar ones. Mathematically, the idealized kernel is 
defined for a family of kernels  and a set of pairwise constraints 
(S, D) as follows:

 (11)

Now, the idealized dissimilarity between two objects (𝑥𝑖, 𝑥𝑗) is the 
euclidean distance in the kernel feature space induced by k*. Substituting 
the dot products by the idealized kernel, it can be written as:

 (12)

For pairs of similar objects the idealized dissimilarity takes the 
smallest value of the family of dissimilarities while for dissimilar 
ones takes the largest value. This measure will increase the cluster 
separability reducing the intra-cluster variance.

To illustrate the performance of the idealized dissimilarity let 
consider the breast cancer data set employed in the experimental 
section. We have applied a classical multidimensional scaling 
algorithm (MDS) [21] to project the data over a two dimensional 
subspace preserving approximately the original dissimilarities.

Fig. 1 shows the representation when the euclidean distance is 
considered and no supervisory information is available. The two 
classes (red-blue) overlap significantly and a clustering algorithm will 
fail to identify the two groups. Fig. 2 shows the projection for the MDS 
algorithm based on the idealized dissimilarity obtained from a family 
of 9 distances and a small set of randomly chosen pairwise constraints. 
We have considered 20% of all possible similarity/dissimilarity 
constraints. Similarity constraints are generated selecting pairs of 
patients that belong to the same class while dissimilarity constraints 
are retrieved from pairs of patients assigned to different classes. Fig. 2 
shows that considering the idealized similarity both clusters become 
separable. Obviously, this measure may increase the overfitting. 
Therefore, the algorithm proposed to learn this dissimilarity should 
take care of this problem.

The idealized kernel (11) defined here for weak supervised clustering 
problems is related to the one proposed by [22] for classification:

 (13)

where yi denotes the class label for 𝑥𝑖. However, the definition (13) 
takes into account only the class labels missing relevant information 
about the probability distribution for the objects. By contrast, the 
idealized kernel presented here takes into account a set of dissimilarity 
measures and hence, considers the probability distribution for the 
data. Besides, the kernel definition (13) is only valid for supervised 
problems in which class labels are available for the training set. It 
cannot be considered to incorporate incomplete knowledge in the 
form of equivalence constraints.
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Fig. 1.  Multidimensional scaling algorithm for a breast cancer dataset based on 
the euclidean distance. Both clusters (control and cancer) are quite overlapped 
in the projection.
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Fig. 2.  Multidimensional scaling algorithm for a breast cancer dataset based 
on the idealized dissimilarity. Now, the two groups (control and cancer) can be 
easily identified by a clustering algorithm.

D. Multiple Kernel Learning for Clustering Algorithms Using 
Pairwise Constraints

In this section, we present the algorithm to learn the linear 
combination of similarities (kernels) that maximizes the cluster 
separability considering a set of pairwise constraints.

Let  be a set of M dissimilarity matrices that may come from 
different definitions or considering different features of the data. The 
dissimilarities are introduced into the clustering algorithm using the 
empirical kernel map (8). Let  be the family of kernels obtained. 
Considering non-linear kernels will extend the original family of 
dissimilarities by non-linear mapping to a feature space. The problem 
can now be formulated as learning an optimal combination of kernels 
that maximizes the separability among the clusters using the pairwise 
constraints.
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The linear combination of kernels is defined as:

 (14)      

where the βl coefficients are constrained to be ≥ 0. Therefore, 
provided that each kernel is symmetric and positive semi-definite, 
the linear combination of kernels with βl ≥ 0 will be convex and 
positive semi-definite [23]. This property will help to define a convex 
quadratic loss function for the distance learning algorithm that may 
be optimized efficiently. Linear combination of kernels are preferred 
in this research over non-linear ones [4] because they are more robust 
to overfitting and the estimation of the parameters is more efficient 
computationally. The βl coefficients are learned considering that he 
linear combination of kernels (14) should approximate the idealized 
kernel (11) with minimum error subject to the similarity/dissimilarity 
constraints. This optimization problem can be formulated in the 
primal as follows:

 (15)      

 (16)      

 (17)      

 (18)      

CS and CD are regularization parameters that penalize training errors 
in the estimation of the idealized kernel. Particularly, they penalize 
similarity/dissimilarity constraint violations respectively. Both 
parameters may be determined by a grid search strategy using ten 
fold-crossvalidation. NS, ND are the number of pairwise constraints in S 
and D. Ω( β) is a regularization function that penalizes the complexity 
of the linear combination of kernels learned. Increasing the values of 
the regularization parameters CS and CD will minimize training errors 
in the constraints satisfaction but will increase the complexity of the 
similarity/kernel learned and the overfitting of the data.  is the 
idealized kernel matrix introduced in section C and ξij are the slack 
variables which are greater than zero for errors in the constraints 
satisfaction. Finally, Kij is a matrix defined as , 
where  is the idealized kernel matrix for similarity l.

The equations (16)-(17) model the constraints and ensure that the 
combination of similarities/ kernels learned are ≥   for similar 
objects and ≤   for dissimilar ones. The choice of the functional 
regularization term Ω( β) will determine the properties of the solution 
obtained. The L1 norm is frequently considered in the Multiple 
Kernel Learning (MKL) literature [16], [24]. In this case, the solution 
will become sparse [25] and only a small set of similarities/kernels 
correlated with the idealized similarity will have non-null coefficient. 
However, in the bioinformatics applications considered in this paper, 
we are given frequently a small set of curated dissimilarities coming 
from different sources or distance metric definitions. Sparse solutions 
may lose relevant information and worsen the clustering results 
obtained [25].

Another choice for the regularization function Ω( β) is the L2 norm. 
This penalization term distributes the weights more evenly reducing 
the value of the coefficients for less relevant kernels without removing 
them. Some authors have suggested in the literature that the L2 norm 
gives better results in biomedical applications [25], [26]. Therefore, in 
this paper we will consider the L2 norm regularization function.

Substituting Ω( β) by the L2 norm the optimization problem in the 
primal is now formulated as follows:

 (19)      

The previous constrained optimization problem can be solved using 
the method of Lagrange multipliers. Next, the problem can be written 
in the dual as follows

subject to:

 (20)      

 (21)      

where αij and γl are the Lagrange multipliers. The optimization 
problem in the dual is convex and quadratic without local minima 
[27]. Besides, the computational burden depends on the number of 
active constraints, that is those with ξij  ≥ 0. This is more efficient than 
solving the problem in the primal where the computational complexity 
is proportional to the number of variables.

Once the αij and γl are estimated in the dual, the coefficients βl for 
the linear combination of kernels can be obtained from . The 
vector of coefficients can be written as:

 (22)      

Substituting in equation (14) we obtain the optimal combination 
of kernels learned from a set of equivalence constraints. Then, any 
clustering algorithm that works directly from a kernel matrix may be 
extended to incorporate a linear combination of dissimilarities. This will 
help to identify clusters that are non-separable using a single metric.

E. Support Vectors and KKT Complementary Conditions
In this section we study the relation between the value of the 

Lagrange multipliers and the constraints satisfaction. We also comment 
the meaning of the support vectors in the context of Multiple Kernel 
Learning.

The value of the Lagrange Multipliers αij determines if the linear 
combination of kernels complies with the constraints (16)-(17). To 
study this relation more in depth, let consider the Karush-Kuhn-
Tucker (KKT) complementary conditions [27] for the optimization 
problem (19). They can be written in the primal as follows:

 (23)      
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From the previous KKT complementary conditions the following 
properties can be derived:

For similarity constraints, that is pairs of ( 𝑥𝑖,  𝑥j) ∈ 𝒮 

For dissimilarity constraints, that is pairs of  ( 𝑥𝑖,  𝑥j) ∈ D

The above properties show that when the similarity/dissimilarity 
constraints are satisfied with a margin larger than zero, the Lagrange 
multipliers αij are null and the corresponding similarity for the pair of 
objects will not appear in the solution. On the other hand, when the 
linear combination of kernels fails to satisfy the constraints or they are 
satisfied with margin exactly equal to zero the Lagrange multipliers 
are non-null and the similarity for the corresponding pair of objects 
will be considered in the solution. They are the support vectors and 
the optimization problem can be formulated exclusively in terms of 
them. Therefore, the complexity of the optimization algorithm will 
not depend on the size of the training set but on the number of the 
support vectors.

F. Datasets Description
We have considered a wide range of data sets to check the 

performance of the clustering algorithm proposed. Table I shows the 
different datasets considered and their features. The first three rows 
correspond to benchmark datasets retrieved from the UCI machine 
learning database (http://archive.ics.uci.edu/ml/datasets/). The last two 
rows are complex bioinformatics problems aimed to identify human 
cancer samples using the gene expression profiles. Both datasets can 
be recovered from a public webpage (http://bioinformatics2.pitt.edu). 
We have selected applications with wide range of signal to noise 
ratio (Var./Samp). In particular the cancer datasets (last two rows) 
have a high signal to noise ratio with large number of variables and 
small number of samples. Therefore, they are problems that favor 
the overfitting of the data and will serve to check the generalization 
ability of the algorithm proposed. Moreover, as the number of samples 
is small, the supervisory information available is also quite limited and 
learning the metric becomes a challenging task. For all the datasets 
the class label is available. This will help to evaluate rigorously the 
clustering results considering objective measures. Finally, the variables 
have been normalized subtracting the median and dividing by the 
inter-quantile range.

TABLE I. Properties of the Different Data Sets Considered

Data sets Samples Variables Var./Samp Classes

Wine (UCI) 177 13 0.17 3

Ionosphere (UCI) 351 35 0.01 2

Breast Cancer 
(UCI)

569 32 0.05 2

Lymphoma 96 4026 41.9 2

Colon Cancer 62 2000 32 2

III. Results

In this section we first comment the preprocessing of the datasets 
and how the supervisory information is generated. Next, the set of 
dissimilarities considered by the learning algorithm are introduced as 
well as the method to estimate the parameters. Finally, we describe 
the objective measures to evaluate the clustering algorithms and the 
experimental results are discussed.

Cancer samples using the gene expression profiles are represented 
in high dimensional spaces with high level of noise to signal ratio. 
Noisy features may deteriorate the clustering performance. Therefore, 
feature selection to remove redundant variables is recommended 
to improve the clustering results [10]. To this aim, genes (features) 
are ranked by the interquantile range (IQR). Those genes with small 
variability are considered irrelevant to discriminate between different 
disease states. We have considered five subsets with the 280; 146; 
101; 56 and 34 genes ranked higher considering the IQR. Supervised 
feature selection algorithms are not considered because in clustering 
problems class labels are not available. For clustering algorithms 
based on a single dissimilarity we have chosen the subset of genes that 
gives rise to the smallest error. Clustering methods based on multiple 
kernels consider all the dissimilarity matrices obtained from different 
subset of features. It is expected that the learning algorithm will help 
to remove dissimilarities based on noisy features.

Regarding the set of dissimilarities integrated into the clustering 
algorithm we have considered nine measures widely used in 
bioinformatics applications. Euclidean, Manhattan, Chevichev, 
Mahalanobis, Cosine, Correlation, Spearman, Kendall-τ and χ2. In order 
to build an ensemble of dissimilarities we have considered for each 
distance different subsets of features and non-linear transformations 
using kernel methods. After that, we obtained an ensemble of 45 
dissimilarity matrices for each type of kernel.

To generate the set of pairwise constraints we have followed 
the approach of [13]. The similarity constraints S are obtained by 
sampling randomly all the object pairs that belong to the same class. 
The size of S is chosen such that the number of connected components 
is approximately the 20% of the number of objects. The dissimilarity 
constraints D are chosen sampling randomly the object pairs that 
belong to different classes. Twenty independent random sets for S and 
D are generated and the average error is reported.

The optimal values for the regularization parameters CS and CD are 
estimated using a grid search strategy and the errors are computed 
by ten-fold cross-validation over the set of constraints. The number 
of clusters for each problem has been set up to the number of classes. 
As kernel k-means algorithm is sensitive to the initialization we have 
reported the average error over 20 independent trials with random 
initialization.

   The clustering algorithms have been evaluated by two error 
functions widely used in the literature [13]. The first one is the 
accuracy. It determines the probability that two objects that belong 
to the same or different classes are grouped in the same way by the 
clustering algorithm. Mathematically it can be defined as:

 (24)      

where yi is the reference class label for object i and ci is the group 
assigned to object i by the clustering algorithm. N is the number 
of objects in the dataset. The accuracy may lead often to wrong 
conclusions because the average value for two random partitions is 
greater than zero. To overcome this problem, it has been proposed in 
the literature the adjusted randindex [28].
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Table II and Table III compare the different clustering algorithms 
according to accuracy and the adjusted randindex. First row provides 
the results for the semi-supervised learning algorithm proposed in this 
paper and based on an ensemble of dissimilarities. Polynomial kernels 
allow to increase the number of dissimilarities incorporating non-
linear transformations of the original ones. We have compared in the 
second row with a standard clustering method that learns the metric 
from pairwise constraints [13]. Third row provides the performance 
of kernel k-means based on the best measure for the whole family 
of dissimilarities considered. Each column reports the best distance 
regarding the data set analyzed. Again, the original dissimilarities may 
be non-linearly transformed to obtain more general measures using 
polynomial kernels.  Finally, last row shows the results for k-means 
standard clustering algorithm based on the euclidean distance. 
Polynomial kernels allow us to transform non-linearly this metric to 
consider more general dissimilarities and non-spherical groups. 

TABLE II. Accuracy for the Semi-supervised Clustering Algorithm 
Proposed Versus Other Approaches. The Results Are Averaged Over 

Twenty Independent Random Subsets for S and D

Technique Kernel Wine Ionosphere Breast Colon Lymphoma

Clustering 
proposed

Linear
Pol. 3

0.94
0.96

0.90
0.89

0.92
0.92

0.89
0.90

0.95
0.92

Metric 
learning 
(Xing)

Linear
Pol. 3

0.87
0.51

0.74
0.74

0.85
0.86

0.87
0.88

0.90
0.90

Kernel 
K-means

 (Best dissi-
milarity)

Linear
Pol. 3

0.94
0.94
χ2

0.88
0.88

Mahalanobis

0.90
0.90

Manhattan

0.88
0.88

Correlation

0.94
0.93
χ2

K-means 
(Euclidean)

Linear
Pol. 3

0.92
0.87

0.72
0.73

0.88
0.88

0.87
0.88

0.90
0.90

TABLE III. Adjusted RandIndex for the Semi-Supervised Clustering 
Algorithm Proposed Versus Other Approaches. The Results Are 

Averaged Over Twenty Independent Random Subsets for  S and D

Technique Kernel Wine Ionosphere Breast Colon Lymphoma

Clustering 
proposed

Linear
Pol. 3

0.82
0.85

0.63
0.60

0.69
0.69

0.60
0.63

0.79
0.73

Metric 
learning 
(Xing)

Linear
Pol. 3

0.68
0.50

0.23
0.23

0.50
0.52

0.54
0.58

0.66
0.65

Kernel 
K-means

 (Best dissi-
milarity)

Linear
Pol. 3

0.82
0.81
χ2

0.58
0.58

Mahalanobis

0.66
0.66

Manhattan

0.59
0.59

Correlation

0.77
0.76
χ2

K-means 
(Euclidean)

Linear
Pol. 3

0.79
0.67

0.20
0.21

0.59
0.60

0.59
0.59

0.65
0.65

From the analysis of Table II and Table III, we report three relevant 
conclusions:

First, the semi-supervised clustering algorithm proposed in 
this paper improves significantly the performance of a benchmark 
clustering algorithm developed by Xing [13] that learns the metric 
from pairwise constraints. The accuracy and the adjusted randindex 
are significantly improved even for the cancer datasets, with high 
level of noise and large number of variables. This result can be 
explained because the clustering proposed here has smaller number of 
parameters and the regularization term helps to reduce the overfitting. 
Notice also that our model integrates dissimilarities based on different 
sets of features removing the problem of choosing the optimal set of 
variables, which is a complex task in clustering problems.

To determine if the differences between our clustering algorithm 
and the one proposed by Xing are statistically significant we have 
computed the boxplots for both techniques. To this aim, we have 
generated 20 independent random sets of constraints for S and D and we 
have estimated the accuracy and the adjusted randindex. Fig. 3 shows 
the boxplots for the accuracy and Fig. 4 for the adjusted randindex. Odd 
numbers in the x-axis correspond to the boxplots for our clustering 
algorithm and the different datasets considered in the same order 
as in Table II. Similarly, even numbers correspond to the supervised 
clustering algorithm proposed by Xing. The boxplots show that the 
differences between both algorithms are statistically significant at 95% 
confidence level for all the datasets considered in this paper.
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Fig. 3. Accuracy boxplots that compare the multiple kernel learning 
clustering proposed with the metric learning algorithm developed by Xing. 
20 independent trials have been recorded considering 20 sets of constraints 
generated randomly.
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Fig. 4. Adjusted RandIndex boxplots. They compare the multiple kernel 
learning clustering proposed with the metric learning algorithm developed 
by Xing. 20 independent trials have been recorded considering 20 sets of 
constraints generated randomly.

The clustering algorithm proposed that integrates an ensemble 
of dissimilarities improves the accuracy and adjusted randindex 
of kernel k-means based on the best similarity. The combination of 
dissimilarities provides more information that a single measure. 
Besides, Table II and Table III show that the best dissimilarity depends 
on the particular problem considered. Moreover, for unsupervised 
applications choosing the best measure is an ill-posed problem, because 
no supervised index error can be defined to guide the selection of an 
appropriate metric. Our algorithm helps to overcome the problem of 
choosing an optimal dissimilarity, the best kernel and even the optimal 
subset of features. This is frequently a challenging task, for instance in 
complex bioinformatics applications.
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Finally, we remark that the learning algorithm proposed improves 
significantly the standard k-means clustering algorithm based on 
the euclidean distance for all the datasets considered. The results 
are similar for a non-linear transformation of the euclidean distance 
considering polynomial kernels of degree 3.

IV. Discussion

Several algorithms developed in the literature to learn the distance 
metric are related to the one proposed here. The first approach tries 
to learn a full or diagonal Mahalanobis distance considering pairwise 
constraints [1], [12], [13]. Some authors have extended the previous 
techniques to more general dissimilarities using kernel methods 
[14], [15], [29]. However, they are based on a single distance metric 
that may fail to reflect accurately the objects proximities. Besides, 
as the number of parameters grows with the space dimensionality 
they are prone to overfitting and the computational complexity is 
high. Although new algorithms have been proposed to improve the 
computational efficiency and to reduce the overfitting [6] they suffer 
from similar drawbacks. Several differences are worth to mention with 
the approach proposed here. First our algorithm is able to integrate 
a set of dissimilarities that may exhibit different properties from a 
set of pairwise constraints. Second, the loss function incorporates a 
penalty term and has a small number of parameters which helps to 
reduce the overfitting. Finally, the optimization problem is quadratic, 
the complexity depends on the number of support vectors and it is 
efficient computationally.

Our approach is more related to multiple kernel clustering 
methods [7]–[9], [16] that are able to integrate different 
dissimilarities that come from different features or representations 
of the objects using kernel methods. However, these algorithms 
differ from our approach because they integrate the dissimilarities 
in an unsupervised way and the resulting metric may not help 
to improve the clustering results. In this way, some researchers 
have mentioned that learning the metric without any supervised 
information may be an ill-defined problem [15].

Finally, few authors have addressed the problem of multiple kernel 
learning from a set of pairwise constraints for clustering applications 
[17], [30]. However, they rely on complex optimization problems that 
are more difficult to solve than the one proposed in this research.

V. Conclusion

In this paper we have developed a semi-supervised learning 
algorithm to integrate an ensemble of kernels (similarities) into a 
clustering algorithm using weak supervision in the form of pairwise 
constraints. Our method offers three advantages over previous metric 
learning algorithms. First, it learns a combination of dissimilarities 
that may come from different features of the objects or different 
kernels. This strategy avoids the problem of choosing the right kernel 
(similarity), the best subset of features or the optimal value for the 
kernel parameters that may be a challenging task for certain type of 
applications. Second, the loss function is convex and quadratic and it 
may be efficiently optimized. Finally, the learning algorithm is robust 
to overfitting.

The clustering algorithm proposed has been applied to three 
benchmark datasets and to complex cancer identification problems 
based on the gene expression profiles. The experimental results 
suggest that learning a combination of similarities (kernels) improves 
the performance of a clustering algorithm based on the best similarity 
(kernel). Besides, the algorithm developed outperforms a standard 
semi-supervised clustering proposed in the literature that learns the 
metric from the data. In particular, our method performs significantly 

better for cancer problems with high level of noise to signal ratio 
which suggests that it is robust to overfitting.

Future research trends will focus on the application of this 
formalism to other bioinformatics problems such as gene function 
prediction.
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