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Abstract

In content-based image compression, the importance map guides the bit allocation based on its ability to 
represent the importance of image contents. In this paper, we improve the representational power of importance 
map using Squeeze-and-Excitation (SE) block, and propose multi-depth structure to reconstruct non-important 
channel information at low bit rates. Furthermore, Dynamic Receptive Field convolution (DRFc) is introduced 
to improve the ability of normal convolution to extract edge information, so as to increase the weight of edge 
content in the importance map and improve the reconstruction quality of edge regions. Results indicate that our 
proposed method can extract an importance map with clear edges and fewer artifacts so as to provide obvious 
advantages for bit rate allocation in content-based image compression. Compared with typical compression 
methods, our proposed method can greatly improve the performance of Peak Signal-to-Noise Ratio (PSNR), 
structural similarity (SSIM) and spectral angle (SAM) on three public datasets, and can produce a much better 
visual result with sharp edges and fewer artifacts. As a result, our proposed method reduces the SAM by 42.8% 
compared to the recently SOTA method to achieve the same low bpp (0.25) on the KAIST dataset.
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I. Introduction

HYPERSPECTRAL images (HSIs) mainly own two kinds of 
redundancy, namely spectral similarity and spatial correlation 

[1]. As a typical 3D image, HSI compression has increasingly received 
attention in recent years to eliminate these two kinds of redundancy and 
achieve efficient image storage, transmission and processing [2]-[4].

Traditional lossy compression techniques, such as JPEG [5] and 
JPEG2000 [6] provide excellent rate-distortion performance for 2D 
imagery. In order to match the requirements of 3D image compression, 
a number of 3D compression algorithms including 3D-SPECK [7] and 
PCA+JPEG2000 [8] arise up for 3D HSI. However, these methods 
without the consideration of special characteristics of HSI by a direct 
extension from 2D to 3D may not fully satisfy the requirements of 
HSI compression [9]-[11], and the spectral fidelity of HSI cannot be 
guaranteed under the condition of effectively removing the spectral 
correlation of HSI.

In recent years, several DNNs-based lossy image compression 
methods [12]-[14] have achieved comparable performance to traditional 
methods [15],[16]. This is because deep convolutional network (DNNs) 
not only has good feature extraction ability, but also is good at flexible 
nonlinear analysis and comprehensive transformation of extracted 

spatial and spectral characteristics. The core research goal of DNNs-
based lossy compression [17]-[19] is to balance compression ratio 
and the distortion to ensure the image quality [20],[21]. Bit-allocation 
based on the importance of image content has been effectively adopted 
in DNNs-based lossy image compression to achieve this goal [22],[23].

(a) (b)

Fig. 1. The convolution is the process of the weighted summation. The red locations 
denote element to convolve, and the orange positions denote local receptive field 
to be weighted. (a) 3 × 3 instances of the normal convolution. (b) Our proposed 
Dynamic Receptive Field convolution (DRFc) with a kernel size of 3 × 3.

However, there are still several challenges in generating an accurate 
importance map based on the content of the image. An importance 
map is generally the representations produced by convolutional 
network that capture the salient contents of the image for bit 
allocation and compression rate control. In image compression, we 
usually want the bpp (bits per pixel) to be as small as possible, so a 
central theme of the importance map research is to search for more 
powerful representations that capture only the most salient properties 
of an image.
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In addition, due to the fixed geometric structure of the convolution 
operator, as shown in Fig. 1(a), normal convolution has insufficient 
perception of edges in an image[24], resulting in a smaller value at the 
edge of the generated important map by CNNs. The larger the value of 
the importance map, the more bits for the image content are allocated. 
In this way, fewer bits will be allocated to the edges according to the 
importance map, and usually are inevitable in producing some visual 
artifacts, e.g., blurring and blocking in image reconstruction. 

In this paper, we proposed a multi-depth importance map 
(MDIM) with Dynamic Receptive Field Convolution (DRFC) 
network (MDIMDRF), which is embedded into an encoder-decoder 
framework to produce an importance map and achieve content-
based hyperspectral image compression. First, in our MDIM, we 
introduced the Squeeze-and-Excitation block(SE-block) to explicitly 
model the interdependencies between the channels of convolutional 
features and strengthen feature extraction of CNNs[25], thus improve 
the representational power of importance map. Since channel-wise 
information in single-depth importance map (SDIM) leads to excessive 
loss of non-important channels, and then compression performance 
often dramatically drops at low bpp, we designed the MDIM based 
on pyramid decomposition scheme to reconstruct non-important 
channel information at low bit rate. And then we introduced DRFC 
to greatly enhance CNNs’ capability of extracting edge information. 
Finally, we replaced normal convolution with DRFc for the last three 
layers in MDIM and expected to improve the representation ability of 
important map synthetically.

To sum up, the main issues addressed in this paper are listed as 
follows:

1. Unlike other methods using simple convolution layers [22],[26]or 
residual blocks[23],[27] to obtain importance map, we designed 
MDIM to explicitly model the interdependence between feature 
channels and improve the representational power of importance 
map.

2. We reconsidered the guiding role of importance map to rate 
allocation in coding process, and retained the weak edges and mid-
scale textures in the original image by increasing the weight of the 
regions with sharp edge of importance map.

3. The proposed compression framework can be end-to-end trained, 
and obtain significantly better results than state-of-the-art (SOTA) 
methods.

II. Methodology

As shown in Fig. 2, we proposed an end-to-end image compression 
model, which consists of encoder, MDIMDRF, entropy model, 
and decoder. Following[12], the encoder network consists of four 
convolutional layers and three generalized divisive normalization 
(GDN)[28]layers. The architecture of decoder is symmetric to that of 
the encoder. The MDIMDRF here can be understood as producing an 
importance map via MDIM and DRFc to obscure the non-important 
regions in the image so as to allocate more bits to the important regions.

A. Dynamic Receptive Field Convolution
As shown in Fig. 1(a), when convolving an edge pixel, the normal 

convolution unit samples the input feature map in a fixed receptive 
field, causing features to be influenced by irrelevant image content. 
For our DRFC, as shown in Fig. 1(b), after three steps (details in Fig. 3), 
we effectively find the 𝑘 × 𝑘 (𝑘 is the size of the convolution kernel) 
pixels with the strongest correlation with the convolution element as 
its dynamic receptive field.

(a)

Sort Receptive

Field

Select

NeighborhoodNeighborhood

(b) (c) (d)

Fig. 3. Illustration of 3 × 3 Dynamic Receptive Field Convolution. The red grids 
denote pixels for convolution. Grids in light blue are first-order neighbors of 
the red, Grids in dark blue are second-order neighbors, and Grids in pink are 
the dynamic receptive field of the red. 

For a 𝑘 × 𝑘 normal convolution, a receptive field ℛnormal (generally a 
𝑘 × 𝑘 square grid) is constructed and moved over the input feature map 
𝑥, with a scheduled step size 𝑠, The grid ℛnormal defines the receptive 
field size. For example, as shown in Fig. 1(a), 

 (1)

indicates the receptive field for a 3 × 3 normal convolution.

For each location p0 on the output feature map y, we summate 
sampled values weighted by w and have

 (2)
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Fig. 2. Illustration of the proposed architecture for content-weighted image compression. 
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where pn enumerates the locations in ℛnormal .

In our Dynamic Receptive Field Convolution, as shown in Fig. 3, we 
generate an irregular receptive field applying the following steps to 
the elements for convolution: (1) assemble a fixed-size neighborhood 

 for each element;(2) sort the neighborhood and create receptive 
field ; (3) learn the receptive field representations with CNN. As 
shown in Fig. 3(b),

 (3)

Equation (2) becomes

 (4)

where p'n enumerates the locations in . 

TABLE I. ReceptiveField: Create Receptive Field

1. input: Neighborhood  of location p0, Convolution kernel size 𝑘, 
Moran’s Index m
2. output: Receptive Field  of p0
3. Compute an order r of the elements of , subject to 

4.  = top 𝑘2 elements in  according to r
5. return  

Illustrated in Fig. 3, Table I gives the procedures of creating receptive 
field by imposing an order on the elements  via a correlation 
measure Moran’s Index as 

  (5)

where xp, xq be the vector at location p, q; c is the length of the 
tensor xp, xq; xpi, xqi is the i-th valve of xp, xq;  is the weight of 
spatial autocorrelation, which is generally the reciprocal of the 
distance between xp and xq;  is the variance of xp, xq.

The basic idea is to select the points in the adjacency domain in turn 
that have a high correlation with the center point in turn and apply 
them to each input channel if and only if they have similar structural 
roles in two feature maps.

B. Multi-depth Importance Map Network
When we encode an input image, we tend to allocate the bits 

efficiently according to spatial variant local image content, that is, 
fewer bits should be allocated to the smooth regions while more bits 
should be allocated to the regions with more information content, 
which makes it possible to improve the reconstructed image quality 
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Fig. 4.  Illustration of Importance map.

while improving the compression ratio. For example, given the 
image in Fig. 4(a), it is natural to be interested in the teddy bear and 
two-colored circles, which are called the important regions. It is 
reasonable to allocate more bits to the teddy bear and two-colored 
circles and fewer bits to black background.

Thus we first designed a single-depth importance map  
network(SDIM) of four convolution layers[22] to retain the most 
important features of the image and generate an importance map to 
guide the allocation of bits. To improve the representational power of 
importance map, we strengthen feature extraction of CNNs using SE 
block[25] via modelling the correlation between feature channels and 
adjusting the feature map according to the correlation degree. Secondly, 
in order to compensate the excessive loss of non-important channels 
caused by channel-wise operation at low bit rate, we adopt a multi-depth 
importance map network (MDIM) based on pyramid decomposition 
scheme to reconstruct non-important channel information. As shown 
in Fig.5, we obtain the sub-importance maps generated by feature maps 
of different depths respectively, the results of each depth are weighted 
and summed to produce an importance map.

SE block𝑥𝑥1

𝑥𝑥2

𝑀𝑀1(𝑥𝑥1)

𝑀𝑀3(𝑥𝑥3)

𝑀𝑀2(𝑥𝑥2)

α2

α3

α1

𝑀𝑀(𝑥𝑥)

𝑥𝑥3

Fig. 5.  Illustration of the MDIM’s pyramidal decomposition structure with 
3 depths. It’s noted that “C-n192-s1” represents a CNN layer with 192 filters 
and a stride of 1 and “DRFC-n96-s1” represents a DRFC layer with 96 filters 
and a stride of 1 where the normal convolution unit is replaced by Dynamic 
Receptive Field convolution unit.

Let 𝑥𝑚 denotes the input of the 𝑚-th layer of MDIM, and also 𝑥1 
denotes the original output of encoder. 𝑀𝑚(𝑥𝑚) represents the output 
of the 𝑚-th layer. In our paper, we sequentially set m to 1, 2, and 3 
to individually produce a feature map containing different channel 
information with only one channel and the same size as the encoder 
output. The results of each scale are weighted and summed to produce 
the final importance map 𝑀(𝑥) = α1 𝑀1 (𝑥1) + α2 𝑀2 (𝑥2 ) + α3 𝑀3 (𝑥3). 
What’s more, DRFc instead of normal convolution is used in the last 
three layers of MDIM to enhance feature extraction of edge pixels, 
thus increasing the weight of regions with sharp edges or rich textures.   

III. Experiments

To evaluate the performance of the proposed compression model, 
we compared our model with traditional compression methods, i.e., 
3D-SPECK[7], PCA+JPEG2000[8], and DNNs-based compression 
models, i.e., factorized prior[12], hyperprior[29] on different datasets. 
All DNNs-based experiments are conducted on a server equipped with 
the NVIDIA GeForce RTX 3090Ti graphics card.

We used three standard HSI datasets to train and test our proposed 
compression framework: KAIST[30], CAVE[31] and ICVL[32]. 
KAIST is a high-resolution dataset containing 30 images of size 
2704×3376×31, CAVE consists of 28 images of 31×512×512 and ICLR 
consists of 201 images of 1300×1392×31. A total of 20000 patches with 
a size of 31×256×256 were sampled from both the original images and 
their enhancement (such as flipping and rotating at different angles). 
The data are divided into a training data set, a testing data set and 
a validation data set. Specifically, 60% of the images were used for 
training, 20% for testing and 20% for validation. Please note that all the 
test images are not included in the training dataset. Several original 
images from KAIST, CAVE and ICLR dataset are shown in Fig. 6, Fig. 
7 and Fig. 8, respectively.
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Fig. 6. Original image from KAIST.

Fig. 7. Original image from CAVE.

Fig. 8. Original image from ICVL.

A. Performance Metrics
To quantitative evaluate the performance of proposed model, we 

used the following indexes as Peak Signal-to-Noise Ratio (PSNR)[18, 
33], Structural Similarity Index Measure (SSIM) [33],[34] and Spectral 
Angle Mapper (SAM)[35].

1. Peak Signal-to-Noise Ratio
The ratio between the input image and the reconstructed image 

is known as PSNR. Also, the PSNR is measured based on the Mean 
Square Error (MSE)[36]. Please note that the PSNR for HSIs in this 
paper is calculated as in (6),

 (6)

Where pmax denotes the maximum value in the i-th band of HSIs, 
and the unit of PSNR is dB.

2. Structural Similarity Index Measure
It is used to evaluate the distortion between the input image 𝑥 and 

the reconstructed image 𝑥*, it can be defined as in (7),

 (7)

Where C is the number of bands of input image 𝑥, 𝑥i is i-th band 
of 𝑥, and  are the corresponding mean and variance. a1, a2 is 
constant.

3. Spectral Angle Mapper
The spectrum of each pixel in HSIs is regarded as a high-dimensional 

vector, and the similarity between the two spectrums is measured by 
calculating the Angle between the two vectors. Note that a small SAM 
value indicates less spectral distortion.

B. Training Details and Parameter Settings
Our objective is to minimize the weighted sum of the rate loss and 

distortion loss, R + λD, where λ governs the trade-off between the two 
terms. Thus, we trained the model on the batch of size B, and defined 
the loss function ℒ of our model on the entire batch:

 (8)

where c is the code of the input image 𝑥i. ℒD(c,  𝑥i) denotes the rate 
loss and d(𝑥i, )  is the expected difference between the reconstruction 

  and the original image 𝑥i, as measured by Mean Square Error (MSE) 
in order to be consistent with PCA+JPEG2000[8].

Firstly, we set the weights α1, α2, and α3 in the MDIM to 1/2, 1/4, 
and 1/4, respectively. During the training process, we set the batch 
parameter B to 8 and the model is iteratively trained 300 times on the 
dataset. In addition, the initial learning rate is set to 10−4, and performs 
stochastic gradient descent[37] using the Adam algorithm[38].

With this setup, we trained a total of 24 separate models: half of the 
models with MDIM and half without; half of the models with DRFc, 
and half without; finally, each of these combinations with 6 different 
values of λ in order to cover a range of rate-distortion tradeoffs.

C. Comparison of Rate–Distortion Performance
In this subsection, we evaluate the performance improvements 

of the proposed model quantitatively, and rate–distortion curves for 
different methods on KAIST, CAVE and ICLR datasets are provided in 
Fig. 9, respectively.

Firstly, we compare the PSNR and SSIM performance of our 
proposed method with  PCA+JPEG2000 and 3D SPEAK as well as 
the methods proposed in[12, 29].As seen from Fig. 9, our method 
outperforms traditional methods[7, 8] and DNNs-based methods[12, 
29] at a wide range of bpp on three datasets. Although the PSNR 
and SSIM performance of our method owns only a relatively small 
advantages on CAVE dataset comparing with factorized prior[12] 
and hyperprior[29], the corresponding performance improvement 
is particularly obvious on  KAIST and ICLR dataset. This is because 
the spatial resolution of individual KAIST dataset is almost 35 times 
higher than that of CAVE dataset and there are 50 times more ICLR 
training patches than CAVE training patches, larger dataset makes the 
model more fully trained and the test performance better. 

Next, we further compare the SAM performance of different 
methods based on the work of[35], As seen from Fig. 9, the average 
rate-distortion curves of SAM show that the proposed method can 
significantly outperform other methods on three datasets and the SAM 
performance of our method is still superior to other methods at low 
bpp on CAVE dataset. For example, compared with factorized prior[12] 
and hyperprior[29], the SAM of our proposed model is reduced by 0.03 
and 0.02 when bpp is 0.25, respectively. A strong explanation is that 
the importance map network designed in our proposed model takes 
full account of spectral similarity, and retains spectral characteristic 
information to the maximum extent.

D. Comparison of Visual Quality
The visual quality comparisons of the reconstructed HSIs in low 

compression rates for three datasets are provided in Table II. As can 
be seen from Table II, traditional compression methods such as 3D 
SPEAK and PCA+JPEG 2000 inevitably produce obvious blurring, 
ringing in the second and third columns, which can seriously affect the 
human visual experience. The methods[12, 29] suppress the artifacts 
effectively, but there are still some blur effects along the edges visible 
in the fourth and fifth columns. In contrast, our method overcomes the 
above flaws, and some important edges and textures are well-retained 
and thus the reconstructed image owns better visual quality due to the 
bit-allocation guided by the importance map.
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PSNR on KAIST Dataset
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Fig. 9 Comparison of the ratio-distortion curves by different metrics: PSNR, SSIM, and SAM
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(c) BASE- MDIM 0.544bpp (d) BASE- MDIM-DRFc 0.504bpp

Fig. 11. The important maps obtained by different models. The right color 
bar shows the palette on the number of bits.

0.25 0.5 0.75 1 1.25 1.5 1.75 2
bpp

27

28

29

30

31

ps
nr

Ablation experiments on CAVE

BASE-MDIM-DRFc

BASE-MDIM

BASE-SDIM

BASE

Fig. 10: Illustration of the results of the ablation experiment.
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TABLE II. Images Produced By Different Compression Models At Different Compression Rates. All Images Are Visualized With the Same Ordinal Band

KAIST dataset (29,19,9)
Original image 3D-SPEAK PCA+JPEG2000 factorized prior hyperprior proposed

0.5 bpp     PSNR:18.46
SSIM:0.908
SAM:0.430

0.5 bpp     PSNR:22.53
SSIM:0.935
SAM:0.263

0.515bpp PSNR:39.43
SSIM:0.982
SAM:0.124

0.543bpp PSNR:40.01
SSIM:0.984
SAM:0.112

0.499bpp PSNR:40.29
SSIM:0.985
SAM:0.102

0.7 bpp     PSNR:21.42
SSIM:0.31
SAM:0.72

0.7 bpp     PSNR:29.16
SSIM:0.80
SAM:0.42

0.713bpp PSNR:41.94
SSIM:0.992
SAM:0.089

0.748bpp PSNR:43.13
SSIM:0.993
SAM:0.0998

0.676bpp PSNR:44.57
SSIM:0.9946
SAM:0.073

CAVE dataset (24,6,25)
Original image 3D-SPEAK PCA+JPEG2000 factorized prior hyperprior proposed

0.7 bpp     PSNR:23.68
SSIM:0.93
SAM:0.42

0.7 bpp     PSNR:28.96
SSIM:0.94
SAM:0.26

0.743bpp PSNR:29.49
SSIM:0.961
SAM:0.210

0.723bpp PSNR:29.13
SSIM:0.958
SAM:0.234

0.711bpp PSNR:29.23
SSIM:0.956
SAM:0.216

0.5bpp      PSNR:24.69
SSIM:0.67
SAM:0.76

0.5bpp       PSNR:33.16
SSIM:0.84
SAM:0.45

0.565bpp PSNR:31.66
SSIM:0.961
SAM:0.188

0.526bpp PSNR:32.15
SSIM:0.969
SAM:0.179

0.483bpp PSNR:33.14
SSIM:0.975
SAM:0.158

ICVL dataset (29,19,9)
Original image 3D-SPEAK PCA+JPEG2000 factorized prior hyperprior proposed

0.7bpp     PSNR:28.58
SSIM:0.65
SAM:0.07

0.7bpp      PSNR:45.41
SSIM:0.993
SAM:0.036

0.737bpp PSNR:53.39
MS-SSIM:0.999

SAM:0.037

0.710bpp PSNR:54.27
MS-SSIM:0.999

SAM:0.035

0.703bpp PSNR:54.48
MS-SSIM:0.999

SAM:0.029

0.5bpp      PSNR:26.06
SSIM:0.486
SAM:0.113

0.5bpp       PSNR:44.33
SSIM:0.993
SAM:0.056

0.517bpp PSNR:47.81
MS-SSIM:0.999

SAM:0.038

0.539bpp PSNR:50.19
MS-SSIM:0.999

SAM:0.030

0.525bpp PSNR:51.25
MS-SSIM:0.999

SAM:0.026
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E. Ablation Experiments
To assess the role of MDIM and DRFc, we trained a baseline model 

by removing MDIMDRF from our framework. We designed the 
following four models according to whether the presence of SDIM, 
MDIM, and DRFc in the architecture: (1) BASE: the baseline model; (2) 
BASE-SDIM: BASE with SDIM; (3) BASE-MDIM: BASE with MDIM; 
(4) BASE-MDIM-DRFc: BASE with MDIM and DRFc.

As shown in Fig. 10, at the same bpp, BASE-MDIM-DRFc has the 
best performance while BASE has the worst performance. BASE-
MDIM performs better than BASE-SDIM at low bpp, which proves 
MDIM’s help in reconstructing the non-important channels of 
convolutional features at low bpp. In Fig. 11, we can observe the 
blurring artifacts and color distortion in (b) and (c). In contrast, the 
results in (d) exhibit much clearer and is much more consistent with 
human visual perception.

IV. Discussion

In our proposed end-to-end compression framework, we design 
the multi-depths importance map network based on pyramidal 
decomposition, and produce an importance map to guide bit rates 
allocation and further compress the code by entropy coding. At the 
same time, we introduce Dynamic Receptive Field convolution to 
increase the weight of the importance map in the edge area to solve 
the distortion caused by insufficient feature representation to edge of 
normal convolution.

Rate-distortion performance in Fig. 9 clearly shows that our 
proposed method outperforms conventional and DNNs-based 
methods at a wide range of bpp. In addition, as shown in Fig. 11, the 
existence of multi-depth importance map and Dynamic Receptive 
Field convolution have significant influence on the performance 
improvement. In addition, to achieve PSNR of 40 and MI-SSIM of 0.95, 
the average time to encode and decode the image is 49 ms and 11 ms, 
running on the GeForce RTX 3090Ti.

V. Conclusion

In this paper, we proposed a content-based compression system 
for hyperspectral images. In the proposed system, we designed MDIM 
and DRFc to improve representability of the importance map so as to 
allocate bits precisely for different contents. Our models can be end-
to-end learned on a training set. Experimental results clearly show 
the superiority of our model in retaining HSI’s spectral structure 
characteristics and extracting edge content, resulting in significant 
image reconstruction quality.
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