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Abstract

Epilepsy is one kind of brain diseases, and its sudden unpredictability is the main cause of disability and even 
death. Thus, it is of great significance to identify electroencephalogram (EEG) during the seizure quickly and 
accurately. With the rise of cloud computing and edge computing, the interface between local detection and 
cloud recognition is established, which promotes the development of portable EEG detection and diagnosis. 
Thus, we construct a framework for identifying EEG signals in epileptic seizure based on cloud-edge computing. 
The EEG signals are obtained in real time locally, and the horizontal viewable model is established at the edge 
to enhance the internal correlation of the signals. The Takagi-Sugeno-Kang (TSK) fuzzy system is established 
to analyze the epileptic signals. In the cloud, the fusion of clinical features and signal features is established to 
establish a deep learning framework. Through local signal acquisition, edge signal processing and cloud signal 
recognition, the diagnosis of epilepsy is realized, which can provide a new idea for the real-time diagnosis and 
feedback of EEG during epileptic seizure.
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I. Introduction

The epilepsy is a brain disease. Although most people with epilepsy 
are the same as normal people during the period of non-seizure, 

the unpredictability of epileptic sudden occurrence is the main cause 
of disability and even death of epileptic patients. The uncertainty of 
seizure seriously affects the life of patients [1]. Epilepsy is a chronic 
brain disease with recurrent seizures. Epilepsy is mainly caused by 
excessive discharge of brain neurons. It has the characteristics of 
paroxysmal, transient, repetitive and stereotyped. It can be manifested 
in sensory, motor, consciousness, spirit, behavior and autonomic nerve 
dysfunction. Human epilepsy has two characteristics: epileptiform 
discharges on electroencephalogram (EEG) and clinical seizures. 
The medical history is the main basis for the diagnosis of epilepsy. 
Doctors need to know through medical history: the characteristics 
of generalized tonic clonic seizures are loss of consciousness and 
generalized convulsions. If there is only general convulsion without 
sudden loss of consciousness, this does not support the diagnosis of 
epilepsy. Absence of consciousness, pseudoseizures or hypocalcemic 
convulsions should occur to tumble down. If the loss of consciousness 
is accompanied by a fall, the possibility of syncope is greater than 

that of absence attack. Automatism is characterized by abnormal 
behavior with disturbance of consciousness, seemingly purposeful 
but actually aimless. If the details of the seizure can be repeated after 
the seizure, it does not support the diagnosis of epilepsy. Epileptiform 
discharge on EEG is an important diagnostic evidence of epilepsy. It 
uses electrophysiological indexes to record the changes of electrical 
waves in the cerebral cortex when the brain is active. It is the overall 
reflection of the activity of neurons in the cerebral cortex [2]. In the 
field of electrical signal research in biomedical research, the EEG 
intelligence has been promoted, and a series of achievements have 
shown that signal in abnormal state is different from that in normal 
state due to the abnormal discharge of brain neurons during epileptic 
seizure. Therefore, recognizing the EEG signal is an effective epileptic 
detection method [3].

In recent years, with the development of artificial intelligence, edge 
computing and cloud computing, the development of the medical field 
been promoted [4]. Gu et al. [5] construct a fog computing framework 
to manage medical big data. Abirami et al [6] compare the brain tumor 
data collected locally with the cloud to realize the focus detection. Shi 
et al. [7] analyze the opportunities and challenges of edge computing, 
and they indicate that edge computing is the development trend 
of smart medicine. Aggarwal et al. [8] establish a model from data 
security to realize data protection. Hosseini et al. [9] construct an edge 
computing framework to model multimodal data to detect epilepsy. 
Singh et al. [10] use edge computing to describe medical semantics. 
Li et al. [11] implement heart rate detection in the cloud. Oueida et al. 
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[12] implement medical data management based on edge computing. 
Abdellatif et al. [13] analyze the problems and challenges of edge 
computing in the medical field. Lin et al. [14] applie edge calculations 
to data allocation. Pustokhina et al. [15] move a deep learning network 
to an edge computing framework. Dou et al. [16] analyze short-time 
signals based on cloud computing. Rahman et al. [17] establish an 
edge computing framework to track the disease through the analysis 
of network data. Although cloud computing and edge computing 
have made a lot of achievements in medical treatment, there are few 
researches on epilepsy recognition, which are mostly based on clinical 
data analysis stage. A lot of researches have been carried out in epilepsy 
recognition: Xu et al. [18] analyze the methods of epilepsy treatment. 
Jefferys et al. [19] analyze the mechanism of epilepsy. Berg et al. [20] 
study the epilepsy characterization from clinical perspective. Koçer 
et al. [21] use the convolutional neural network to classify epilepsy. 
Pack et al. [22] analyze the cause of epilepsy from the perspective 
of Neurology. Margrove et al. [23] specify treatment plans based on 
different types of epilepsy. Rafiuddin et al. [24] establish the wavelet 
transform mechanism to analyze epilepsy. Pediaditis et al. [25] review 
the history of epilepsy. Musselman et al. [26] extract the epilepsy 
information from EEG signals. Chang et al. [27] use the machine 
learning to construct epileptic signal selection mechanism. Rosas et al. 
[28] analyze epileptic signals from the perspective of energy. Hosseini 
et al. [29] construct the quantitative and qualitative evaluation 
mechanism of EEG signals. Kiranyaz et al. [30] fuse time-domain and 
frequency-domain information to realize epileptic signal recognition. 
Gomez et al. [31] identify seizures by facial and eye movements. Villar 
et al. [32] use the signal acceleration to analyze EEG. Tao et al. [33] 
establish the Adaboost to realize EEG signal classification. Samiee et 
al. [34] use texture features to classify EEG. Yan et al. [35] establish 
the maximum entropy to measure epileptic patients. Qazi et al. [36] 
use the artificial intelligence technology to realize epileptic signal 
recognition. Li et al. [37] use a DWT algorithm to analyze EEG signals. 
Sepeta et al. [38] analyze the local EEG signal of epilepsy. Falco et al. 
[39] propose a new definition and classification of epilepsy. Qiu et 
al. [40] use the deep learning framework to detect signals. Jiang et 
al. [41] integrate the prior information to recognize epileptic signals. 
Parthiban et al. [42] establish a hybrid dragonfly optimization-based 
artificial neural network to realize epilepsy recognition. Si et al. 
[1] review the development of artificial intelligence in EEG signal 
detection. Thanaraj et al. [43] establish a convolutional neural network 
based on the entropy to detect epileptic signals.

The main problems of epilepsy recognition by EEG signals are as 
follows: 1) EEG signal processing has a large amount of computation 
and high local computational complexity. 2) It is difficult to distinguish 
between healthy period and epilepsy seizure. 3) It is limited to build 
the model only from the signal point of view. 

To deal with these problems, our contributions are as follows: 1) We 
build a cloud-edge computing framework, manage data hierarchically, 
build a horizontal viewable model at the edge end and fully mining the 
signal correlation. 2) From the perspective of the fuzzy set, The Takagi-
Sugeno-Kang (TSK) fuzzy system is established to analyze epileptic 
signals. 3) In the cloud, the deep learning framework is established by 
combining clinical features and signal features.

II. Algorithm

The signal is relatively stable during health and fluctuates greatly 
during seizures, as shown in  . The algorithm pipeline is designed 
to build edge and cloud processing modules, as shown in Fig. 2. In 
order to enhance the difference between healthy signals and epileptic 
seizure, the EEG signals are sampled at the edge, the horizontal 
viewable algorithm is established, the strong correlation of the signals 
is established, and the weighted TSK fuzzy system is established. The 
EEG signal is predicted by an SVM classifier and the direct feedback 
display terminal with high prediction accuracy probability. For 
uncertain prediction, the advantages of cloud processor computing 
power are brought into full play to transmit data to the cloud in real 
time. Through the establishment of clinical big data, feature extraction 
and training model are built to achieve epileptic seizure recognition, 
and the database is updated by asynchronous transmission.

A. The Algorithm Based on Horizontal Viewable Image
The epileptic EEG signal belongs to time series. Each sampling 

point of time series is regarded as a viewable node, and the adjacent 
edges between nodes are regarded as viewable edges. The connectivity 
between different nodes depends on local convex constraints. When 
the connection between the sampling values at two times is not cut off 
by the sampling points at any other time within the interval there is an 
edge connection between two points; on the contrary, there is no edge 
connection, Fig. 3 shows the flow chart.

Based on the above analysis, we propose a horizontal viewable 
algorithm, which is defined as:

 (1)

where ni and nj are nodes and aij are connected boundary values. 
When the value of any sampling time nk between two nodes is less 
than the minimum value of the two nodes, there is an edge connection 
between  two nodes, and aij=1, otherwise, there is no connection aij=0.

Each node in a complex network represents a point in the time series. 
When the values of other points between two points in the time series 
are less than these two points, the two points have edge connection.
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Fig. 1. EEG signal.



International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº5

- 8 -

An important feature of complex network is the degree of complex 
network. Degree is defined as the number of adjacent edges of a node 
in the network, that is, several edges of the node are connected with 
other nodes. Suppose there are N nodes in the network, the expression 
of degree ki of node i is:

 (2)

Degree reflects the basic topological characteristics of complex 
networks, and describes the dynamic characteristics of the original 
time series. The average of different EEG signals is very different. In 
order to make the difference of degree more obvious, the power of 
degree is calculated as a new feature. The square of degree is extracted 
as the topological statistical feature from horizontal viewable image. 
The expression of the mean square is: 

 (3)

The complex network constructed by horizontal viewable image is 
a kind of binary complex network, with only 1 and 0 connected edges. 
On this basis, considering that there are different weights in the real 
complex network, this study improves the weighted level viewable 
algorithm. Under the criterion of horizontally viewable image, wij of 
edge connected aij is:

 (4)

where wij is the weight, which is expressed by the angle between 
two connected nodes, arctan is an arctangent transformation, and |.| 
is the absolute value. It is found that there are obvious differences 
between the angles of different complex network nodes, which reflect 
the fluctuation of the original time series. For time series with different 

dynamic structures, the complex network structures are different. 
Considering the concept of information entropy, this study proposes a 
new measurement feature for complex network structure, i.e., weight 
heavy distribution entropy, which reflects the topological structure 
information and connection complexity of complex networks. The 
entropy of complex networks with different features is very different. 
For the weighted level visualization graph, the entropy E(i) of weight 
distribution of node ni is:

 (5)

 (6)

where m is the number of nodes connected to ni. The entropy of 
the average weight distribution of the weighted complex network is:

 (7)

B. Weighted TSK Fuzzy System
The multi perspective features constructed from shallow and 

deep features have good expression ability and less information 
loss, but how to effectively use these features for epilepsy detection 
is very important. But at present, most of the researches lack the 
interpretability, which is very important in the practical application 
such as disease diagnosis. Therefore, in the development of the 
epileptic EEG detection technology based on multi perspective 
learning, a higher interpretable model is needed.

A TSK fuzzy system is an excellent model based on a rule system, 
which has better interpretability. Based on a TSK fuzzy system, we 
build an interpretable multi-view classifier for EEG detection. The 
TSK fuzzy system’s output f(x) is defined as:

Edge Cloud
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time data

interaction
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Clinical big data
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Model trainingHigh prediction accuracy Low prediction accuracy

SVM

Result display

Fig. 2. Algorithm pipeline.
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Fig. 3. Flow chart.
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 (8)

 (9)

where  is the coefficient of xi on the k-th rule of a linear function. 
µk(x) is the fuzzy membership degree of the k-th rule,  is the 
normalization of µk(x). The objective function of TSK fuzzy system is 
defined as:

 (10)

where Pg is the parameter of the TSK fuzzy system. The first item 
expects to learn the best Pg,j to classify the training samples; The 
second term is the regularization penalty term, which improves the 
generalization ability of the TSK fuzzy system.

The calculation formula of Pg optimal value is:

 (11)

Given a multi-view epilepsy data set, the weighting mechanism of 
multi-view TSK fuzzy system is as follows:

 (12)

where  is the k-th perspective of the i-th sample;  is a posteriori 
parameter of the k-th view of the multi-view TSK fuzzy system;  is 
the prior information, C is the total number of categories, K is the total 
number of perspectives, N is the number of samples in the data set, 
and λ is the regularization parameter.

It can realize multi-view cooperative learning mechanism, which 
ensures that all perspectives reach the same decision. λ controls the 
consistency between different views. If λ is too large, the prediction 
value of the k-th view will be too close to the prior decision value of all 
other views. The value of λ can be determined by the cross validation.

Based on the weighting mechanism and cooperative learning 
mechanism of multi-view fuzzy system, the objective function of 
multi-view TSK fuzzy system is constructed as follows:

 (13)

where  is the improved multi-view weighting mechanism, 
wk is the weight of the k-th view, m is the fuzzy index of wk. By 
introducing the perspective weight index, we can study the updating 
rules of the weight in the optimal multi perspective model.  is the 
regularization term, which can prevent the over-fitting phenomenon 
of the multi-view model. λ1 is the coefficient of the regularization term, 
which is used to change the penalty of the regularization term.  
is a multi-perspective collaborative learning item, which expects each 
perspective to acquire the same decision value.

When updating  is treated as a constant. Calculate  to 
acquire the gradient solution:

 (14)

when updating wk,  is treated as a constant. Calculate wk to 
acquire the gradient solution:

 (15)

After multiple iterations, the optimal parameters  and wk of 
the model are obtained. The final decision value of the model can 
be obtained by linear combination of decision values from different 
perspectives:

 (16)

C. Deep Learning Framework of Clinical and Signal Features
Epilepsy disease can be analyzed from the images and clinical 

information, so we fuse clinical information and signal information 
and propose an algorithm. Diagnosis can generally be made according 
to the medical history, clinical manifestations, such as recurrent 
muscle twitch, disturbance of consciousness and the results of relevant 
auxiliary examinations, such as EEG, positron tomography, etc. In the 
process of diagnosis, doctors need to exclude pseudoepileptic seizures, 
convulsive syncope, hypertensive encephalopathy, febrile convulsion 
and other diseases. The specific clinical features mainly include: age, 
gender, blood pressure, weight, disease, etc.

Due to the certain difference between healthy EEG signals and 
epileptic EEG signals, not all SVM classifiers can achieve good results, 
and there is also a correlation between the parameter setting of SVM 
and the quality of data. Therefore, we abandon the SVM classifiers 
with low accuracy, but these classifiers should also contain some 
information. In the future, we will carry out further research based 
on this.

The convolution neural network is used to automatically extract 
the viewable information and fuzzy information of the EEG signal, 
and obtain the corresponding deep features. The CNN network uses 
the back propagation mechanism in training. Since the eigenvector 
calculated by the penultimate layer only passes through one full 
connection layer to the output layer, it can be considered that the 
expression of the output eigenvector of the penultimate layer is 
optimized while the network structure is optimized according to the 
output layer training. Its network structure as shown in Fig. 4. Two 
types of structures are adopted. Class A and B structures that we 
design are mainly based on the following three reasons: 1) Class A 
structure learns bottom layer information. 2) Class B structure learns 
top layer information. 3) Class A and B structures can be effectively 
connected. Through the expansion of data set, the stability of a deep 
learning network is improved.

III. Experiment and Result Analysis

A. Experiment Data
We used Linux operating system and wrote programs with 

Python software. In this paper, the CHB_MIT dataset [44] is used 
for experimental studies. The data set collected EEG signals from 
23 patients at Boston Children’s hospital. These records from 23 
patients were divided into 24 groups (Group 21 is the data of the 
first patient after resampling a few years later). Each group contains 
the EEG signals of one patient for more than ten consecutive hours. 
These consecutive signals are sampled at 256Hz, which means that 
there are 256 sampling points for one second signal. Each patient’s 
EEG signal is collected from 18 points to form a single channel data 
set, and the subsequent processing becomes multi-channel data of 23 
channels. Because the data is highly unbalanced, that is, the ratio of 
epileptic samples to non-epileptic samples is 1:100, if all the data are 
used directly, the effect of the proposed algorithm will face serious 
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over-fitting problem. In order to solve this problem, we discard some 
EEG signal data of non-epileptic, and apply over sampling technology 
to EEG signal data of epilepsy. A sliding window is used to divide the 
continuous EEG signal into several signal segments with a length of 
one second. The EEG signal of epilepsy is oversampled by allowing the 
overlap between the two windows.

B. Algorithm Performance
We verify the performance of the algorithm from the iterative curve 

of the algorithm, the target recognition curve with different signal-to-
noise ratios, and the processing time of the algorithm.

Fig. 5 is the iteration curve of the algorithm. It can be seen that 
the algorithm shows an upward trend before the number of iterations 
reaches 50, reaches the maximum when the number of iterations is 53, 
and then shows a downward trend, so we will conduct research under 
the condition of 53 iterations.

Fig. 6 shows the detection performance of the algorithm under 
different signal-to-noise ratio conditions. It can be seen that as the 
signal-to-noise ratio increases, the effect is on the rise. In the case of 
a low signal-to-noise ratio, if it is less than -8DB, it still has a better 
recognition effect. This is because the horizontally visible image 
algorithm proposed in this article comprehensively considers the 
surrounding information and has strong noise suppression ability.

Table I shows the Time consumption. Because the transmission 
process is related to bandwidth, we do not count the transmission time. 
Normal signal is better than paroxysmal signal, and normal signal can 
be distinguished by primary operation. The signal processed at the 
edge is lower than that in the cloud. It is because the algorithm of 
edge processing is relatively simple, and complex signals need to be 
transmitted to the cloud for further processing. However, cloud is a 
deep learning algorithm composed of clinical big data, which is time-
consuming. From the stability analysis, the variance of normal signal 
is better than that of paroxysmal signal because the normal signal has 
strong regularity. To sum up, the processing time of the algorithm can 
be controlled within 4s.

TABLE I. Computing Time

Edge Cloud
Normal Seizure Normal Seizure

Mean 0.41 s 0.68 s 1.50 s 2.31 s
Variance 0.06 s 0.09 s 0.07 s 0.12 s

Maximum 0.72 s 0.95 s 2.10 s 2.68 s
Minimum 0.34 s 0.51 s 1.23 s 2.01 s

Recognition accuracy %

90
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60
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504030 60 70

Iteration number

Fig. 5. The iteration curve of the proposed algorithm.
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Fig. 6. Detection performance of the algorithm under different SNR.

C. Feature Extraction
To verify the detection performance of different algorithms, we 

introduce Sensitivity, Specificity and Accuracy as evaluation metrics.

 (17)

 (18)

EEG signal

Result

Input layer:
standardization

Convolution layer:
5x5

Active layer: Relu Pooling layer Dropout

Input layer:
standardization

Fully connected layer Active layer: Relu Dropout Active layer: Relu

A

B

Fig. 4. The network structure.
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where TP is the number of correctly predicted epileptic fragments, 
FN is the number of epileptic fragments that are predicted as non-
epileptic fragments, FP is the number of non-epileptic fragments that 
are predicted as epilepsy, TN is the number of non-epileptic fragments 
that are predicted as non-epileptic fragments.

Accuracy represents the proportion of the correct classification 
of the classifier, and the higher the ratio represents, the better the 
classification performance of the classifier; Sensitivity represents the 
proportion of the correct classification of all epileptic fragments, and 
the higher the ratio represents, the higher the prediction accuracy 
of the classifier for epileptic fragments; Specificity indicates the 
proportion of all non-epileptic fragments correctly classified, and the 
higher the ratio, the higher the prediction accuracy of non-epileptic 
fragments. 

Kiranyaz et al. [30] do not use cross validation to fuse time-domain 
and frequency-domain information, which could not effectively prove 
the performance of epilepsy detection. Tao et al. [35] use the AdaBoost 
multi-scale decomposition for signals in order to avoid too few 
epileptic samples in the verification set. Only 25% samples were used 
for training. Samiee et al. [34] use the amplitude features of the EEG 
signal to recognize epileptic signals. Jiang et al. [41] integrated prior 
information into the model to recognize epileptic signals. Parthiban 
et al. [42] analyze epileptic signals from the perspective of energy 
entropy. Different oversampling methods are used to increase the 
number of epileptic samples. Due to the data imbalance, the accuracy 
and sensitivity of most algorithms are relatively low, but the proposed 
algorithm in this paper shows better accuracy and sensitivity under 
the condition of maintaining the same specificity, as shown in Table II.

D. Comparison of Classification Algorithms
We constructed time-domain similarity data set and frequency-

domain similarity data set, to analyze the classification of EEG signals. 
ROC curves can show the performance of different algorithms. 
Musselman et al. [26] establish time domain model to realize EEG 
signal. Rafiuddin et al. [24] establish energy domain model to classify 
EEG signal. Kiranyaz et al. [30] establish time-energy model to realize 
EEG signal.

As shown in Fig. 7-a, the time domain model cannot effectively 
distinguish the time-domain similarity data. The energy domain 
model transforms time domain signals into frequency domains for 
research. Based on the difference of frequency domains, it can achieve 
better data classification. As shown in Fig. 7-b, the energy domain 
model cannot effectively distinguish the frequency-domain similarity 
data. The time domain model realizes signal classification based on 
the significant difference of Time domain. The time-energy model 
comprehensively considers the difference between time domain and 
frequency domain, so they have a good effect in the face of similar 
classification effects in Time domain or frequency domain. The 
proposed algorithm establishes the Horizontal Viewable model from 
the time domain, enhances the anti-noise ability of the algorithm, 
establishes the TSK model from the frequency domain to realize the 
energy, and achieves accurate classification based on clinical diagnosis 
and clinical representation data.

IV. Conclusion

Epilepsy is acute, which is of great significance for its early 
recognition. Through the study of EEG signals, aiming at the problem 
of difficult recognition of epileptic signals, an epileptic brain signal 

TABLE II. Detection Effect

Fusion [30] AdaBoost [35] Texture [34] Prior [41] Entropy [42] Ours
Specificity 0.802 0.814 0.812 0.841 0.865 0.915
Sensitivity 0.821 0.836 0.835 0.865 0.879 0.925
Accuracy 0.814 0.845 0.812 0.865 0.912 0.934

Time-domain similarity data set

FPR

(a) The model ROC curve of time-domain similarity data (b) The model ROC curve of frequency-domain similarity data
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Fig. 7. ROC curve.
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recognition algorithm based on cloud edge computing is proposed. A 
horizontal visualization model is constructed at the edge to enhance 
the internal correlation of signals, and a TSK fuzzy analysis system 
of epileptic signals is established. For more complex data, the deep 
learning network of clinical representation is constructed through 
cloud to identify the EEG signals during seizures, which provides the 
accuracy of epilepsy diagnosis. Our research can be extended to other 
intelligent medical fields.
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