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Abstract

Sampling-based motion planning in the field of robot motion planning has provided an effective approach 
to finding path for even high dimensional configuration space and with the motivation from the concepts 
of sampling based-motion planners, this paper presents a new sampling-based planning strategy called 
Optimistic Motion Planning using Recursive Sub-Sampling (OMPRSS), for finding a path from a source to 
a destination sanguinely without having to construct a roadmap or a tree. The random sample points are 
generated recursively and connected by straight lines. Generating sample points is limited to a range and edge 
connectivity is prioritized based on their distances from the line connecting through the parent samples with 
the intention to shorten the path. The planner is analysed and compared with some sampling strategies of 
probabilistic roadmap method (PRM) and the experimental results show agile planning with early convergence.
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I. Introduction

MOTION planning in robotics is one of the major tasks for any robot 
and motion planning in itself defines the process of planning 

how a robot should move from one position (source) to the other 
(goal). The problem of motion planning is extensively large, which is 
not just about moving a robot or a part of it from a source to a goal 
randomly using any path, rather it implies to problems of considering 
and solving the overall scenario for efficiency and producing effective 
results of where and how to move even in higher dimensional spaces.

There are generally two types of motion planning: deliberative 
planning and reactive planning. In deliberative motion planning, the 
workspace (map) is defined where the robot is given the information 
about the environment which may include the obstacles, objects to 
work with, free working area which then can be converted to its 
configuration space for planning. Whereas in reactive planning, the 
robot is not aware of what the global environment is like. Here as the 
robot moves along the environment, it performs actions without pre-
planning and is generally used in unpredictable environments. The 
robot senses and acts in reactive whereas, in deliberative, it senses, 
plans then acts. In this paper, we introduce a new motion planning 
algorithm which falls under a type of deliberative motion planning 
known as sampling-based motion planning. The application of motion 

planning varies over a wide area which includes Industrial robot arms, 
planetary exploration, robotic surgery, animation, transportation 
systems, etc A part from robotics, the sampling-based motion planners 
are also used in computational biology and animations [1].

A. Sampling-Based Motion Planners
In sampling-based motion planning the workspace is converted into its 

configuration space, C. The pose of a robot is described by the configuration 
of the robot and the set of all configurations is the configuration space. 
In the configuration space where the source and the goal locations are 
given, random samples are generated and these samples are generally 
checked for two conditions: collision-prone (Cobs) or collision-free (Cfree) 
and the collision-free is considered for connecting the edges. Taking 
the random Cfree samples a roadmap or a tree can be introduced for the 
robot to move through C. Only after a collision free roadmap or path is 
generated the robot should move around the environment [2]. Sampling 
based motion planning produces fast solutions in complex maps but may 
not always give a solution which is why it usually is termed probabilistic 
completeness [3]. Sampling-based motion planning algorithms or rather 
planners are classified into roadmap-based planners like the probabilistic 
roadmap method (PRM) [2] and tree-based algorithms planners like the 
rapidly exploring random tree (RRT) [4], [5] and in this paper, the new 
planner introduced is experimentally compared with some variants of 
PRM. The concepts of sampling-based motion planners are also extended 
to reactive planning [6], [7].

B. Probabilistic Roadmap Method
The probabilistic roadmap method (PRM) is a roadmap-based 

planner which is one of the most commonly used sampling-based 
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motion planners. In a generic PRM planner, for solving in static 
environments, a set of random sample points are generated, say 
qrand  and from this set the Cfree samples are considered, while the Cobs 
sample points are rejected. Using qrand ∈ Cfree a roadmap is constructed 
by connecting the samples by Cfree edges [3], [8]. After a roadmap is 
constructed, the condition for connectivity is checked, that is, if the 
source and goal are able to connect to at least one node or vertex of 
the roadmap without collision. As there can be multiple possible paths 
from source to goal through the roadmap, this kind of planners are 
also termed as multi-query planners. Once condition for connectivity 
is satisfied, graph traversal algorithms like breath-first search [9], 
Dijkstra, A*, D*, anytime A*, anytime dynamic A* (AD*) [3, 10], etcetera, 
can be used to find the path from source to goal.

C. Quiddity of Optimistic Motion Planning Using Recursive Sub-
Sampling

With the motivation from the concepts of sampling-based motion 
planners, we introduce a new sampling based motion planner, named 
optimistic motion planning using recursive sub-sampling (OMPRSS), 
where the planner tries to find the path optimistically without having 
to construct a roadmap or a tree and the least connectivity condition 
needs to be checked.

Whenever the straight-line path from source to destination, say L, 
is collision prone, OMPRSS generates a set of sample points, sort them 
based on their distances from the L, then tries to find a path through 
the sorted points. In other words, sorting heuristically prioritizes the 
points with easiest and shortest points solved first. If the planner fails 
to find a path through the first set of sample points, a new set of the 
same number of sample points is generated and the planner attempts 
to find a path with the help of the previous set of sample points. Every 
sample point divides the problem into a smaller problem, and the 
problem is solved recursively. The removal for the need of building 
a roadmap or a tree helps the planner to find a path faster. From the 
application point of view, OMPRSS could be used in systems where 
the time matters and the path length may not be of much concern, for 
example industrial robots.

The rest of the paper is arranged as follows: literature review is 
presented in section II, section III discusses the methodology behind the 
proposed approach, the experiments and results are presented in section 
IV, section V confers the results and the conclusions in section VI.

II. Literature Review

The geometric sampling-based motion planners are categorized 
into multi-query based planners which include probabilistic roadmap 
method (PRM), Lazy PRM, PRM*, Lazy PRM*, SParse roadmap spanner 
algorithm (SPARS), SPARS2, etcetera, and single-query based planners 
which includes rapidly-exploring random tree (RRT), RRTConnect, 
RRT*, Lower bound tree RRT (LBTRRT), Sparse stable RRT, Lazy RRT, 
bidirectional RRT (BI-RRT) and so on [11]. All  the planners have a 
different approach to sampling and planning strategies and are capable 
of finding solutions in high dimensional environments. The single-query 
based planners intend to plan out a collision free path by incrementally 
building a tree towards the destination either controlled or randomly, 
whereas multi-query based planners generally build a roadmap and tries 
to find a path from source to goal through the roadmap.

Kavraki and Latombe [2] presented the elementary working 
aspect of PRM where the planning approach is deliberative. Here, 
the planning system first creates a configuration space followed by 
random sampling and roadmap generation belonging to a collision 
free field and the robot is intended to move through the constructed 
roadmap. Different types of PRM have been developed over time 
which improved the effectiveness and efficiency of PRM. Certain 

variants can work better in certain type of scenario. Generally, the 
fundamental concept of PRM stands whereas the sampling strategy 
is changed in the variants. Bohlin and Kavraki [12] presented a 
variant of PRM called Lazy PRM which reduces the overall number 
of collision-checking by first postulating that the roadmap is collision 
free followed by collision checking while searching for the shortest 
possible path. The PRM* falls under the category of asymptotically 
optimal planners, presented by Karaman and Frazzoli [13] which 
proves the probabilistic completeness and asymptotic optimality of 
the algorithm. Unlike PRM, PRM* tries to connect to an established 
set of neighbouring samples. Dobson and Bekris [14] promulgated 
the SParse roadmap spanner algorithm (SPARS) and SPARS2 which 
generates sparse roadmaps instead of having to consider the entire 
number of edges involved in constructing the roadmap.

Some of the other variants of PRM include the Bridge Test, 
Gaussian sampling PRM and Obstacle-based PRM where  the sampling 
strategies are refined such that the PRM improves its performance 
in scenarios such as narrow corridors. In this paper, these variants 
including the uniform sampling PRM [2] are used to compare with the 
proposed planner. Hsu et al. [15] presented the Bridge Test PRM which 
hikes up the samples in narrow corridor areas. It basically takes a 
sample point, say q, and generates another sample point, say q', in the 
neighbourhood of q if q is collision prone and q' is also checked if it is 
collision prone. If they are both collision prone, the mid-point, say m of 
the line L(q, q' ) is checked whether it is collision free, Cfree. If m belongs 
to Cfree, m is added to the set of vertices for roadmap construction. Boor 
et al. [16] presented the Gaussian sampling PRM where the samples 
are generated at a higher density near the obstacles. The Gaussian 
sampler reduces the number of samples thus improving the efficiency 
of the planner. Amato et al. [17] promulgated the Obstacle-Based 
PRM in 3-dimensional scenario where the samples are generated on 
or near the obstacle surfaces. If the samples are collision prone, they 
are moved at unit steps towards collision free space until they are in 
obstacle free space thus, yielding vertices near obstacles, reducing the 
need of taking in the samples in larger free areas. Several works have 
been done to compare the various variants of PRM [18, 19].

Lavalle [4] introduced the rapidly-exploring random tree (RRT). 
RRT has a pulling effect where the tree is iteratively built by expanding 
towards the random sample point instead of directly connecting to 
the sample point. Kuffner and LaValle [20] presented a work similar 
to RRT called the RRT-Connect which iteratively constructs two trees 
from both the source and the destination and expanded till the trees 
meets. Similar to the PRM*, Karaman and Frazzoli [13] presented the 
RRT* which is asymptotically optimal. These planners can be combined 
to bring out better performances. Kala [21] presented an approach of 
using both the RRT and PRM. Here the RRT is used for the initial search 
from several points simultaneously. The points are then used to create 
a graph through which the path planning is carried out using PRM. The 
results show significant improvements in the performance. Jason et al. 
[22] presented a different approach to sampling-based motion planning 
which, instead of relying entirely on a random sampler, the path planning 
is enforced by a deterministic approach. Solovey and Kleinbort [23] 
presented a percolation approach over PRM and its variants leveraging 
the finesse of the variants. Ichter et al. [24] presented an approach which 
learns to identify essential regions or samples (for example, a doorway) 
which is enforced by graph theory and neural networks. Vonásek et 
al. [25] presented a sampling-based motion planning method which 
first finds approximate solutions using scaled-down robot and uses the 
approximated solutions as a guide to find the actual path between the 
source and the goal. Kim et al. [26] presented lazy collision checking 
approach which adaptively checks collision region by generating an 
approximating free configuration space allowing the system to obtain 
clues on which region should be checked first. 
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The sampling-based planners have been extensively used in several 
works. Švestka and Overmars [27] proposed a strategy of collaborative 
and coordinated motion planning for multiple robots using sampling-
based planners. Clark [28] also presented a work on multi-robot 
motion planning using PRM. Yao and Gupta [29] also presented the 
use of sampling-based motion planners for end-effector path planning. 
Sampling based motion planners are also embedded in Open Motion 
Planning Library (OMPL) [11] which is being extensively used. The 
sampling-based motion planners has led to an amplification of new 
problem-solving domains. Kala [30] presented a work on using 
multiple robots for performing mission driven tasks with the help of 
sampling-based motion s planners and its concepts.

III. Optimistic Motion Planning Using Recursive Sub-
Sampling

Optimistic motion planning using recursive sub-sampling 
(OMPRSS) is a new approach to path finding based on the concept of 
sampling-based motion planning. The approach is considered to be 
optimistic as the algorithm always assumes that there is a collision free 
path between the source and the goal or the sub-source or sub-goal, 
where the source and the goal are always connected by straight lines. 
Only when there is a collision prone path, the algorithm generates 
new set of controlled random points in an attempt to find the path 
through the sub-source and sub-goal. OMPRSS is exclusive of trees and 
roadmaps. Given a map with the source and the goal, the planner first 
connects the source s and the goal g with a straight line, say L(s, g). 
Then this line is checked for collision. If the line is collision free, say 
Cfree, it is taken as the path as shown in Fig. 1, which is the shortest 
possible path from s to g. An assumption here is Cfree = RN.

In the following discussions, the terms Cfree and Cobs indicates 
collision free and collision prone respectively, while Cfree and Cobs 
represent the collision free configuration space and collision prone 
configuration space respectively. Also, a line L with at least a point in 
Cobs is considered a Cobs line.

M g

s

Obstacle

Fig. 1. A straight-line collision free path from source to goal. M denotes the map.

If the line L(s, g) is collision prone, a set of uniform random sample 
points q ∈ Q ⊂ Cfree are generated, which are collision free with the hope 
that the path from s to g will be collision free. A certain range, say R, is 
set for generating the random points. This range factor is maintained 
to limit the area of generating the random points with the intention to 
get a shorter path length. The range factor is defined as the diagonal 
distance of the space aligned to the coordinate axis system, within 
which the sample points q  are generated. As an example, consider the 
heuristic that the robot never travels such that the projection of motion 
on the straight-line path is negative. Now the sampling region can be 
limited to the hyperspace bounded by s and g, space aligned along the 
coordinate axis system with the range factor as d(s, g)  where d is the 

distance function. The range factor could start from the length of d(s, 
g) to the upper and lower limit of the map, i.e., the entire configuration 
space. Fig. 2 shows a condition where d(s, g) is collision prone, Cobs, and 
the range of generating uniform random sample points is within the 
n-orthotype or hyper rectangular area with the length of d(s, g) as its 
diagonal. Considering the coordinate points of s as (s1, s2, s3, …, sn) and 
g as (g1, g2, g3, …, gn), the area would be: for one corner of the hyper 
rectangle the point will be c1 = [min(s1, g1), min(s2, g2), …, min(sn, gn)]T  
and the other corner as c2 = [max(s1, g1), max(s2, g2), …, max(sn, gn)]T.

Consider the case given in Fig. 2. Since L(s, g) is a Cobs line, we 
generate a set of random points, say four points Qr∶ {q1, q2 q3, q4}  
within a rectangular area – area resulting from the range factor taken 
as length of d(s, g). The generated random sample points are sorted 
according to the distance of each point to the line L(s, g). The farther 
a point is from the line, the lesser the priority of that point in the 
population of random sample points. The notion is to sample a point q 
such that s to g via q is a path. Closer be a point to the line from s to g, 
more likely it is to produce a shorter path. Moreover, collision checking 
effort is proportional to the length of the path. Closer be a point to the 
line, lesser is the computational cost. Let us consider that, after sorting 
according to the distance, the points are arranged as Qp∶ {q2, q4 q3, q1}. 
Here, Qp is a priority queue of the points where for further task the 
planner first chooses the point with the highest priority (least distance 
from qi to d(s, g)), in this case point q2. Before going further, let us first 
look into the method of prioritizing the sample points. 

C

g

s

q3

q2 q4

q1

Range of generating sample points

Line L(s, g)
is collision

prone

Sample point

Fig. 2. Range set to length of L(s, g) resulting in a rectangular area for 
generating sample points. C denotes the configuration space.

A. Sample Prioritization
As mentioned, the random points belonging to Cfree can be 

prioritized based on the distance of a point qi to the line L(s, g) All the 
sample points generated randomly will be at a particular distance from 
the line L(s, g). Finding the distances of each point from L(s, g)  can 
help prioritize them. One way of determining the point distance to a 
line is measuring the normal distance, which basically is the shortest 
distance of a point to a line.

qi

g

sd(q i 
,b)

b

Ln

d b

Fig. 3. An illustration of the normal distance of point qi to line L(s, g), d(qi, b) 
which would be used for prioritizing the sample point.
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In Fig. 3, points s = (xs, ys) and g = (xg, yg) are the location of source 
and goal respectively. The point qi = (xi, yi) is the location of a random 
sample point generated and the point b = (xb, yb) is the intercept of the 
normal line, say Ln, to L(s, g). Here, we are interested in determining 
the distance of point qi to the line L(s, g), say d(qi, b) as depicted in Fig. 
3. Let the distance between point g and b be db. We can deduce that

 (1)

The line Ln is normal to L(s, g) forming a right triangle Δgbqi. We 
have:

 (2)

 (3)

Replacing the expression of cosθ in Eq. (1), we have:

 (4)

 (5)

 (6)

Where,  is a unit vector. We can determine d(qi , b), depicted in 
Fig. 3 as:

 (7)

The sample points can be prioritized based on the distances of each 
point from the line L(s, g) which can be obtained using Eq. (7). 

C

g

s

q3

q2 q4

q1

Fig. 4. Path from s to g through the sample points (q1, q2, q3, q4) generated 
within a specified range or area. Dotted lines denote collision-prone paths.

B. Working Principle of OMPRSS
In this section, we will discuss the working of the planner when 

the straight-line path from source to goal is collision prone. If L(s, g) is 
collision prone we generate a set of uniform random points Q ⊂ Cfree. 
These points are prioritized using the approach of point prioritization 
discussed in the previous section. Considering the case given in Fig. 2, 
we generated four Cfree random points and prioritized them as Qp∶ {q2, 
q4 q3, q1}. The purpose of prioritization is to go about with the point 
with the highest priority for the next step.

After the points are prioritized, a path from s to g is checked 
through each sample points, shown in Fig. 4. As point q2 has the higher 
priority in this case, we go about with q2 by first checking whether 
the straight-line path from s to q2 either belongs to Cfree or Cobs and 
followed by checking the straight line path from q2 to g. If a Cfree path 
is found from s to g through L(s, q2) and L(q2, g), the planner returns 
with a path connecting the source to goal through the sample point 

q2. But as in the case of Fig. 4, since L(q2, g) is collision prone (Cobs), 
we consider the next point in the priority queue q4, which is the next 
closest point to L(s, g). The path from s to g is still Cobs as the line L(s, 
q4) is Cobs. Next, we consider q3. Here, both L(s, q3) and L(q3, G) are 
Cfree, so in this case the planner returns a successful path. The point q1  
also produces a Cfree path, but as its priority is lesser compared to q3, 
the path through q1 is ignored. Through the example of Fig. 4 we can 
conclude that point prioritization helps in finding a shorter path as 
any point closer to the line would produce a shorter path length than 
that of a point farther to the line of concern.

Let us consider a different case shown in Fig. 5. In this case, we can 
observe that all sample points produce Cobs path. This planner works 
recursively, where in this type of cases we repeat the same procedure 
as we did for the case of Fig. 4 with the sample point as the new source 
or goal depending on which of the line (L(s, qi) or L(qi, g)) is Cobs. In Fig. 
5, we can observe two cases:

• Firstly, one of L(s, qi) or L(qi, g) is Cobs as in cases of points q1, 
q2  and q4. Here, in case of points q1 and q2 the sample points 
become the new goals and the source remains the same in the next 
recursion. Whereas in case the of q4, the goal remains the same as 
it is and the sample point becomes the new source.

• The second case is when both L(s, qi) and L(qi, g) are Cobs. In this 
case, we change the priority of that point by multiplying with 
a penalty. The value of the penalty can be chosen based on the 
distances produced by all sample points such that after multiplying 
with the penalty, the distance of that point increases so that the 
priority of that point gets lesser than the point with the largest 
distance but only has one Cobs line initially. If all the paths produced 
the random points are Cobs, a penalty is multiplied to all points and 
in this condition, all points get back to its original priority list. This 
is done to reduce computational complexities as for a point with 
both lines to be Cobs, the number of recursions would increase. If 
we first work on points with only one Cobs line and find a path, it 
would reduce the depth of recursion as compared to points having 
both lines to be Cobs. When, for all sample points, if both L(s, qi) and 
L(qi, g) are Cobs, we can avoid the random points and generate new 
points or start the planner all over, but if we keep avoiding points 
when all points produce both paths as Cobs, the time cost could 
gradually increase. In Fig. 5, point q3 has both L(s, q3) and L(q3, g) 
as Cobs. The priority queue changes from Qp∶ {q1, q2, q3, q4} to Qp∶ 
{q1, q2, q4, q3}.

C

g

s
q3

q2

q4

q1

Fig. 5. All sample points producing collision-prone (Cobs) paths.

Summarizing, the collision aware priority is given by:

 (8)

Where, α and β are very large constants and C1 and C2 can be 
defined as

 (9)
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 (10)

When a line from source to sample point or sample point to the 
goal (or both) is Cobs, we get into a recursion where the same set or 
number of Cfree random points are generated. Let us consider the point 
q1 in Fig. 5. The path from q1 to g is Cfree but the path from s to q1 is 
Cobs. As a result, we generate another four random points, say Q11∶ 
{q11, q12, q13, q14} ∈ Cfree within the range, say between s and q1. The 
area would be a square or rectangle with L(s, q1) as the diagonal. The 
same procedure is followed with the intention to find a path from s to 
q1 by checking for Cfree paths through one of the new sample points 
with q1 as the new goal. Once a path is found, the original source 
and goal can get connected via the sample points as shown in Fig. 
6. In this case, the path would be s → q13 → q1 → g. If a path is not 
found, from s to g through the sample points Q11∶ {q11, q12, q13, q14}, we 
continue with the same procedure using Q11 as the new source or goal, 
resulting into another depth of recursion. The limit of recursion can 
be set to a certain depth. Change in the depth limit can also change 
the response of the planner. The procedure of generating the random 
points is repeated until a path is found or the depth limit is reached. 
We can observe that by maintaining a range the total path length can 
be reduced but, setting the range factor has some issues which we will 
discuss in the next section.

C

g

s
q3

q2

q4

q1
q13

q12

q14

q11

v1

Fig. 6. Illustration of new sample points (q11, q12, q13, q14) generated in 
recursion of depth 1. V1 denotes the new area of generating the sample points 
setting the range factor to be L(S, q1).

C. Repercussion of Range and Proposed Solution
We have observed that setting a range factor can greatly reduce the 

path length, but there are some issues which pops up with it. In this 
section, we will discuss some of the possible situations where the range 
factor becomes an issue and the solutions to it. Let us first consider 
the issues with regard to the range factor set to the length L(s, g), 
say dL. To understand these issues, let us take a 2D scenario as an 
example. There are two possible cases where the planner can get into 
a no-solution state:

• When L(s, g) becomes perpendicular to 𝑥-axis: Here, the slope of 
L(s, g) becomes infinite.

 (11)

Here:

 (12)

• When L(s, g) becomes parallel to 𝑥-axis: The slope of the normal to 
L(s, g) will be undefined as change in y will be zero.

 (13)

Here, slope of normal to the line L(s, g) will be

 (14)

g

g

s

s

x

Sample points

(a) (b)

yy

x

Fig. 7. Representation of the two cases where the range for defining the area of 
generating random sample points would fail to produce points to find a path. 
(a) The line L(s, g) perpendicular to the 𝑥-axis, (b) The line L(s, g) parallel 
to 𝑥-axis. In both cases, the points are generated along the line L(s, g) for 
choosing range factor as dL.

Finding the distance of a point to the line will not be an issue in 
both cases as the distance in the case of the first problem will be the 
difference in the 𝑥 values of the sample point and the intercept of the 
line and for the second, the difference in y values. The problem is that 
the volume of generating random sample points will be the line itself, 
i.e., the points will lie on the line as shown in Fig. 7. In these cases, no 
path can be found.

C

g

s

Fig. 8. An illustration where OMPRSS has high possibility of failing due to less 
Cfree region or area for generating sample points. The inner most rectangular 
shape filled with lines indicates an obstacle, say O. s and g are the source 
and goal respectively and the rectangular box, say r with the diagonal line 
connecting s and g is the area for generating sample points. The space between 
the O and r is the Cfree region for generating the sample points.

Another problem that can occur is the situation given in Fig. 8. In 
this case, the source and the goal are both too close to the obstacle 
which results in small Cfree area to generate the Cfree points. The planner 
in this case has very thin chances to find a path from source to goal 
because the points can get too close to each other with the increase 
in the depth of recursion and may even reach to an extend where 
the points are generated in the same point in the configuration space 
resulting in generating zero distances. A similar case would be as 
illustrated in Fig. 10 where, if the range factor is taken as dL , there is 
no way to find a path. All points generated will not be able to find out 
a path as long as the range factor is dL in this case.

The solution to the above problems would be increasing the range 
of generating the points by some factor which will eventually increase 
the volume of sample point generation. Various range factors can be 
assigned to the planner such that the prospect of finding a path is 
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increased. The degree to which the range factor increases is flexible 
and there are no discrete methods to increasing it. In this paper, we 
propose a particular way of increasing the volume. Instead of using dL, 
which is the length of L(s, g), for setting up the volume of generating 
the sample points, the line L(s, g) is extended by an extension factor, 
say η, such that the volume increases. Here, both the ends of L(s, g) 
are extended by η. In other words, both s and g are either added 
or subtracted by η depending on where s and g are located. If the 
location of source is s = (s1, s2, …, sn)T and goal is g = (g1, g2, …, gn)T, the 
expression for volume extension can be written as:

 (15)

 (16)

Here, s' and g' are the new corner points of the volume and L(s', g') 
becomes the diagonal line of the extended volume. In both Eq. (15) 
and (16), the greater or equal condition (≥) is used in order to deal 
with cases when L(S, G) is perpendicular or parallel to one of the axes. 
The case where L(S, G) is perpendicular or parallel to any axes occurs 
when for i = 1, 2, …, n, (Si, − Gi) = 0.

x
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g’
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s’

s

Fig. 9. Illustration of volume extension for generating the sample points by η 
for L(s, g) perpendicular to the 𝑥-axis. The extension operation redefines the 
volume such that L(s', g') is the diagonal of the incremented volume.

One of the possible extension factors could be the half of the length 
of L(s, g), that is η = 0.5 × dL. Let us once again consider a 2D scenario 
(Fig. 9) with source as (𝑥s, ys) and goal as (𝑥g, yg) where, 𝑥g > 𝑥s and yg > ys. 
Let the length of L(s, g) be dL. Based on the extension condition, the 
end points after extension of dL would be

 (17)

 (18)

This will result in a larger volume in the configuration space for 
generating the random points as shown in Fig. 10. The factor can even 
be increased if required such as using the whole dL as the factor, that is 
η = dL or even up to the extent of using the whole configuration space 
as the range. The chances of getting a path may increase in η, but as it 
increases, the chances of getting points farther away from the line are 
more, as a result we might end up with a larger path length. 

If the range factor is changed, the process of point prioritization 
needs to be changed to some extend as problems could arise in 
condition where the point is beyond the actual line as shown in Fig. 
11. Here, a normal line does not pass through the line L(s, g) as a result 
the point of intercept B would go beyond L(s, g). This issue is taken 
into consideration because though a point may lie the closest to the 
line based on the normal line it may still be quite far away from the 
source and the goal, which when given with higher priority may result 
in a longer path than those points which have larger normal distance. 
This problem can be solved by comparison of the distance between 

d(s, g), d(s, b) and d(b, g). First the following condition as given in Eq.  
(19) needs to be checked:

 (19)

We can conclude from these issues that the larger the range factor, 
the chances of getting a shorter path reduces. The range factor can be 
configured based on the type of map the robot is dealing with.
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Area when the range
factor is dL 
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using (1/2)dL as the
range factor(1/2)dL

(1/2)dL

Fig. 10. A representation of using a factor of half of dL to increase the volume 
for generating random points. Here, dL is the length of L(s, g).

D. Pseudo Code
The pseudo code for OMPRSS is given in Algorithm 1. The function 

L(s, g) mentioned in Algorithm 1 is given in Algorithm 2. The function  
connect (s, g, depth) returns two values. First is the connectivity con 
and second is the path τ. If the source and the goal is connected via a 
path, a true value is returned and all the points connecting the source 
and the goal (including the source and the goal) are returned in τ. 
The function distanceToLine(qi, s, g)  returns the distance of a sample 
point qi to the line L(s, g). Here, s and g will keep changing with every 
depth as the sample point will become new source or goal with every 
recursion depth. The distances are used for sorting which actually is 
the step of prioritizing. The parameter limit in Algorithm 1 is the limit 
or threshold for the recursion depth.

g

s

d(qi , s)

d(qi , g)

b

qi

Fig. 11. An illustration of the intercept b laying beyond the line L(s, g) due to 
volume extension.

IV. Experiments and Results

The experiment was conducted on two dimensional maps, bitmap 
images, considering the obstacles to be 0s and the collision free area to 
be 1s. The robot is taken to be a point robot inferring that the workspace 
need not be converted to its configuration space. The results on the 
working of OMPRSS is first presented followed by the response of the 
planner to different parameter alterations and comparison with other 
sampling-based motion planners.
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A. Results on the Working of OMPRSS
The initial experiment was performed on the basic working method 

of OMPRSS. The maps used were 500 ×500 bitmap images. The 
results are shown in Fig. 12(a) with the source at (50, 50) and the goal 
at (100, 450) and Fig. 12(b) with the source at (50, 50) and the goal 
at (350, 300), both had four sample points generated per recursion 
and the recursion depth limit was kept at 4. The range factor used 
was set to half of dL. The time required to find the path in the case 
of Fig. 12(a) was 0.05681274 seconds and the cost (path length) was 
690.2206, while 0.8073688 seconds and 453.9041 in case of Fig. 12(b). 
In the figures, the entire generated sample points are not indicated 
besides the sample points resulting to the path formation. As the 
sample points are generated randomly, different path lengths can be 
generated each time the planner is executed. Experimental results are 
shown in Fig. 13.
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Fig. 12. OMPRSS path planning results in a bitmap image of size 500 ×500. 
(a) and (b) illustrates the paths found by OMPRSS in different maps where, 
in both cases, the planner generates sample points in Cfree region to connect 
the source and goal as the straight lines connecting them are collision prone.
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Fig. 13. Response of OMPRSS at different executions over the same source 
and goal locations - source at (10,10) and goal at (450,450), using the same 
range. The range used was half of dL The path p1 with length 1154, path p2 with 
length 866 and p3 with path length 645.

B. Response to Changes in Parameters
There are a few parameters which can be changed in OMPRSS. 

They include:

• Range (which determines the area of generating random sample 
points)

• Sample points

• Depth of recursion

1. Altering the Range Factor
For generating the random sample points three variations of range 

(variants discussed in section III.B) were used for which all the variants 
responded differently in different scenarios. The variants of range are:

• Half the line of L(s, g), i.e. 0.5 × dL. Let us consider this range as R1

Algorithm 1: Optimistic motion planner using recursive sub-
sampling

[con, τ] = connect(s, g, depth)
Input: source (s), goal (g) and current recursion depth (depth)
Output: con = true if connected, false if no path found, τ = Path 
from s to g
1.   if L(s, g) = true then
2.        con = true, τ = [s, g]
3.        return [con, τ]
4.   end if
5.   if depth > limit then
6.        con = false
7.        return [con, NIL]
8.   end if
9.   τ = ϕ
10.  if L(s, g) = false, Q = uniform random points, n = 1, 2, …  then
11.       for i = qi ∈ Q do
12.            π(qi) = distanceToLine(qi, s, g)
13.            if L(s, qi) = false or L(qi, g) = false then
14.                 π'(qi) = π(qi)(1 + αC1 + βC2) // Eq. (8)
15.            end if
16.       end for
17.       Sort Q based on π'(qi)
18.       for i = 1 to n do
19.            if L(s, qi) = false and L(qi, g) = true then
20.                 [con, τ] = connect(s, π'(qi), depth + 1)
21.            end if
22.            if L(s, qi) = true and L(qi, g) = false then
23.                 [con, τ] = connect(π'(qi), g, depth + 1)
24.            end if
25.            if L(s, qi) = false and L(qi, g) = false then
26.                 [con1, τ1] = connect(s, π'(qi), depth + 1)
27.                 [con2, τ2] = connect(π'(qi), g, depth + 1)
28.                 con = (con1 ∧ con2)
29.                 τ = [τ1, τ2]
30.            end if
31.            if con = true and NotEmpty(τ) then
32.                 return [con, τ]
33.            end if
34.       end for
35.       con = false
36.       return [con, τ]
37.  end if

Algorithm 2: Line-Collision check

L(S, G)
Input: Points source (s) and goal (g) 
Output: true if straight line from s to g is Cfree, else false
1.   s = source, g = goal
2.   for i = 0 to 1 in small steps do
3.        if i × s + (1−i) × g ∈ Cobs then
4.             end if
5.        end if
6.   end for
7.   return true
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• The length of L(s, g), dL. Let this range be R2

• The entire map. Let this range be R3

The maps used for this experiment are given in Fig. 14. Table I shows 
the observations of different range factors responding to different 
scenarios. Map size used: 500 ×500. Number of sample points used 
is 4. Depth (or limit) of recursion is 4. Cost is the path length and the 
time taken are in seconds.
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Fig. 14. 500 ×500 bit maps used for comparison of the response of OMPRSS 
over change in range factors. (a) as M1, (b) as M2 and (c) as M3 in Table I.

2. Altering the Number of Sample Points
The other parameter that can be changed is the number of sample 

points generated at each recursion. The experiment was performed on 
map M3 (Fig. 14(c)). The depth of recursion was 4 and the range factor 
was half of dL. Fig. 15 and Fig. 16 shows the results of the experiment. 
Here the number of sample points is incrementally increased at a step 
of 1 per iteration from 4 to 53, whereas the map, depth of recursion, 
range factor and the location of both source and goal are not changed.
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Fig. 15. Plot of cost versus sample points: showing the response of OMPRSS 
over change in sample points on M3 (Fig. 14(c)) with source at (10, 10) and 
goal at (470, 470).
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Fig. 16. Plot of time versus sample points: showing the response of OMPRSS 
over change in sample points on M3 (Fig. 14(c)) with source at (10, 10) and 
goal at (470, 470).

TABLE I. Comparison of Responses of the Planner Over Different Range Factors in Different Scenarios. The Maps Used Are Given in Fig. 14 As 
M1, M2 and M3

Sl. No. Map Source Goal Range Cost Time (seconds) Result

1 M1 (20,20) (450,450) R1 802.6841 0.04598 Pass

2 M1 (20,20) (450,450) R2 941.3936 0.05159 Pass

3 M1 (20,20) (450,450) R3 1006.8177 0:02251 Pass

4 M1 (100,100) (10,300) R1 895.1789 5.13672 Pass

5 M1 (100,100) (10,300) R2 783.3984 3.51435 Pass

6 M1 (100,100) (10,300) R3 930.3145 0.01224 Pass

7 M2 (10,10) (450,450) R1 741.5306 0.76386 Pass

8 M2 (10,10) (450,450) R2 727.5929 0.56532 Pass

9 M2 (10,10) (450,450) R3 769.5605 0.13955 Pass

10 M2 (50,300) (450,100) R1 664.7577 0.76386 Pass

11 M2 (50,300) (450,100) R2 708.8577 0.081249 Pass

12 M2 (50,300) (450,100) R3 729.6059 0.43471 Pass

13 M3 (100,70) (450,470) R1 716.774 0.062411 Pass

14 M3 (100,70) (450,470) R2 709.3188 0.014065 Pass

15 M3 (100,70) (450,470) R3 1373.9801 0.073104 Pass

16 M3 (100,70) (230,200) R1 --- --- Fail

17 M3 (100,70) (230,200) R2 --- --- Fail

18 M3 (100,70) (230,200) R3 754.2889 1.12045 Pass
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3. Altering the Depth of Recursion
Keeping the number of sample points constant including the map, 

range factor, and the source and goal locations while altering the depth 
of recursion, OMPRSS responded differently. The experiment was 
performed over M3 (Fig. 14(c)). Number of sample points kept constant 
at 4, source at (10, 10) and goal at (470, 470) and half of dL as the range 
factor. The depth of recursion was initiated at 4 and not at 1 because 
at a depth of 1, the planner is likely to fail. The reason behind starting 
at 4 is to start off at a likely possible successful planning followed 
by increasing the depth to observe the response over incrementally 
increasing the depth. The experimental results are shown graphically 
in Fig. 17 and Fig. 18.
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Fig. 17. Plot of cost versus depth: showing the response of OMPRSS over 
change in depth of recursion on M3 (Fig. 14(c)) with source at (10, 10) and 
goal at (470, 470).
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Fig. 18. Plot of time versus depth: showing the response of OMPRSS over 
change in depth of recursion on M3 (Fig. 14(c)) with source at (10, 10) and 
goal at (470, 470).

C. Comparison of OMPRSS With PRM Variants
In this section we will look into the performance of OMPRSS 

against some of the variants of probabilistic roadmap method (PRM). 
The PRM variants used are:

• Bridge test PRM

• Gaussian sampling-based PRM

• Obstacle-based PRM

• Uniform cost search PRM

The comparison was made based on three outcomes:

• Cost inferring the path length

• Time required for planning

• Success rate specifying the number of successful planning

The experiment was performed to view the response of both the 
PRM variants and OMPRSS by increasing the sample points. The 
first comparison experiment was performed on M6 from Fig. 19, the 
location of source at (10, 10) and goal at (450, 450).
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Fig. 19. 500 × 500 bit maps used for comparison of PRM variants and OMPRSS 
(a) as M4, (b) as M5 and (c) as M6.

The initial number of sample points for the PRM variants was 200 
incremented by 50 per iteration, iterated 80 times resulting to 4150 
sample points at the end. Whereas for OMPRSS, the initial number of 
sample points was 5 incremented by 1 per iteration, iterated 80 times. 
For both PRM variants and OMPRSS, for a particular number of sample 
points (that is in one iteration), say Si, the planner was executed 25 
times, and from the generated results, of each Si, the average of the cost, 
the execution time and the success rate were considered. For OMPRSS, 
the range factor used was half of dL and the depth of recursion was 
kept at 4. If any planner fails to find a path in any of the 2000 times 
executed (i.e. 80 × 25 times), the cost can be taken to be a high value 
- in the experiment, cost was taken as 9999 if any planner fails. And 
also, if a planner fails to find any path for the 25 times executed per Si 
the success rate would be 0. On the other hand, if a planner succeeds 
to find paths in all 25 times, the success rate would be 1.

Fig. 20, Fig. 21 and Fig. 22 show the graph for PRM variants of cost, 
time and success rate versus increasing sample points respectively. 
Whereas Fig. 23, Fig. 24 and Fig. 25 show the result of OMPRSS for 
cost, time and success rate against the increasing sample points. In 
order to view the successful planning and cost convergence against 
time, the data generated from both PRM variants and OMPRSS were 
plotted. Fig. 26 and Fig. 27 shows the scatter plot of cost versus time 
and success rate versus time generated by PRM variants respectively, 
and Fig. 28 and Fig. 29 for OMPRSS.

Cost

sample point

Cost (bridge test)

Cost (gaussian sampler)

Cost (obstacle based)

Cost (uniform sampler)

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900

200 600 1000 1400 1800 2200 2600 3000 3400 3800 4200

Fig. 20. Graph of cost versus increasing sample points generated by the PRM 
variants in M6.
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Fig. 21. Graph of time versus increasing sample points generated by the PRM 
variants in M6.
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Fig. 22. Graph of success rate versus increasing sample points generated by 
the PRM variants in M6.
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Fig. 23. Graph of cost versus increasing sample points generated by the 
OMPRSS in M6.
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Fig. 24. Graph of time versus increasing sample points generated by the 
OMPRSS in M6.
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Fig. 25. Graph of success rate versus increasing sample points generated by 
the OMPRSS in M6.

TABLE II. Cost Comparison of the PRM Variants and OMPRSS in Different Scenarios (Maps in Fig. 19) at Various Time Steps. Source and Goal 
Kept at (10, 10) and (450, 450) Respectively for All Maps

Map Time (sec) Bridge test Gaussian sampler Obstacle-based Uniform sampler OMPRSS
M4 Less than 0.04 9999 9999 9999 9999 9999
M4 Less than 0.08 9999 9999 9999 9999 890.5013
M4 Less than 0.12 9999 9999 9999 9999 890.5013
M4 Less than 0.16 9999 9999 9999 9999 890.5013
M4 Less than 0.2 9999 9999 9999 9999 890.5013
M4 Less than 0.24 9999 8527.6245 806.7357 9999 890.5013
M4 Less than 0.28 9999 7425.3433 806.7357 9999 890.5013
M4 Less than 0.32 9999 7425.3433 806.7357 9999 890.5013
M4 Less than 0.36 9999 5585.5652 806.7357 9999 890.5013
M4 Less than 0.4 9999 5585.5652 806.7357 782.1605 890.5013
M5 Less than 0.01 9999 9999 9999 9999 9999
M5 Less than 0.06 9999 9999 9999 9999 774.6329
M5 Less than 0.11 9999 9999 9999 9999 774.6329
M5 Less than 0.16 9999 9999 9999 9999 774.6329
M5 Less than 0.21 9999 9999 9999 9999 774.6329
M5 Less than 0.26 9999 9999 9999 9999 774.6329
M5 Less than 0.31 9999 3750.8509 1160.7313 9999 774.6329
M5 Less than 0.36 9999 1178.5719 794.7315 9999 774.6329
M5 Less than 0.41 9999 1166.7064 794.7315 786.6865 774.6329
M5 Less than 0.5 9999 1166.7064 790.1796 786.6865 774.6329
M6 Less than 0.1 9999 9999 9999 9999 9999
M6 Less than 0.2 9999 9999 9999 9999 9999
M6 Less than 0.3 9999 6338.6594 6730.6351 9999 9999
M6 Less than 0.4 9999 4146.1292 4169.2192 5995.6477 9999
M6 Less than 0.5 9999 4146.1292 6730.6351 4905.0506 957.2462
M6 Less than 0.6 9999 2672.9671 3435.7925 4527.0484 957.2462
M6 Less than 0.7 9999 2671.515 1970.3431 4527.0484 910.5138
M6 Less than 0.8 9999 2671.515 862.0898 4527.0484 906.7916
M6 Less than 0.9 9999 1930.6015 862.0898 4164.7177 891.2265
M6 Less than 1 9999 1930.6015 858.9613 4164.7177 891.2265
M6 Less than 1.5 9999 831.5308 858.9613 4164.7177 900.8705
M6 Less than 2 9999 828.2267 844.9996 4164.7177 922.8004
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Fig. 26. Graph of cost versus time generated by the PRM variants.
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Fig. 27. Graph of success rate versus time generated by the PRM variants.
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Fig. 28. Graph of cost versus time generated by the PRM variants.
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Fig. 29. Graph of success rate versus time generated by the PRM variants.

Table II and Table III shows a broader view of the experiment 
performed shown in Fig. 26 to Fig. 29. Both the PRM variants and 

TABLE III. Success Rate Comparison of the PRM Variants and OMPRSS in Different Scenarios (Maps in Figure 19) at Various Time Steps. Source 
and Goal Kept at (10, 10) and (450, 450) Respectively for All Maps

Map Time (sec) Bridge test Gaussian sampler Obstacle-based Uniform sampler OMPRSS
M4 Less than 0.04 0 0 0 0 0
M4 Less than 0.08 0 0 0 0 1
M4 Less than 0.12 0 0 0 0 1
M4 Less than 0.16 0 0 0 0 1
M4 Less than 0.2 0 0 0 0 1
M4 Less than 0.24 0 0.16 1 0 1
M4 Less than 0.28 0 0.28 1 0 1
M4 Less than 0.32 0 0.28 1 0 1
M4 Less than 0.36 0 0.48 1 0 1
M4 Less than 0.4 0 0.48 1 1 1
M5 Less than 0.01 0 0 0 0 0
M5 Less than 0.06 0 0 0 0 1
M5 Less than 0.11 0 0 0 0 1
M5 Less than 0.16 0 0 0 0 1
M5 Less than 0.21 0 0 0 0 1
M5 Less than 0.26 0 0 0 0 1
M5 Less than 0.31 0 0.68 0.96 0 1
M5 Less than 0.36 0 0.96 1 0 1
M5 Less than 0.41 0 0.96 1 1 1
M5 Less than 0.5 0 0.96 1 1 1
M6 Less than 0.1 0 0 0 0 0
M6 Less than 0.2 0 0 0 0 0
M6 Less than 0.3 0 0.4 0.36 0 0
M6 Less than 0.4 0 0.64 0.64 0.44 0
M6 Less than 0.5 0 0.64 0.68 0.56 1
M6 Less than 0.6 0 0.8 0.72 0.6 1
M6 Less than 0.7 0 0.8 0.88 0.6 1
M6 Less than 0.8 0 0.8 1 0.64 1
M6 Less than 0.9 0 0.88 1 0.64 1
M6 Less than 1 0 0.88 1 0.64 1
M6 Less than 1.5 0 1 1 0.64 1
M6 Less than 2 0 1 1 0.64 1
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OMPRSS were executed in three maps M4, M5 and M6 given in Fig. 
19, the location of the source and the goal kept at (10, 10) and (450, 
450) respectively. The planners were executed 25 times per iteration of 
increasing sample points and the average of both cost and the success 
rate were recorded and arranged in certain time steps as shown in 
Table II and Table III for all the planners.

V. Discussion

The experimental results of OMPRSS show some intriguing 
outcomes. The initial experiment shows the basic working of OMPRSS 
in which we can observe that though the path length is not optimal, 
the time of planning is adequate. It also somehow tends not to waste 
time on Cfree areas rather focus on obstacle dominated areas. OMPRSS 
has the flexibility of changing various parameters which includes the 
range factor which determines the area of generating the random 
sample points and the space for increasing or decreasing the number 
of sample points and the depth limit of recursion. These parameters 
open up more dimensions for experiments. From the theoretical point 
of view, though the sample points are generated randomly, the larger 
the area of generating points (larger range factor) the chance of getting 
a larger path length is higher and this holds for the other way around 
as well. The experiment of changing the range factor was performed 
as to view whether this condition would hold. Table I shows the result 
of changing the range factor in which cost generated by R3 is almost 
always higher compared to R1 and R2. But there is a better part of R3 . 
We see this in Sl. No. 16 to 18 of Table I. In M3, for source at (100, 70) 
and goal at (230, 200), R1 and R2 fails to find the path, whereas R3 does. 
This shows that R3 can work better in cases where the destination is 
augmented by obstacles, for example, dealing with concave obstacles. 
On the other hand, altering the number of sample points and the depth 
of recursion can result in different responses. Theoretically, increasing 
the sample points in OMPRSS can increase the chances of getting a 
successful planning faster but we can see in Fig. 16 that time really 
does not decrease with increasing sample points, rather fluctuates. 
The cost also does not either increase or decrease with increasing 
sample points (Fig. 15). In Fig. 16, the worst case of time required 
for planning is about 0.175 seconds and below 0.01 seconds at best. 
As OMPRSS takes fairly short time for planning, the planner can be 
executed multiple times and the best cost can be considered. On the 
contrary, increasing the depth is worse than increasing the sample 
points. We see this in Fig. 17 and Fig. 18 where the cost on average is 
higher whereas the time required for planning has the probability of 
shooting up high with increasing depth.

The final stage of the experiment was the comparison of OMPRSS 
with the variants of PRM. In Fig. 20, the PRM variants start with a 
higher cost which gradually decreases with increasing sample points Si, 
except for Bridge test PRM. The Gaussian sampler and Obstacle based 
gradually gets higher success rate with Si and the uniform sampler 
has a consistent success rate (Fig. 22). The time on the other hand 
increases with Si (Fig. 21). Whereas for OMPRSS, neither the cost and 
time increases or decreases with Si, rather oscillate with a consistent 
success rate. And from Fig. 26 to Fig. 29 and Table II and Table III we 
can observe that OMPRSS tends to converge faster with adequate cost. 
In all the experiments, the Bridge test PRM failed in most cases as it 
was developed to generate sample points only at narrow corridors, 
due to which a single connected roadmap could not be constructed.

VI. Conclusion

This paper introduces a new approach of a deliberative sampling-
based motion planning which tries to find a path from source to 
destination expectantly using randomly generated collision free 

sample points and straight lines. When the straight-line path from 
source to goal is collision prone, the planner tries to find the path 
around the obstacles recursively resulting in a planning which focuses 
more on obstacle outweighing areas and spending lesser time on the 
collision free areas. Comparison with PRM variants shows that the 
proposed planner gives solutions at a faster rate.

Though OMPRSS can deliver fast planning, there are downsides 
to the algorithm. OMPRSS mostly fails in highly obstacle-dominant 
maps and to plan in such maps, higher depth of recursion is required. 
But the planner can produce lots of sample points which can lead 
to unnecessary turns and also take a large amount of time when it 
tries to find a path around an obstacle especially when the depth is 
high. In addition, OMPRSS is not designed for dynamic environments. 
The algorithm also tends to struggle in narrow corridors especially 
if the length of the corridor is large. In the experiments performed, 
OPMRPSS is not tested in high dimensional spaces and also not tested 
on real robots.

Optimistic motion planning using recursive sub-sampling is at its 
initial phase, as a result it still has some drawbacks, like the path length 
can be high and somewhat far from being optimal, finding path in 
obstacle dominant areas can take a large amount of time and having to 
choose ideal parameters for different scenarios is still done manually. 
In addition, the experiments were performed in 2D environments 
using a point robot. Implementing the OMPRSS in higher dimensional 
environments and also addressing to the drawbacks mentioned above 
are the future perspectives for improving the proposed approach.
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