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Abstract

Association rule mining is an important data mining technique used for discovering relationships among all 
data items. Membership functions have a significant impact on the outcome of the mining association rules. An 
important challenge in fuzzy association rule mining is finding an appropriate membership functions, which is 
an optimization issue. In the most relevant studies of fuzzy association rule mining, only triangle membership 
functions are considered. This study, as the first attempt, used a team of continuous action-set learning automata 
(CALA) to find both the appropriate number and positions of trapezoidal membership functions (TMFs). The 
spreads and centers of the TMFs were taken into account as parameters for the research space and a new 
approach for the establishment of a CALA team to optimize these parameters was introduced. Additionally, to 
increase the convergence speed of the proposed approach and remove bad shapes of membership functions, 
a new heuristic approach has been proposed. Experiments on two real data sets showed that the proposed 
algorithm improves the efficiency of the extracted rules by finding optimized membership functions.
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I. Introduction

By increasing the volume of data in the databases, effective 
techniques are required to manage the data in these databases. 

Data mining is the process of exploring great amounts of data from 
transactional databases to obtain interesting information [1]-[2]. Some 
important data mining techniques include clustering [3], classification 
[4], prediction [5], text mining [6], and association rules [7-10]. 
Association rule mining is used to produce meaningful relationships 
among data elements within the transaction databases [11, 12]. One 
association rule is described as 𝑋→𝑌, where 𝑋 and 𝑌 belong to itemsets 
and 𝑋 ∩ 𝑌 = ∅. This means that, if the set of items belongs to 𝑋, it most 
likely also belongs to 𝑌 [12]. The Apriori algorithm is an efficient 
algorithm in data mining [13], and uses statistical techniques to find 
association rules.

Fuzzy theory used in many fields, such as engineering applications, 
optimization algorithms, data mining, and intelligent systems [14]-
[26]. Some research papers have proposed algorithms for extracting 
fuzzy association rules [7], [27]-[35]. However, these methods only 
consider triangular membership functions that are not suitable for 

some applications. The methods using trapezoidal membership 
functions (TMFs) supposed that the shape of the trapezoidal 
membership functions for each linguistic term are well known. If so, 
some mined results may be inappropriate.

In this study, we addressed the above issue and proposed a 
novel algorithm that uses continuous action-set learning automata 
(CALA), named CALA-AFTM, to find position and the number of 
TMFs in fuzzy association rule mining at the same time. CALA is a 
mathematical approach that interacts with an environment and by 
using the environment response, generates a common reinforcement 
signal [36]. CALA has several advantages. Unlike other metaheuristic 
methods, to optimize a function, CALA only needs to build one team 
of LA which is equivalent to one chromosome in other evolutionary 
algorithms. Therefore, it requires fewer evaluation functions. It also 
needs fewer parameters to perform the optimization process, and can 
find the optimal local value. CALA applied in many applications and 
algorithms [37]-[42].

In this paper, finding positions and number of TMFs for each 
membership function has been regarded as parameters of the search 
space. To find these optimal parameters, a novel representation was 
suggested to build a CALA team. This team is divided into two parts. 
The learning automaton (LA) of the first part responsible for specifying 
the optimal number of membership functions, and the LA of the 
second part is used to optimize the positions of membership functions. 
Briefly, the main contributions of this research are as follows:
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• The proposed approach dynamically determines the position and 
number of TMFs in mining fuzzy association rule.

• A new representation is developed to construct a CALA team.

• To reduce the domain of the search space and increase the speed of 
convergence, two constraints were proposed.

• A series of experiments on two real datasets conducted to represent 
the great effectiveness of the proposed approach.

To assess the results, the proposed CALA-AFTM algorithm 
compared with fuzzy web mining algorithm (FWMA) [31] and VSLA-
AFTM algorithm. Two real datasets, CTI and NASA, were employed 
for the experiments. They were selected because they used the time 
that users spend on web pages, and since this parameter is a fuzzy 
variable, it can be considered as TMFs [43]-[47].

The rest of this document is organized as follows: In Section II, a 
review of related work is presented. Section III provides background 
information. Proposed CALA-AFTM algorithm is shown in Section 
IV. Section V provides the data set and experiment results. Finally, 
conclusion and future research is provided in Section VI.

II. Related Work

Most studies on data mining, used the predefined membership 
functions to derive fuzzy association rules. [22] described the definition 
and confidence factor of fuzzy association rule and proposed a fuzzy 
mining method to derive fuzzy association rules in databases. [20] 
introduced an algorithm named F-APACS for finding association 
rules in fuzzy data mining. They used fuzzy linguistic terms to 
manage quantitative values. This had two advantages: First, the user-
supplied threshold did not have to be determined; second, it could find 
both positive and negative association rules. [48] presented a fuzzy 
multiple-level approach to search meaningful fuzzy association rules 
from quantitative values in transaction datasets. In their approach, first 
each quantitative value was converted to a linguistic variable. Then, 
for each fuzzy variable the scalar cardinality was computed. Finally, 
the mining process was conducted to obtain fuzzy association rules.

Several fuzzy data mining algorithms were also suggested to extract 
both the proper set of membership functions. These algorithms make 
it possible to automatically adjust membership functions using meta-
heuristic approaches to extract the best fuzzy rules. [49] utilized the 
genetic algorithm and presented a mining approach to find the proper 
set of membership functions and fuzzy rules. In their approach, each 
membership function was converted into a fixed-length string. Then, 
appropriate strings were selected to build an appropriate membership 
function set.

Similarly, [50] enhanced their earlier method [49] and proposed 
a fuzzy mining approach using genetic algorithms and k-means 
clustering algorithm to find the best membership functions and 
fuzzy rules. In their method, one chromosome was assigned to 
each membership function. At first, each membership functions set 
was converted into a fixed-length string. Then, using the k-means 
clustering algorithm, each chromosome was assigned in one of the 
clusters. Finally, by assessing the fitness value, the appropriate 
membership functions were determined.

Using the genetic algorithm another mining approach proposed 
in [51] to obtain type-2 membership functions. There was a 2-tuple 
linguistic layout schema that encoded chromosome membership 
functions. In their algorithm, they used a parameter called the diversity 
factor to find suitable rules. In addition, [52] utilized the genetic 
algorithm to obtain the best membership functions and fuzzy rules. In 
their algorithm, a 2-tuple linguistic approach was proposed to reduce 
domain search space and remove improper membership functions.

Furthermore, [53] used the genetic algorithm and proposed a fuzzy 
mining approach to solve the problem of intrusion detection. [54] 
proposed GA-based approach to find concept-drift patterns and optimal 
membership functions. They employed a 2-tuple demonstration method 
to code the membership functions in chromosomes. [55] proposed 
a mining method and shown a new chromosome representation to 
identify suitable membership functions. In their approach, each 
chromosome represented membership functions sets and contained 
two parts. The first part was shown with binary strings and specified 
the activation of each membership function. The second part specified 
the parameters corresponding to the active membership functions. 
They obtained the optimal membership functions by checking 
whether the membership functions were active or not. [56] suggested 
a two-step method to dynamically identify fuzzy rules and optimal 
membership functions. In step one, they used a GA-based approach 
and 3-tuple scheme to obtain the optimal membership functions. In 
step two, they used pattern-growth method to derive fuzzy rules.

Also, [57] suggested a clustering method to automatically tune 
membership functions and extract weighted fuzzy rules. In their 
approach, each chromosome encoded by real number values and each 
population using the fitness function value was evaluated to find 
the suitable membership functions. using ant colony approach [58] 
proposed an approach to derive the optimal membership functions. In 
their method, each membership function encoded by binary strings. 
First an initial graph was created, then the ants moved in the graph 
and formed the final membership functions. [59] suggested a mining 
approach based on improved ant colony method to find appropriate 
membership functions. They developed a code representation and 
found the real global optimum solution in a continuous space by 
introducing certain operators.

[34] proposed a genetic-based approach using master-slave parallel 
processing technology to find the optimal membership functions and 
fuzzy rules. The main processor distributes fitness tasks among the 
slave processors. The fitness function was evaluated by each slave 
processor, and then the result of each slave processor sends to the 
main processor. Subsequently, the main processor used all the values 
of the fitness function to determine the best membership function. [60] 
presented a memetic based algorithm to extract optimal membership 
functions. Their algorithm for representing chromosomes the structure 
type of the membership function is considered. They proposed an 
approach to eliminate inappropriate membership functions using the 
nature of the structure in their method, thereby reducing the search 
space. In addition, their approach used structure types and extend the 
local search approach to reduce domain search space and find optimal 
membership functions.

[33] presented a GA-based approach to find appropriate 
membership functions. In their method, each membership function 
was demonstrated by three parameters. Each parameter corresponded 
to one of the vertices of the triangle, and these parameters encoded 
as chromosomes. Then, an appropriate membership functions sets 
was derived. Also, two heuristics proposed to remove improper 
membership functions and reduce domain search space. Using the 
Levenberg-Marquardt method and bacterial memetic algorithm [61] 
proposed a memetic based approach to find best fuzzy rules. In their 
approach, each bacterium represented the parameters of the fuzzy rule. 
[62] presented a mining approach using bat algorithm to find optimal 
membership functions dynamically. Their algorithm considered more 
factors in fitness function and by improving the local and global search 
extracted more precise rules.

[63] proposed a temporal mining approach, which combines the 
bee method and the fuzzy temporal mining method. Their algorithm 
obtained suitable membership functions and extracted fuzzy rules. 
[64] used a particle swarm optimization approach and proposed a 



Regular Issue

- 29 -

framework to extract optimal membership functions. In addition to 
single-objective optimization, some algorithms have also utilized 
multi-objective optimization to optimize the membership functions 
and extract association rules. [65] proposed a multi-objective 
optimization method for a classifier system using genetic algorithm. 
They used two criteria to assess precision and interpretability. Their 
method determined both the structure and membership functions on 
the basis of fuzzy rules. Using a multi-objective genetic algorithm [66] 
proposed a fuzzy mining approach to find fuzzy rules. They used three 
criteria as the goals of multi-objective optimization methods, namely, 
confidence, comprehensibility, and interestingness. [67] proposed a 
multi-objective-based approach using genetic algorithm for mining 
fuzzy association rules. In their approach, minimum support and 
minimum confidence parameters were determined automatically. 
Also, the fitness function specified the position of chromosomes and 
did not affect the genetic operator. Therefore, their method converged 
with the value of any fitness function.

To derive fuzzy web browsing patterns or association rules, many 
mining approaches have been reported. In [43] a fuzzy mining 
approach proposed to obtain sequential web patterns from the log 
records. In their algorithm, the importance of each web page was 
considered as a fuzzy variable and the importance of each web page 
transformed into fuzzy values. Using object-oriented concepts and 
fuzzy sets [29] proposed a web mining approach. In their method, each 
web page and the visited that web page were represented as a class 
and instance of that class, respectively. In their method, in the first 
step, for each web page association rules were determined and in the 
second step the relationships among all instances were determined. 
[27] proposed a GA-based approach to mine temporal association 
rules in web datasets. They showed that converting the data set to a 
graph extracted more reliable rules.

[68]-[69] introduced a generalized fuzzy web mining algorithm 
for extracting interesting association rules. Their approach used a 
fixed number of membership functions to convert quantitative web 
data to fuzzy values. [28] employed fuzzy concepts and proposed an 
algorithm to extract fuzzy rules from web usage data. In their method, 
the time duration of each web page visited by users were considered 
as a linguistic variable. [69] used a CALA algorithm and developed 
an algorithm to identify optimal membership functions which used 
in trust and distrust fuzzy recommender systems. Their method, only 
adjusted the center parameter of membership functions.

III. Preliminaries

This section describes the concepts associated with fuzzy 
association rules and CALA.

A. Fuzzy Association Rule
A fuzzy association rule is described as follows: Let I = {i1 ,i2, …, im} 

represent a set of items, and let T = {t1 ,t2 , …, tn} represent a set of 
transactions, and each transaction contains items from a set of items I.  
Thus, each transaction ti includes a subset of the items in I where 
T ⊆ I. An association rule is represented as x → y, where x ⊆ y, y ⊆ I 
and x ∩ y = Ø, x and y are a set of items known as itemsets. Intuitively, 
the x → y rule means that transactions that contain x tend to contain 
y. For example, in market basket analysis, the association rule  
{bread, milk} → {butter} tells those customers have purchased bread 
and milk and are then likely to purchase butter. The goal association 
rule mining is to obtain rules in the transaction data set such that the 
support and confidence of each rule are greater than or equal to the 
minimum support and minimum confidence. The support value for 
the rule x → y is described as follows: 

 (1)

The confidence value for the rule x → y is described as follows:

 (2)

The fuzzy support value for region Rj,k is described as follows:

 (3)

where Rj,k represents the fuzzy region for the k-th membership 
function of an item Ij,  demonstrates the fuzzy membership function 
value of region Rj,k in the i-th transaction.

B. Continuous Action-Set Learning-Automata (CALA)
LA is a mathematical tool for solving optimization problems. Each 

automaton selects an action from its set of actions and applies it 
to the environment. Then, LA uses the response received from the 
environment and decides whether the selected action is rewarded or 
penalized [38],[70]. LA has been used in many fields such as computer 
networks [71], image processing [42], speech analysis [72], signal 
processing [73], and clustering [74]. The interaction between the LA 
and the environment is shown in Fig. 1.

Random Environment

Learning Automaton

α(t) 

β(t) 

Fig. 1. The interaction between the LA and the environment.

The environment is determined by a triple <α, β, c>, where 
α = {α1, α2, …, αr} shows the input action-set, β = {β1, β2, …, βm} denotes 
the environment’s response, and c = {c1, c2, …, cr} shows the penalty 
probabilities.

CALA [36] is an optimization tool which is used to minimize a 
multivariate function. To minimize the multivariate function f: Rm → R, 
a team with m LA is required. Each LA LAi,(1 ≤ i ≤ m) in this team 
at instant n uses two internal parameters, mean 𝜇𝑖(n) and variance 
σi(n). Each LAi chooses an action αi(n) ∈ N(μi(n), φ[δi(n)]) where αi(n) 
is a normal distribution with the mean μi(n) and standard deviation 
𝜎𝑖(𝑛). Using the generated actions and the mean value of each LA, two 
inputs α(n) = (α1(n), α2(n), …, αm(n) ∈ Rm) and μ(n) = (μ1(n), μ2(n), 
…, μm(n) ∈ Rm) for computing noisy functions βα(n) and βμ(n) are 
described as βα(n) = f(α(n)) and βμ(n) = f(μ(n)). Then, each LAi 
updates μi(n) and σi(n) according (4) to (8), respectively. By repeating 
the learning process, each leaning automaton finds its optimal action 
and the final value for βμ(n) is considered as the minimum value of 
function f or cost function [36]. The CALA algorithm is represented in 
Algorithm 1, where C > 0 shows the penalty parameter; and 0 < λ < 1  
shows the learning parameter and δl ϵ R represents the lower bound 
for the variance parameter.

 (4)

 (5)

 (6)

 (7)

 (8)



International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº4

- 30 -

The pseudo-code of the CALA algorithm is shown below.

Algorithm 1: CALA
    Input:  m  // m is the number of learning automata in CALA.
    Output:  minimum value of f  // f: Rm → R is cost function.
// Initialize
1  Initialize the value of C, λ and σL /* C is a penalizing constant,  
    λ is a learning rate and CTL is a lower bound.        */
2  n ← 0   // n is time step.
3  foreach  LAi, 1 ≤ i ≤ m  do
4      Initialize the mean and variance of the Gaussian distribution        
          as μi(n) and σi(n)
5  end foreach
6  repeat
7      foreach  LAi, 1 ≤ i ≤ m  do
8            Choose an action αi(n) ∈ R using Gaussian distribution
                    N(µi(n), ∅[σi(n)]). /*µi(n) ∈ R is mean and ∅[σi(n)] ∈ R 
                   is the standard deviation.
9      end foreach
          // using the generating actions build α(n)
10      αi(n) = (α1(n), α2(n), ..., αm(n)) ∈ Rm

          // using the the mean value of each LA build µ(n)
11      µ(n) = (µ1(n), µ2(n), ..., µm(n)) ∈ Rm

          // compute two noisy functions βα(n) and βµ(n)
12      βα(n) ← f(α(n))
13      βµ(n) ← f(µ(n))
          // update parameters of each LA
14      foreach  LAi, 1 ≤ i ≤ m  do
15                 update µi(n) and σi(n) according to Eqs. (4) to (8).
16      end foreach
          // increase time step.
17      n ← n + l
18 until for all LA, µi(n) does not change noticeably and σi(n) 
       converges to σL;
19  mínimum value of f ← βµ(n)

IV. The Proposed CALA-AFTM Algorithm

In this section, the cost function and the problem formulation of the 
proposed algorithm (CALA-AFTM) are defined.

A. Cost Function
To assess the quality of trapezoidal membership functions (TMFs), 

we modified the cost function proposed in [7] as follows:

 (9)

 (10)

where fuzzy support(R) shows the large 1-itemset R in L1. Moreover, 
L1 shows the large 1-itemset. The fuzzy support(R) is computed 
according to (3). The suitability parameter is defined as [7]:

 (11)

The overlap factor for two regions Ri and Rj (i < j) is defined as the 
region covered by two regions Ri and Rj to the minimum of (wri,4-ci) 
and (cj-wlj,1). The coverage factor is defined as [7]:

 (12)

range(R1, R2, …, Rm) denotes the length of the horizontal axis, max 
(Ii) represents the maximum quantity of item Ii, and m represents the 
number of membership functions of item Ii. We changed the overlap 
factor shown in [7] to TMFs as follows:

 (13)

Let MFi, (1 ≤ i ≤ m) denotes fuzzy regions, where MFi = {R1, …, Ri}. 
Each Ri shows a trapezoidal membership function. Each Ri is defined 
as (wli,1, cli,2, cri,3, wri,4), where wli,1 is the left spread, cli,2 is the left 
center, cri,3 is the right center, and wri,4 represents the right spread of 
the fuzzy region Ri. ci shows the middle center and described in (14). 
In Fig. 2 the TMFs parameters are shown. An Example: Suppose that 
membership functions for item Ij are presented in Fig. 3.

 (14)

1

0

Ri

ciwli,1 cli,2

Le� spread Right spread

cri,3 wri,4

......

Fig. 2.   Parameters of trapezoidal membership functions.

1

Membership
functions

Value0 4 8 14 16 20 22 26 38 43 55

R1 R2 R3

Fig. 3.   Membership functions for item Ij.

In Fig. 3, item Ij has three membership functions: R1 , R2 and R3. It 
can be observed from Fig. 3 that the overlap (R1, R2) = 12, the overlap 
(R2, R3) = 16, the overlap (R1, R3) = 0.

the minimum spread (R1, R2) = min ((16-0), (20-4)) = 16, the 
minimum spread (R2, R3) = min ((38-20), (55-22)) = 18, and the 
minimum spread (R1, R3) = min ((16-0), (55-22)) = 16. So, the overlap 
factor of item Ij is computed as follows: overlap factor = (max( ,1)-
1]+max( ,1)-1+ max( ,1)-1) =0+0+0=0. In this example, the range 
(R1, R2, R3) = 55. Assume that the maximum number of items 𝐼𝑗 in 
a transaction is 55, max (Ij) = 55; then, the coverage factor of item 
Ijis computed as: coverage factor =  = 1. Therefore, the suitability 
value for the item Ij is determined as follows: suitability = 0 +1 = 1. 
Suppose that the number of transactions in the data set is six, and item 
Ij exists in five transaction data set with quantity 5, 12, 24, 30, and 46. 
Consequently, the fuzzy support (R1, R2, R3) is computed as follows:

By considering the value 0.31 for the minimum support, the large 
1-itemsets is specified as L1 = {α1, α2}. So, the cost function computed 
as .

B. Appropriate Trapezoidal Membership Functions
Each trapezoidal membership function must have two conditions, 

which are shown in (15) and (16), respectively.

 (15)

 (16)
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The first condition maintains the order of the trapezoidal centers, 
and the second condition preserves the trapezoidal shape. Fig. 4a and 
Fig. 4b shows two examples of unsuitable membership functions.

(a)

1

0

1

0 (b)

Fig. 4. Two sets of unsuitable membership functions.

By considering (15) and (16) the search space is greatly reduced. 
Additionally, (17) and (18) satisfy the complete coverage, and (19) 
satisfies the appropriate overlap.

 (17)

 (18)

 (19)

To reduce the domain of the search space and eliminate improper 
membership functions a new approach was proposed. The proposed 
approach is depicted below: Each Ri,(1 ≤ i   ≤ m) is illustrated by 
quadruple (wli,1, cli,2, cri,3, wri,4). Let P = {cr1,3, wl2,1, wr1,4, …, wli,1, wri-1,4, 
cli,2 ,cri,3, wri,4, …, wlm-1,1, clm-1,2, crm-1,3, wlm,1, wrm-1,4, clm,2} be the set of all 
TMFs parameters.

Various permutations can be considered from this set. However, 
many of these permutations will be invalid because they do not 
maintain the trapezoidal shape. For each Ri, any non-duplicate 
Cartesian product is determined as a suitable membership function 
which is shown in (20).

 (20)

By considering the Cartesian product R1 × R2 × … × Rm and removing 
non-repetitive sequences, the final suitable trapezoidal membership 
functions are determined. For example, for three TMFs, we have  
12! = 479, 001,600 sequences. While the proposed method produces 
only 24 membership functions (L3 = {v1 ,v2, …, v24}) as valid membership 
functions. Where each 𝑣𝑖 shows the points of trapezoidal membership 
functions. In Table I all 24 valid membership functions are shown.

C. Representation of the Learning Automata
In Fig. 5, the representation of learning automata for the team of 

CALA is given. Let kmax be the maximum number of fuzzy regions 
which is determined by the user. To build a team of CALA, we require 
kmax+  × kmax number of LA. The first kmax LA is used to specify 
the active TMFs. These LA are labeled as LA1, LA2, …, LAkmax. The 
actions generated by each LA of LAi, (1 ≤ i ≤ kmax) are considered as 
αi(n) ϵ N (μi(n), φ[δi(n)]), where αi(n) is a normal distribution with 
mean μi(n) and standard deviation φ[δi(n)]. Let MFi, (1 ≤ i ≤ kmax) 
consist of i fuzzy regions (i linguistic terms), where MFi = {R1, …,Ri}. 
Each MFi includes i fuzzy regions, and each fuzzy region in TMFs is 
determined by four parameters. Consequently, to represent each MFi, 
𝑖 ×4 learning automata are required. Each fuzzy region Rj, (1 ≤ j ≤ i) of 
MFi is equipped with four LA which are labeled as , (1 ≤ i ≤ kmax, 
1 ≤ j ≤ i and k ϵ {wl, cl, cr, wr}). The corresponding actions for LA  
are shown by (n) ϵ N[ (n),  (n)].

D. Defining the Action-Set and Generating Actions
In the proposed method, to increase the speed of convergence 

using the maximum value of the dataset, all values are normalized 
between 0 and 1. The action-set of LAi, (1 ≤ i ≤ kmax), is considered as 
a αi(n) ∈ N(0,1). For each automaton  the action-set is defined as  

(n) ∈ N[0,1]. Thus, to generate the actions at instant n, all LA of 
CALA, namely LAi and , choose an action αi(n) ∈ N[0,1] and  

(n) ∈ N[0,1], respectively. The actions generated at instant n are 
denoted by (21). Also, using the generated αi(n) and the mean value of 
each LA, μ(n) is determined as (22).

TABLE I. The Number of Suitable Membership Functions for the Three Trapezoidal Membership Functions
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βμ(n)

LA1

Selection threshold

Selection threshold

MF1 MF2 MFkmax

LA2 LA1,1 LA1,1 LA2,1 LA2,2LAkmax

... ... ... ...
LAkmax,1 LAkmax,kmax

(σ1, μ1)

α1

(σ2, μ2) (σ1,1, μ1,1) (σ1,1, μ1,1) (σ2,1, μ2,1) (σ2,2, μ2,2) (σkmax,1, μkmax,1) (σkmax,kmax, μkmax,kmax)(σkmax, μkmax)

α2 αkmax α1,1 α1,1 α2,1 α2,2 αkmax,1 αkmax,kmax

wl wl

wl

wl

wl wl

wl

wl

wl wl

wl

wl

wr wr

wr

wr

wr wr

wr

wr

wr wr

wr

cr

α(n) = ( α1, α2, ..., αkmax , α1,1, α1,1, α1,1, α1,1, α2,1, α2,1, ...,  α2,2, ...,  αkmax,1,  αkmax,1, ...,   αkmax,kmax)wl wr wr wrwl wlcl cl clcr

μ(n) = ( α1, α2, ..., αkmax , μ1,1, μ1,1, μ1,1, μ1,1, μ2,1, μ2,1, ...,  μ2,2, ...,  μkmax,1,  μkmax,1, ...,   μkmax,kmax) wl wr wr wrwl wlcl cl clcr

Fig. 5.   Representation of CALA in the proposed algorithm.

βα(n + 1)2,1 = 0.68

min ( βα(n + 1)2,1 , βα(n + 1)2,2, βα(n + 1)2,3, βα(n + 1)2,4)= 0.62

min ( βμ(n + 1)2,1 , βμ(n + 1)2,2, βμ(n + 1)2,3, βμ(n + 1)2,4)= 0.51

βα(n + 1)2,2 = 0.76 βα(n + 1)2,3 = 0.62 βα(n + 1)2,4 = 0.81

βα(n + 1)2,1 = 0.73 βα(n + 1)2,2 = 0.66 βα(n + 1)2,3 = 0.86 βα(n + 1)2,4 = 0.51

Selection threshold MF1 MF2
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Fig. 6.   An example of finding noisy function values in the proposed algorithm.
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 (21)

 (22)

E. Modification of the Generating Actions
After generating the actions, if the value of all action αi(n) and (n) 

chosen by each automaton is less than 0 or greater than 1, reinitialize it 
with a value between 0 and 1. Also, if the values of all chosen actions 
of αi(n) are less than 0.5, we randomly choose an action αi(n) and 
reinitialize it with a value between 0.5 and 1.

F. Finding the Active TMFs
Using the generated actions for the first kmax automaton, the 

active TMFs at instant n are determined. If i is the number of actions 
with values greater than 0.5, then the membership functions MFi and 
the corresponding actions,  are 
activated.

G. Evaluation of the Noisy Functions
After computing α(n) and μ(n), the next step is to evaluate 

the values of the noisy function to find the values of βα(n) and 
βμ(n). CALA at instant n needs to compute two functions, namely,  
βα(n) = f(α(n)) and βμ(n) = f(μ(n)). To compute the value of βα(n), 
perform the following steps:

1. Find the active TMFs (see Section F).

2. For active TMFs such as MFi, the corresponding actions, 
 are assigned in a vector, and 

their value is sorted in the ascending order.

3. Using the appropriate list for each MFi and considering the sorted 
actions, TMFs for each element of valid membership functions are 
constructed.

4. For each constructed trapezoidal membership function, the value 
of βα(n) is determined using the cost function.

5. For active membership functions such as MFi, the minimum value 
of βα(n) from among all appropriate membership functions is 
considered as the best solution at instant n.

βμ(n) is calculated similarly to βα(n), with the difference that μ(n) 
is used here.

H. Updating the Parameters of Each Learning Automaton
After determining the value of βα(n) and βμ(n), each LA of CALA 

updates its parameters, such as mean μ(n) and variance σ(n). The 
updating rule for the LA of CALA is as follows: Each LAi, (1, ≤, i, ≤ kmax) 
updates the μ(n) and σ(n). In this case, if μi(n) less than 0 or greater 
than 1, then, then its value is reinitialized with 0 and 1, respectively. 
In addition, each automaton of  updates its internal permeates of 
μ(n) and σ(n) using (4) and (5). In this case, the reinitialization of  
is not performed.

Fig. 6 shows an example of computing βα(n) and βμ(n). Assume 
that, at instant n, the action values for the two vectors α(n) and μ(n) 
are generated according to (4) and (5) which is a normal distribution 
with the mean value of 0 and standard deviation of 1. In this example, 
kmax is set at 3, so the team of CALA uses 27 learning automata. 
According to the number of actions for threshold values > 0.5, it is 

clear that MF2 can be active. According to the action values generated 
for MF2, we sort their values and then the TMFs are constructed for 
each vector by considering the appropriate membership functions 
that are specified by the four vectors v1to v4. Subsequently, the value 
of each vector is evaluated using the cost function. In this example, 
βα(n)i,j is used to represent the j-th appropriate membership function 
for MFi. By considering the minimum value obtained among four 
membership functions, the value 0.62 will be selected as βα(n). The 
procedure of computing βμ(n) is similar to βα(n), except that vector 
βμ(n) is used instead of βα(n). In this case, the value of 0.51 computed 
for βμ(n). It is noteworthy that the value of βμ(n) will be utilized as the 
reinforcement signal.

I. Pseudo-Code for the CALA-AFTM
In Algorithm 2, the pseudo-code of CALA-AFTM algorithm 

is presented. The CALA-AFTM algorithm uses four functions, as 
presented in Algorithms 3 to 6.

Algorithm 2: CALA-AFTM
    Input: Kmax      //Kmax is the maximum number of fuzzy regions.
    Output: Number and positions of optimized trapezoidal 
                   membership functions.
    // Save appropriate membership functions.
1  for  i ← 1 to Kmax do
2      Li = ValidMernbershipFunctios(i)
3  end for
    // Build CALA and initialize parameters.
4  Build a tcam of CALA with thc sizc of Kmax +  (i × Kmax) LA.
5  For each LA of CALA, initialize the parameters of C, σ, λ, σL and µ.
6  n ← 0, ActivcMF ← 0, TempAction[]
7  repeat
        // steps for computing βα(n)
        // Generate actions of α(n).
8      All LA of CALA, namely LAi and , (1 ≤ i ≤ Kmax, 1 ≤ j ≤ i and       
       k ∈ {wl, cl, cr, wr}) choose an action αi(n) ∈ N(0, 1) and
       (n) ∈ N(0, 1) respectively.
        // Check all selected actions are in the ranga of [0,1]
9      Modify Actions()
        // Count number of active membership functions.
10    ActiveMF ← FindActiveMF()
        // Copy all associated actions of ActiveMF.
11    TempAction ← Copy all actions of MFActiveMF
12    TempAction ← Sort(TempAction)
13    Call modifyActions(MFActiveMF)
     /* assume, each item of any L; correspond with one  
        appropriate membership function.                      */
14      for i ← 1 to LActiveMF .Size do
15            vi ← item(i)
16            Assign each value of TempAction to each elemcnt of vi
                 respectively.
17            TMF ← Build trapezoidal membership function using vi.
18             βα(n)ActiveMF,i ← apply objective function to the TMF.
19      end for
20      βα(n) = min ( βα(n)ActiveMF,i, 1 ≤ i ≤ LActiveMF .Size)
         // steps for computing βµ(n)
21      The steps for computing βµ(n) is similar to βα(n) with 
          difference that the steps (10) and (11) are eliminated and in 
          step (13) instead of α(n) the µ(n) is used.
         // Update parameters of LA
22      Update()
23      n ← n + l
24  until for each LA of CALA, the µ value docs not change noticeably 
      and the value σ converge to σL;
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Algorithm 3: ValidMembershipFunctions

    Input:  m                        // m is the number of fuzzy regions.
    Output: L        // L is the list of valid membership functions.
1  L = [ ]
2  R1 = {cr1,3, wr1,4}                                   // R1, is first fuzzy  region.
3  Rm = {wlm1, clm,2}                          // Rm, is last fuzzy  region.
4   if m = 1 then
5      L ← R1
6  else if m = 2  then
7      L ← R1 × R2    // The product Cartesian of R1 × R2 is assigned  
                  in L.
8  else
9      for L ← 2 to m − 1 do
10            Ri ← {wri−1,4, cli,2} × {wri−1,4, cli,2, cri,3,·wli+1,1} ×
                        {wri−1,4, cli,2, cri,3,·wli+1,1} × {cri,3,·wli+1,1}
11     end for
12     // The product Cartesian of R1 × R2, ..., Rm is assigned  in L.
13     L ← R1 × R2 × ... × Rm
14 end  if
15 return L

Algorithm 4: FindActiveMF

    Output: ActiveMF
    // Count number of active membership functions.
1  ActiveMF ← 0
2  for  i ← 1 to  Kmax do
3     if  αi(n) ≥ 0.5  then
4             ActiveMF ← ActiveMF + 1
5     end if
6  end for
7  return ActiveMF

Algorithm 5: ModifyActions

    // Check all selected actions are in the range of [0,1]
1  foreach chosen action αi(n) and (n) do
2     if its value is lcss than 0 ar greater the 1 then
3             reinitialize it with the value between [0,1].
4     end if
5  end  foreach
    // at least one action greater than 0.5 is exist.
6  if value of all chosen actions of αi(n),(1≤ i ≤ Kmax) is less than 0.5
then
7     randomly chose an action αi(n) and reinitialize it with a value
       between [0.5,1].
8  end  if

V. Experiments and Analysis of Results

A. Experimental Setting
We conducted several experiments to show the effectiveness of 

the proposed approach. All algorithms implemented in Java on a 1.80 
GHz Intel Core i7 processor with Windows 10 and 16 GB RAM. Two 
real data sets were used to assess the proposed CALA-AFTM, namely 
the DePaul CTI dataset [75] and NASA dataset [76]. These datasets 
were selected because the time parameter can be represented as TMFs 
[29],[44]. All HTTP requests in the NASA dataset from 23:59:59 PM 
on August 3, 1995 to 23:59:59 PM on August 31, 1995 were collected by 
NASA Kennedy Space Center in Florida. This dataset includes 45464 
user sessions and 863 page views. The CTI data set was collected by 
the users who visited the website during two weeks in April 2002. 

The CTI dataset after cleaning data contained 13745 sessions and 683 
pages. Part of CTI dataset is depicted in Table II. In Table II, the page 
view and the related page are shown. In Table III, for each user the 
browsing sequences are represented.

TABLE II. Page View and Corresponding Pageview IDs on the CTI Dataset

Page 
view Id Page view

0 /admissions/
1 /admissions/career.asp
2 /admissions/checklist.asp
3 /admissions/costs.asp

    
    …
   

681 /shared/404.asp?404; http://www.cs.depaul.edu/msoffice/
cltreq.asp

682 /shared/404.asp?404; http://www.cs.depaul.edu/resources/
grad_scholarships.asp

TABLE III. The Browsing Sequences on the CTI Dataset

Client ID Browsing sequence
1 (679, 2) (574, 7) (585, 5) (604, 4)
2 (387, 37) (558, 20)
3 (387, 24) (400, 125) (71, 26) (228, 34)
… …

13563 (54, 11) (358, 55)

To improve the convergence speed and generate actions between 
0 and 1, we used the maximum value of time duration stored in 
two datasets and normalized these datasets values. In the proposed 
algorithm, for CTI and NASA datasets, web page number 387 (/news/
default.asp) and web page number 588 (/shuttle/resources/orbiters/
challenger) are considered for finding their appropriate membership 
functions, respectively.

The proposed CALA-AFTM algorithm compared with fuzzy web 
mining algorithm (FWMA) [31] and VSLA-AFTM algorithm. FWMA 
is used for fuzzy web mining applications and uses a predefined 
TMFs. Additionally, we developed another algorithm called VSLA-
AFTM which uses VSLA to evaluate the results. The details of the 
implementation of VSLA-AFTM and CALA-AFTM are similar, and 
their differences are described below.

All learning automaton of CALA-AFTM used the continuous 
action-set, whereas the learning automaton of VSLA-AFTM except for 
the learning automata used in the threshold section used the discrete 
action-set. Therefore, finding the active membership functions in both 
algorithms is similar. VSLA-AFTM randomly selects an action.

Let r shows the number of actions, then the chosen action 
αi(1 ≤ i ≤ r) corresponding to the value of . CALA-AFTM algorithm 
needs to compute βα(n) and βμ(n), while the VSLA-AFTM algorithm 
only requires to compute βα(n). The final value for βμ(n) in CALA-
AFTM is regarded as the best value for the cost function, while in 
VSLA-AFTM, the final value for βα(n) is taken as the best value for 
the cost function. In VSLA-AFTM, if the value of βα(n) is smaller than 
the previous step, all chosen actions are rewarded; otherwise, they are 
penalized according to (4) and (5), respectively.

Fig. 7 shows the predefined membership functions used in the 
experiments. To assess the results, parameters such as overlap, 
suitability, fuzzy support, coverage, the average value of cost function 
(AVCF), number of large 1-sequences (L1), and execution time were 
considered. Each algorithm was run independently 30 times, and the 
mean and standard deviation of these 30 runs were considered. Table 
IV represents the parameter settings used in these algorithms.
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B. Experimental Evaluations
In this experiment, we evaluated the results obtained using the 

CALA-AFTM, VSLA-AFTM, and FWMA algorithms on the CTI and 
NASA datasets. Parameters such as the optimal number of TMFs, 
fuzzy support, overlap, coverage, suitability, and AVCF were used to 
evaluate the results. The results of Tables V and VI shows that the 
proposed CALA-AFTM for NASA and CTI datasets produced three 
and four TMFs, respectively. VSLA-AFTM for CTI and NASA datasets 
produced four and two TMFs, respectively. FWMA algorithm used a 
fixed number of TMFs. So, by checking each kmax ∈ [2,6], it is found 
that the optimal number of TMFs is three.

By comparing the results, it can be seen that CALA-AFTM algorithm 
for the parameters AVCF, fuzzy support, and overlap has produced 

better results. CALA-AFTM in the CTI datasets improved the value of 
AVCF and fuzzy support by 51% and 49%, respectively. Additionally, 
in the NASA dataset, CALA-AFTM improved the value of AVCF and 
fuzzy support by 30% and 26% respectively. The AVCF for both CTI 
and NASA datasets is depicted in Fig. 8a, b. Additionally, the results 
show that CALA-AFTM generated the minimum value of AVCF in 
the two datasets. Additionally, since the VSLA-AFTM algorithm uses 
a small number of actions, the convergence speed of VSLA-AFTM is 
faster than CALA-AFTM.

The suitability value for both CTI and NASA datasets is given in 
Fig. 9a, b. In the CTI dataset, the suitability value for FWMA and 
CALA-AFTM was almost the same. However, in the NASA dataset, 
FWMA produced better results.
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Fig. 7.   The fixed trapezoidal membership functions used in experiments. 

TABLE IV. Parameter Settings

Parameter Name Description CALA-AFTM VSLA-AFTM FWMA
c Penalty Constant 5
σL Lower bound for the variance 0.01
λ  Step size for learning 0.02
α Minimum support [0.002 − 0.01] [0.002 − 0.01] [0.002 − 0.01]
a Reward 0.1

b Penalty 0.01

r Number of actions [10, 20, 30, 40]
kmax Maximum number of MFs 6 6 6

TABLE V. Appropriate Number of TMFs, Coverage, Fuzzy Support, Suitability, Overlap, and Average Value of Cost Function Acquired From 
CALA-AFTM, VSLA-AFTM, and FWMA on the CTI Dataset

AVCFFuzzy supportSuitabilityCoverageOverlapOptimal number of TMFsAlgorithm
0.6763±0.03891.4761±0.08641.0050±0.00231.0000±0.00000.0050±0.00233.01±0.0100CALA-AFTM

1.2321±0.08730.8667±0.02891.0674±0.00451.0000±0.00000.0674±0.00454.13±0.3000VSLA-AFTM

1.5328±0.00000.6524±0.01451.0000±0.00001.0000±0.00000.0000±0.00003±0.0000    FWMA

 TABLE VI. Appropriate Number of TMFs, Coverage, Fuzzy Support, Suitability, Overlap and Average Value of Cost Function Acquired From 
CALA-AFTM, VSLA-AFTM, and FWMA on the NASA Dataset

AVCFFuzzy supportSuitabilityCoverageOverlapOptimal number of TMFsAlgorithm
1.1923±0.11320.8742±0.03671.0452±0.00531.0000±0.00000.0452±0.00534.15±0.2101CALA-AFTM

1.5652±0.17450.7566±0.01581.1476±0.00751.0000±0.00000.1476±0.00752.20±0.3420VSLA-AFTM

1.8463±0.00000.5416±0.02361.0000±0.00001.0000±0.00000.0000±0.00003±0.0000    FWMA
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The fuzzy support value for both CTI and NASA datasets is 
shown in Fig. 10a, b. The proposed CALA-AFTM produced a high 
fuzzy support. Therefore, the proposed cost function had a good 
performance. Figures 11 and 12 show the membership functions of the 
CTI and NASA datasets before and after 12,000 iterations of CALA-
AFTM and VSLA-AFTM. Based on Figs. 11 and 12, the initial shape 
of membership functions are not appropriate. After optimization, 
the proper TMFs are produced. To assess the effect of dataset sizes 
on the efficiency of CALA-AFTM algorithm, another experiment 
was performed. The results of this experiment are shown in Tables 
VII and VIII. Tables VII and VIII compare the results for the overlap, 
coverage, fuzzy support, suitability, and the AVCF obtained from 
three test algorithms. By comparing the results between CALA-
AFTM and VSLA-AFTM, we found that CALA-AFTM in the CTI and 
NASA datasets produces better results for AVCF, fuzzy support, and 
suitability parameters. VSLA-AFTM has a limited number of actions, 
so it cannot find the accurate value for the optimal parameters.

Additionally, the statistical significance of the AVCF was analyzed 
using unpaired t-test. The unpaired t-test results between CALA-
AFTM and the other two algorithms for CTI and NASA datasets are 

given in Tables VII and VIII, respectively. In this experiment, datasets 
of different sizes were tested. Tables VII and VIII show the values 
obtained for AVCF. Also, by considering the value of 0.95 for the 
confidence level, the p-value and t-value are specified. Let X and Y 
represent two algorithms respectively. In this case, X is statistically 
better than Y if the t-test (X, Y) is less than zero and the positive 
p-value is less than 0.05. The results in Tables IX and X show that 
CALA-AFTM is statistically significant than other algorithms. To 
assess the effect of number of extracted large 1-sequences and rules, 
another experiment was performed. In this experiment, the minimum 
confidence value was assumed to be 0.1 and the results were tested 
with different minimum support values. The results in Figs. 13 and 
14 show that the CALA-AFTM algorithm produces a large number of 
1-sequences and more rules than other algorithms. To assess the effect 
of association rules, another experiment was performed with different 
values for the minimum support and minimum confidence. The results 
are shown in Fig. 15a, b respectively. The result in Fig. 15a show that 
when the minimum support value is greater than 0.002, the number 
of extracted rules decreases significantly. Also, these result show 
that when the minimum support is greater than 0.004, the number of 
extracted rules will be less than 500 rules. Additionally, the result in 
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Fig. 15b show that the extracted rules reach to zero, when the value 
for the minimum support is greater than 0.05. The result in Fig. 16a, b 
shows that by increasing the confidence value the number of extracted 
rules decreases. Also, the results in Fig. 16b shows that when the value 
of minimum support is greater than 0.6 the curve becomes smoother. 
Additionally, when the value for the minimum confidence reaches to 
0.9, the number of generated rules is zero. Another experiment was 
performed to evaluate the execution time of the proposed CALA-
AFTM algorithm. In this experiment, different action sizes(r) with 
the values of 10, 20, 30, and 40 were considered for VSLA-AFTM 
algorithm. We also used values of 3 and 6 for maximum number of 
TMFs to evaluate the results.

To specify the number of actions in VSLA-AFTM, we employed 
the notation VSLA (r). The results of both CTI and NASA datasets 
are shown in Fig 17a, b and Fig18a, b. Figs. 17a, b illustrates average 
execution time increases when the maximum number of membership 
functions (kmax) was set at 3 for CTI and NASA dataset, respectively. 

The execution time in VSLA-AFTM is directly related to the number 
of actions. VSLA-AFTM with the number of actions 10 and 20 
converges faster and has a lower execution time than CALA-AFTM. 
The execution time of CALA-AFTM is less than VSLA-AFTM with the 
number of actions 30 and 40. Figs. 18a, b shows average execution 
time increases when the maximum number of membership functions 
(kmax) was set at 6 for CTI and NASA dataset, respectively. It can be 
seen that by increasing kmax and the size of the datasets the average 
execution time dramatically increases.

VI. Conclusions

In this paper a continuous action-set learning automata-based 
approach named CALA-AFTM was proposed to automatically 
determine both the optimal number and position of trapezoidal 
membership functions in order to extract fuzzy association rules 
from quantitative transactions. In this method, a new representation 

TABLE VII. Comparison of the Results of Different Sizes of Data on the CTI Dataset

Data Algorithm Overlap Coverage Suitability Fuzzy support AVCF

50K
CALA-AFTM
VSLA-AFTM

FWMA

0.0018
0.0245
0.0000

1.0000
1.0000
1.0000

1.0018
1.0245
1.0000

1.4918
0.8365
0.6509

0.6715±0.0232
1.2246±0.0652
1.5362±0.0000

100K
CALA-AFTM
VSLA-AFTM

FWMA

0.0025
0.04121
0.0000

1.0000
1.0000
1.0000

1.0025
1.04121
1.0000

1.5075
0.8547
0.6594

0.6650±0.0161
1.2182±0.0580
1.5164±0.0000

150K
CALA-AFTM
VSLA-AFTM

FWMA

0.0043
0.0386
0.0000

1.0000
1.0000
1.0000

1.0043
1.0386
1.0000

1.6156
0.8665
0.6656

0.6216±0.0672
1.1986±0.1139
1.5023±0.0000

200K
CALA-AFTM
VSLA-AFTM

FWMA

0.0039
0.0583
0.0000

1.0000
1.0000
1.0000

1.0039
1.0583
1.0000

1.5826
0.8784
0.6632

0.6343±0.0524
1.2048±0.0943
1.5075±0.0000

250K
CALA-AFTM
VSLA-AFTM

FWMA

0.0050
0.0674
0.0000

1.0000±0.0000
1.0000±0.0000
1.0000±0.0000

1.0050
1.0674
1.0000

1.4860
0.8663
0.6524

0.6763±0.0389
1.2321±0.0873
1.5328±0.0000

TABLE VIII. Comparison of the Results of Different Sizes of Data on the NASA Dataset

Data Algorithm Overlap Coverage Suitability Fuzzy support AVCF

130K
CALA-AFTM
VSLA-AFTM

FWMA

0.0165
0.0724
0.0000

1.0000
1.0000
1.0000

1.0165
1.0724
1.0000

0.8618
0.6968
0.5514

1.1794±0.0923
1.5388±0.1235
1.8132±0.0000

260K
CALA-AFTM
VSLA-AFTM

FWMA

0.0268
0.0952
0.0000

1.0000
1.0000
1.0000

1.0268
1.0952
1.0000

0.8673
0.7087
0.5478

1.1838±0.0856
1.5452±0.1361
1.8252±0.0000

390K
CALA-AFTM
VSLA-AFTM

FWMA

0.0325
0.0863
0.0000

1.0000
1.0000
1.0000

1.0325
1.0863
1.0000

0.8684
0.6974
0.5460

1.1889±0.1230
1.5576±0.1971
1.8312±0.0000

520K
CALA-AFTM
VSLA-AFTM

FWMA

0.0409
0.1153
0.0000

1.0000
1.0000
1.0000

1.0409
1. 1153
1.0000

0.8813
0.7236
0.5496

1.1810±0.0762
1.5413±0.1426
1.8193±0.0000

650K
CALA-AFTM
VSLA-AFTM

FWMA

0.0452
0.1476
0.0000

1.0000
1.0000
1.0000

1.0452
1.1476
1.0000

0.8766
0.7331
0.5416

1.1923±0.1132
1.5652±0.1745
1.8463±0.0000
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TABLE IX. The Results of T-value and P-value With Different Dataset Sizes on CTI Dataset 

Size
AVCF t-value p-value

Significant
Algorithm value Pairwise algorithms value Pairwise algorithms value

50k

CALA-AFTM 0.6715±0.0232 CALA-AFTM, VSLA-AFTM 43.7753 CALA-AFTM, VSLA-AFTM <0.0001 Extremely statistically significant

VSLA-AFTM 1.2246±0.0652 CALA-AFTM, FWMA 204.1447 CALA-AFTM, FWMA <0.0001 Extremely statistically significant

FWMA 1.5362±0.0000

100k

Algorithm value Pairwise algorithms value Pairwise algorithms value

CALA-AFTM 0.6650±0.0161 CALA-AFTM, VSLA-AFTM 50.3380 CALA-AFTM, VSLA-AFTM <0.0001 Extremely statistically significant

VSLA-AFTM 1.2182±0.0580 CALA-AFTM, FWMA 289.6466 CALA-AFTM, FWMA <0.0001 Extremely statistically significant

FWMA 1.5164±0.0000

150k 

Algorithm value Pairwise algorithms value Pairwise algorithms value

CALA-AFTM 0.6216±0.0672 CALA-AFTM, VSLA-AFTM 23.8975 CALA-AFTM, VSLA-AFTM <0.0001 Extremely statistically significant

VSLA-AFTM 1.1986±0.1139 CALA-AFTM, FWMA 71.7826 CALA-AFTM, FWMA <0.0001 Extremely statistically significant

FWMA 1.5023±0.0000

200k

Algorithm value Pairwise algorithms value Pairwise algorithms value

CALA-AFTM 0.6343±0.0524 CALA-AFTM, VSLA-AFTM 28.9649 CALA-AFTM, VSLA-AFTM <0.0001 Extremely statistically significant

VSLA-AFTM 1.2048±0.0943 CALA-AFTM, FWMA 91.2732 CALA-AFTM, FWMA <0.0001 Extremely statistically significant

FWMA 1.5075±0.0000

250k

Algorithm value Pairwise algorithms value Pairwise algorithms value

CALA-AFTM 0.6763±0.0389 CALA-AFTM, VSLA-AFTM 31.8520 CALA-AFTM, VSLA-AFTM <0.0001 Extremely statistically significant

VSLA-AFTM 1.2321±0.0873 CALA-AFTM, FWMA 120.5975 CALA-AFTM, FWMA <0.0001 Extremely statistically significant

FWMA 1.5328±0.0000

TABLE X. The Results for the P-value and T-value Parameters on NASA Dataset 

Size
AVCF t-value p-value

significant
Algorithm value Pairwise algorithms value Pairwise algorithms value

130k

CALA-AFTM 1.1794±0.0464 CALA-AFTM, VSLA-AFTM 19.0551 CALA-AFTM, VSLA-AFTM <0.0001 Extremely statistically significant

VSLA-AFTM 1.5388±0.0923 CALA-AFTM, FWMA 74.8161 CALA-AFTM, FWMA <0.0001 Extremely statistically significant

FWMA 1.8132±0.0000

260k

Algorithm value Pairwise algorithms value Pairwise algorithms value

CALA-AFTM 1.1838±0.0856 CALA-AFTM, VSLA-AFTM 12.9879 CALA-AFTM, VSLA-AFTM <0.0001 Extremely statistically significant

VSLA-AFTM 1.5452±0.1261 CALA-AFTM, FWMA 41.0408 CALA-AFTM, FWMA <0.0001 Extremely statistically significant

FWMA 1.8252±0.0000

390k 

Algorithm value Pairwise algorithms value Pairwise algorithms value

CALA-AFTM 1.1889±0.1230 CALA-AFTM, VSLA-AFTM 8.6922 CALA-AFTM, VSLA-AFTM <0.0001 Extremely statistically significant

VSLA-AFTM 1.5576±0.1971 CALA-AFTM, FWMA 28.6018 CALA-AFTM, FWMA <0.0001 Extremely statistically significant

FWMA 1.8312±0.0000

520K

Algorithm value Pairwise algorithms value Pairwise algorithms value

CALA-AFTM 1.1810±0.0762 CALA-AFTM, VSLA-AFTM 12.2057 CALA-AFTM, VSLA-AFTM <0.0001 Extremely statistically significant

VSLA-AFTM 1.5413±0.1426 CALA-AFTM, FWMA 45.8807 CALA-AFTM, FWMA <0.0001 Extremely statistically significant

FWMA 1.8193±0.0000

650k

Algorithm value Pairwise algorithms value Pairwise algorithms value

CALA-AFTM 1.1923±0.1132 CALA-AFTM, VSLA-AFTM 9.8195 CALA-AFTM, VSLA-AFTM <0.0001 Extremely statistically significant

VSLA-AFTM 1.5652±0.1745 CALA-AFTM, FWMA 31.6440 CALA-AFTM, FWMA <0.0001 Extremely statistically significant

FWMA 1.8463±0.0000
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Fig. 16. The effect of numbers of extracted rules and the minimum confidence with different values for minimum support on CTI dataset (a), NASA dataset (b).
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Fig. 15. The effect of numbers of extracted rules and the minimum support with different values for minimum confidence on CTI dataset (a), NASA dataset (b).
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Fig. 14.   The effect of number of extracted rules on CTI dataset (a), NASA dataset (b).
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Fig. 13. The effect of number of extracted large 1-sequences on CTI dataset (a), NASA dataset (b).
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is introduced to construct a team of CALA for cooperating learning 
automata. The learning automaton of this team of CALA is composed 
of two parts. The learning automata of the first part try to determine 
the proper number of membership functions, and the relative 
learning automata in the second part optimize their positions. The 
proposed algorithm has been tested on web usage data, to find 
membership functions and significant rules. Therefore, the extracted 
rules represent the browsing behavior of users and can be used to 
give some proper suggestions to web-server administrators. In the 
proposed CALA-AFTM, to reduce the domain of the search space 
and remove unsuitable membership functions, two conditions were 
applied and a novel algorithm was proposed. Also, to check the 
effectiveness of the proposed CALA-AFTM, various experiments were 
performed using two real data sets. We showed that with increasing 
the different dataset sizes, compared with other algorithms, CALA-
AFTM provides better results in terms of fuzzy support, overlap, 
number of large 1-sequences, coverage, number of rules, and cost 
function. In future work, our goal will be to develop the proposed 
method in topics such as multi-objective applications, fuzzy temporal 
rule mining, fuzzy generalized association rule mining, and 2-tuple 
fuzzy linguistic representation.
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