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Abstract

The last several years have seen the emergence of data mining and its transformation into a powerful tool that 
adds value to business and research. Data mining makes it possible to explore and find unseen connections 
between variables and facts observed in different domains, helping us to better understand reality. The 
programming methods and frameworks used to analyse data have evolved over time. Currently, the use of 
pipelining schemes is the most reliable way of analysing data and due to this, several important companies are 
currently offering this kind of services. Moreover, several frameworks compatible with different programming 
languages are available for the development of computational pipelines and many research studies have 
addressed the optimization of data processing speed. However, as this study shows, the presence of early error 
detection techniques and developer support mechanisms is very limited in these frameworks. In this context, 
this study introduces different improvements, such as the design of different types of constraints for the early 
detection of errors, the creation of functions to facilitate debugging of concrete tasks included in a pipeline, 
the invalidation of erroneous instances and/or the introduction of the burst-processing scheme. Adding these 
functionalities, we developed Big Data Pipelining for Java (BDP4J, https://github.com/sing-group/bdp4j), a 
fully functional new pipelining framework that shows the potential of these features. 
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I. Introduction and Motivation

Data mining techniques emerged as a set of tools for exploiting 
heterogeneous and often unstructured data compiled from a wide 

variety of information sources to improve decision support processes 
in different domains (healthcare, commercial decisions, stocks market 
predictions,...) [1]. Under this paradigm for addressing decision 
support, facts could not be explained with simple and isolated variables 
from the same domain, but as the combination of a large collection of 
circumstances (variables) that occur in different and heterogeneous 
domains [2]. Hence, stocks market predictions, for example, should 
be modelled by compiling information about the moods of the people 
(maybe from the news or from social networks), company results 
(profit and loss), customer satisfaction, the company image (for non-
customers), etc. These intuitive and simple ideas became more and 
more popular and originated the current revolution of big-data.

Tools and programming methods to implement the compilation and 
pre-processing of data have evolved considerably over time. Currently 
the most advanced tools to address these issues are included in big-data 
frameworks, which facilitates the processing of enormous volumes of 
information over large computer clusters. Particularly, MapReduce 

[3], [4] is a powerful and earlier programming paradigm, mainly 
popularized by Google and Hadoop Project, which simplifies the 
processing of data using hundreds of cluster nodes. Several MapReduce 
implementations are available including Apache Hadoop [5], Amazon 
Elastic MapReduce [6], Disco MapReduce [7], [8] and Spark [9], 
among others. However, MapReduce does not provide a complete 
solution to easily address all the problems of pre-processing data [3], 
[4], [10]. Particularly, the most relevant limitation of MapReduce is 
the processing model (batch) which requires all data to be (up) loaded 
into the cluster to execute its analysis. Consequently: (i) this model 
is not suitable for processing real-time streaming sources (such as 
twitter streaming data); and (ii) the harnessing of the computational 
capabilities of the cluster is clearly hampered by the need for loading 
the data. These limitations led to the introduction of other forms of 
analysing data, such as the pipelining methods [11]. These methods 
are based on dividing the data analysis process into a set of small 
and easy to implement tasks; and orchestrating their sequential/
parallel execution. After the emergence of pipelining methods, many 
pipelining frameworks were introduced [12] and several important 
companies started offering effective pipeline-based data analysis 
services such as AWS Data Pipeline [13], SnapLogic IIP [14] or Alooma 
Enterprise Data Pipeline [15]. Due to the popularity of pipeline 
technology, recent studies have addressed the issue of improving the 
speed of data processing [16]–[20]. However, there are still many areas 
for improvement of such frameworks, such as the facilities provided to 
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developers or the implementation of mechanisms capable of detecting 
errors at an early stage (constraints, datatype issues, etc.).

During the last years, Java has become popular in the development 
of enterprise software [21]. By getting in touch with IT –Information 
Technology– professionals and examining job offers, we found that 
important companies (e.g., Inditex, PSA, CaixaBank) primarily use 
Java technology in their developments. Hence the use of Java to 
define pipelines (i) enables the possibility of reusing many software 
components (especially persistence components to access their 
information); (ii) facilitates the search of qualified developers; and (iii) 
allows for the use of a wide variety of software libraries and services 
that are currently developed in Java (sometimes exclusively) [22], [23].

In this context, this work focuses specifically on the pipelining 
schemes used by enterprises and, therefore, primarily considers 
pipelining frameworks supporting the execution of Java tasks. This 
study identified some limitations of current software implementing 
pipeline functions such as: (i) the definition or checking of constraints; 
(ii) the invalidation inconsistent/error data; or (iii) the data sharing 
between tasks. Particularly, some mechanisms should be introduced 
to minimize the errors in the entire process (constraints). Additionally, 
when invalid data are found they should be marked to discard (instance 
invalidation) and should not be further processed. Finally, sharing 
data between tasks cannot be safely implemented through external 
repositories (databases, files, etc.) because some task execution 
questions should be previously addressed (i.e. how additional data 
instances -with regard to the initial ones- affect the process). To this 
end, we have developed BDP4J [24], a new pipelining framework that 
successfully address all limitations identified for analysed software. 
In addition to BDP4J software, this work also contributes different 
processing schemes for resuming or debugging the operation of 
pipelines, several constraints that should be checked in pipelines, and 
methods to implement the identified functionalities.

The rest of our work is structured as follows: Section II presents the 
state of the art in Java frameworks to define computational pipelines 
together with their limitations. Section III introduces BDP4J as a 
framework able to solve the limitations that have been identified in 
analysed software. Finally, section IV summarizes the main outcomes 
and future work. 

II. State of Art

As stated before, several pipeline-based tools for data processing 
have been successfully introduced in recent years. In order to facilitate 
the implementation of pipeline-based data solutions in enterprises 
and reutilize previously developed software components, the use of 
language-independent, and/or Java pipelining frameworks would 
probably be the best solution. In this section, we analyse a set of 
the most adequate frameworks, demonstrating their strengths and 
weaknesses, in order to facilitate the definition of (big) data studies 
by enterprises. We analyse the functionalities of some frameworks 
that are no longer available (such as COMPSs [25], [26] whose URLs 
and GitHUB repositories have been removed) or currently obsolete 
(Conan2 [27], Dockerflow [28], [29], Suro [30] and Swift [31]–[33]). 
Conan2 can only be built using Java 6 which is obsolete, Dockerflow 
has been abandoned on 2017 (see readme.md in official GitHUB 
repository), Suro can only be compiled using obsolete Gradle/JDK 
versions and Swift requires Java endorsed dirs property which is 
obsolete (see https://docs.oracle.com/javase/8/docs/technotes/guides/
standards/). Moreover, we also analyzed other available software 
including COMPI [34], Cromwell [35], Drake [36], Mallet [37], [38] 
and ML –Machine Learning– pipeline [9], [39], [40]. 

By studying the above-mentioned frameworks, we identified a 

set of relevant features that are not addressed by all of them. Table I 
summarizes the analysed features and displays a comparative analysis 
of their presence in the studied frameworks

As shown in Table I, the vast majority of analysed frameworks do not 
have any checking strategy while orchestrating tasks inside a pipeline 
(i, ii). Keeping this in mind, we estimate the utility of type constraints 
included in strong typing languages (such as Java) as an effective 
method to prevent development errors (i). Inspired by strong typing 
languages, we found type constraints appropriate to check whether 
the type of output information generated by a task is consistent with 
the input information required for the next task executed in sequence. 
The type of input information for tasks that are executed in parallel 
should be the same. We are strongly convinced of the need to add 
some constraints to establish the right execution order of tasks (ii) and 
prevent inconsistent pre-processing (for instance, stripping HTML tags 
is mandatory before tokenizing contents). Additionally, in our view, 
tasks can be classified into different categories (iii), thus contributing 
to help users in their selection (if a GUI –Graphical User Interface– 
is provided) and in the validation of their orchestration. The goal of 
some tasks in particular is to simply compute instance properties and 
not to transform the input data. Therefore, the classification of tasks 
into different categories would provide the possibility of defining 
constraints for validating tasks and their orchestration as well as to 
detect the execution errors.

Additionally, taking advantage of parallel processing schemes (iv) 
and/or distributed execution methods (v) could contribute to reduce 
the data processing time required.

The communication between tasks is often not limited to the 
output-input stream. As an example, in text mining, a dictionary is 
created after the tokenizing process, and can be used later to build 
dense vector representations. However, data sharing (vi) between 
tasks in burst-based operation implies taking additional issues into 
account. For example, in a large number of problems, the task that 
generates the shared data should complete the processing of all data 
instances belonging to the current burst before executing the task 
that consumes the shared data. Additionally, we should also select 
the fastest sharing mechanisms from those available. In this sense 
the use of language-internal mechanisms (for example, a singleton-
based object) is preferred to that of external mechanisms (a database). 
However, if only external mechanisms can be used, they should be 
carefully selected to improve performance. In this sense, distributed 
memory object caching systems (such as Memcached or Ehcache) are 
clearly better than (slower) SQL-based database servers.

Loading task orchestration (vii) from a file (XML –eXtensible 
Markup Language– or YAML –YAML Ain’t Markup Language–) 
allows for providing independence between individual task definitions 
and their orchestration. Additionally, these orchestration definition 
languages would allow customizing tasks with specific execution 
parameters and easily modifying the steps of the pipeline.

The dynamic loading of tasks (viii) from files included in a directory 
(for instance .jar files) enables the user to develop customized tasks 
and facilitates their development (because the tasks can be defined in 
separate projects).

Once a great amount of data has been compiled, it must be analysed 
by using ML strategies. Therefore, data mining developers would 
greatly appreciate the provision of facilities for the integration of ML 
frameworks (such as Weka) (ix).

The most relevant feature that could be provided from a pipeline 
framework is probably the ability to transparently resume the 
execution (x) of a particular pipeline when the application crashes. 
To implement this functionality, we should address the persistence of 
data instances after being processed by each task and check whether 
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the pipeline and data burst are the same when resuming the execution 
of the pipeline. The storage of instances should be completely 
transparent for developers and carried out as quickly as possible to 
reduce the time requirements for data analysis.

Finally, there are minor features that improve the benefit of 
using a data pipelining framework including, but not limited to, the 
existence of a GUI application to support the orchestration of tasks 
(xi), its availability as open source (xii), language agnosticism (i.e. the 
possibility of implementing tasks in any programming language) (xiii), 
or the inclusion of resource management utilities (xiv). These utilities 
(for resource management) could allow assessing the resources (RAM 
–Random Access Memory–) required for pre-processing data and/or 

their reservation in cloud environments (as COMPSs do), or simply 
limit the usage of CPU –Central Processing Unit– /RAM (as Cromwell).

As we can deduct from the current analysis, current software 
implementing pipelining strategies have important limitations that 
hamper their application to address the pre-processing of data. 
This fact suggests the need to develop a pipelining framework and 
implement all the features analysed in this study. Furthermore, we 
have also identified several interesting features that have not been 
raised by any of the analysed frameworks. Particularly, we found 
the advances in the following directions to be suitable: (xv) instance 
invalidation, (xvi) last instance notification, and (xvii) developer mode.

The instance invalidation (xv) is the capability of discarding a data 

TABLE I. Relevant Features for Pipeline Frameworks

COMPSs COMPI Conan2 Cromwell
Dockerflow 

(+Google Cloud 
Dataflow API)

Drake Mallet
ML Pipeline 

(Apache 
Spark)

Suro Swift

(i)
Type check

  

(ii)
Dependency check

    

(iii)
Different kinds of tasks



(iv)
Parallel processing

      

(v)
Distributed

   

(vi)
Data sharing

   
 

(partially)


(vii)
Loading Pipeline from 

File
 

(viii)
Dynamic loading of 

tasks
 

(ix)
Integration with ML

Cloud Machine 
Learning

Own ML 
API

Spark ML

(x)
Resume execution from 

a particular task
      

(xi)
Orchestration GUI

  

(xii)
Open Source

        

(xiii)
Language agnosticism

   

(xiv)
Resource manager

 

(xv)
Instance invalidation

(xvi)
Last instance 
notification

(xvii)
Developer mode
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instance when we detect its invalidity during the pipelining process 
(for instance when trying to download the contents of a tweet through 
its Twitter ID that has been previously removed). The invalidation of 
a data instance could be invoked in any task belonging to the pipeline 
and implies that it will not be further processed (no other task will 
be called with the instance). Despite the fact that this functionality 
seems to be very simple and intuitively required, most pipeline 
implementations do not incorporate it. 

The main advantage of pipeline processing schemes is the 
processing of streaming data instances (for instance a Twitter stream). 
As shown in Fig. 1, before the beginning of the pipelining process (b), 
a set of available data instances are buffered, in the form of burst (a) 
to be processed when computational resources are available (after 
processing the last data-instances burst). 

Streaming
Sources

(a)
Burst
Bu�er

B1
B2

Bi

(b)
Burst
Handler

Dataset
Pipelining

Process

Caption:

Execution Flow Data Flow

CSVDataset

Next
Burst

Fig. 1. General burst operation overview.

As result of the pipelining process, a dataset is generated (or grown) 
and stored in disk or main memory. In a task that saves the data to 
disk (or any other resource dependent task), the identification of the 
last data instance of a burst (xvi) would help to safely free resources 
(closing/flushing opened files, database connections, etc.). As a 
particular example, closing dataset files would make them available to 
be used for further analysis until the execution of the dataset saving 
task for the next burst.

As Fig. 1 shows, a framework would also provide facilities to store 
datasets (disk or memory) and let them grow both in number of rows 
and columns after processing each burst.

Finally, developers should be able to quickly test the proper 
operation of their tasks by using a collection of real data. However, 
to debug a certain task, all previous tasks defined in the orchestration 
should be executed before debugging the target task. In such a situation, 
providing mechanisms to achieve more efficiency when testing a new 
task adds a great value to pipelining frameworks (xvii). In particular, 
if the orchestration and input instances remain invariable for all test 
executions, the state of instances used as input for a task that is being 
debugged could be saved to disk (serialized) the first time they are 
computed, in order to reuse them for later executions.

Given the list of the most adequate features that a pipelining 
framework should provide, and starting from the simple pipelining 
support included in Mallet, we designed BDP4J, a new pipelining 
framework implementing most of the features that have been previously 
shown. Section III identifies the details of the implementation and use 
of the framework.

III. Introducing BDP4J

After analysing the pipelining frameworks, which provided 
a wide list of indispensable features for improving pipelining 
in enterprises, we developed BDP4J. BDP4J was inspired by the 
pipelining architecture included in Mallet software. Using this pipeline 
architecture as a base (and specifically the classes Instance, Pipe and 
SerialPipes), we transformed the name of the classes to accommodate 
them to the Java Code Conventions [41] and other non-explicit code 
rules (i.e. the name of interfaces and abstract classes that usually start 
with the prefix “Abstract” or “Default”). Specifically, Pipe, SerialPipes 
and Instance classes from the Mallet framework were transformed 
into AbstractPipe, SerialPipes and Instance BDP4J classes respectively. 
Using this architecture as a starting point, we implemented most 
features compiled in the previous section, achieving a product that is 
different from the Mallet pipeline implementation. 

Similar to Mallet, BDP4J uses the Instance class (see Fig. 2) to 
represent a specific case (including raw data, properties, and the 
target solution) and solve a certain problem. As an example, in 
order to define an e-mail classifier, an Instance would represent the 
information of a specific message. The raw message contents would 
be included in source/data attributes; interesting features extracted 
through pipelining process would then be stored in props attribute, 
and the class of the message would be represented in target. Moreover, 
data attribute would be transformed through the pipelining process 
(from raw data to token list, feature vector…).

BDP4J tasks are represented as simple pipes (by implementing 
the Pipe interface or, even better, by extending AbstractPipe class). 
Moreover, the orchestration of pipes is defined through classes 
SerialPipes and ParallelPipes. These details together with the basic 
design of BDP4J are shown in Fig. 2. To facilitate readability, only 
relevant methods/attributes have been included in the classes shown 
in the diagram. Please refer to the Javadoc documentation (generated 
through the build process) to obtain a complete list.

As we can deduct from Fig. 2, BDP4J Pipe interface was created to 
allow developers to implement their tasks by extending, if necessary, 
from other classes. However, the use of AbstractPipe abstract class 
provides the implementation of all methods of Pipe interface, except 
for pipe (which stands for the specific work that should be done), to 
simplify the development of tasks. SerialPipes class keeps the same 
functionality that was originally provided in Mallet software while 
slightly changing the instance processing flow. Finally, BDP4J adds the 
support for parallel tasks execution through the class ParallelPipes. 
Configurator class is used for loading pipelines from files and is 
explained below.

Each pipe or task implemented in BDP4J must implement the 
methods getInputType and getOutputType to indicate the type of data 
included in the Instance before and after executing it. This information 
is used by SerialPipes and ParallelPipes to check data types in the 
orchestration (feature i). Additionally, these types should dynamically 
be checked with the Instance after executing the task. 

When creating a task by extending the AbstractPipe class, the 
developer must call on its constructor (through super) to specify 
“Always Before” (alwaysBeforeDeps attribute) and “Not After” 
(notAfterDeps attribute) task execution constraints (feature ii). “Always 
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Before” constraints indicate which tasks must be executed before the 
current one (for instance, the identification of the text language should 
probably be done before expanding abbreviations and/or slang terms to 
select the appropriate dictionary). Moreover, “Not After” dependencies 
indicate the tasks that cannot be executed after the execution of the 
current one (for instance, the recognition of acronyms should not 
be run after changing text to lowercase or removing punctuation 
marks). checkDependencies and getErrorMessage methods included 
in AbstractPipe class allow checking these constraints and obtaining 
information about the specific errors found.

BDP4J has divided the tasks in the following categories (feature 
iii): PropertyComputingPipe used only for computing instance 
properties; TeePipe used for storing instances when needed by 
user; TargetAssigningPipe used for assigning the real target class 
on classification; and TransformationPipe, which transforms the 
instance data. These task categories allow including additional 
constraints on tasks. Hence, the input and output data types of a task 
(getInputType and getOutputType) should be the same for all tasks 
except for TransformationPipe, which could be different. Moreover, 
the number of instance properties should be increased after an 
instance is processed through a PropertyComputingPipe, and the 
target attribute of an Instance should not be null after the execution 
of a TargetAssigningPipe. Finally, the number of TargetAssigningPipe 
included in a pipeline must be zero or one. In the future, the 
classification of tasks could be used to automatically group the 
functionalities in GUI pipeline management tools.

Currently, the support of parallel processing (feature iv) schemes 
in BDP4J is limited to the use of ParallelPipes task orchestration 
class. When several tasks are marked to be executed in parallel, 
they are performed in separate threads. Although we believe that 
we can take advantage of load balancing clustering schemes when 
multiple computers are available (feature v), its support has not been 
implemented yet and should be carefully designed. 

Moreover, in order to adequately support burst data processing and 
data sharing (feature vi), the original Mallet processing method for 

data instances was changed. Mallet instance processing model is based 
on processing one instance through all tasks included in the pipeline. 
However sometimes we need all instances included in a data burst to 
be processed by a certain task in order to fill the shared information 
(for instance, when a text mining task builds a dictionary that will 
be used by other tasks to create a dense vector representation or a 
standard CSV –Comma-Separated Values– file). To cope with these 
situations, BDP4J executes each task on all available instances of the 
burst before starting the execution of the next task. This behaviour was 
implemented in pipeAll methods of orchestration schemes (SerialPipes 
and ParallelPipes).

BDP4J is able to load pipeline orchestration from XML files (feature 
vii). This functionality is connected with the dynamic loading of 
tasks from *.jar files (feature viii) and cannot be used independently. 
In order to implement the first functionality, we took advantage of 
Document Object Model (DOM) Application Programming Interface 
(API). Configurator class (see Fig. 2) provides the functionality of 
loading the pipeline configuration using DOM API. The XML file 
should contain the configuration/general/pluginsFolder parameter, 
which allows defining the directory where the *.jar files containing 
task definitions are located. The dynamic loading of tasks from jar 
files was implemented through the default Java service-provider 
loading facility (java.util.ServiceLoader<S> included in Java 8). Using 
this facility, BDP4J searches for Pipe implementations included in the 
location specified by pluginsFolder parameter. To facilitate the use 
of standard Java service loader by avoiding the manual creation of 
file META-INF/services/org.bdp4j.pipe.Pipe, all classes implementing 
tasks can be annotated with the @AutoService(Pipe.class) [42]. Fig. 3 
shows how the orchestration of a pipeline can be easily represented 
in XML format (Fig. 3a) and loaded for its execution using BDP4J 
framework (Fig. 3b).

Fig. 2.  Main classes comprising BDP4J.
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<?xml version=”1.0”?>
<configuration>
 <!-- General properties -->
 <general>
   <samplesFolder>./samples</samplesFolder>
   <pluginsFolder>./plugins</pluginsFolder>
   <outputDir>./output</outputDir>
   <tempDir>./temp</tempDir>
 </general>
 <!-- the pipeline orchestration -->
 <pipeline resumable=”yes” debug=”no”>
  <serialPipes>
    <pipe>
     <name>File2TargetAssignPipe</name>
    </pipe>
    <pipe>
     <name>File2StringPipe</name>
    </pipe>
    <pipe>
     <name>String2TokenArray</name>
    </pipe>
    <pipe>
     <name>TokenArray2FeatureVector</name>
    </pipe>
    <pipe>
     <name>
        GenerateFeatureVectorOutputPipe
     </name>
     <params>
      <pipeParameter>
         <name>outFile</name>
         <value>out.csv</value>
      </pipeParameter>
     </params>
    </pipe>
  </serialPipes>
 </pipeline>
</configuration>

(a)

/* Load XML configuration */
Configurator cfg =
  Configurator.getInstance(“configuration.xml”);

/*Load tasks from jar files*/
PipeProvider pipeProvider = 
new PipeProvider(
     cfg.getProp(Configurator.PLUGINS_FOLDER)
   );
HashMap<String, PipeInfo> pipes =
   pipeProvider.getPipes();

/*Load the pipeline orchestration*/
Pipe p =
  Configurator.configurePipeline(pipes);
logger.info(“orchest:” + p.toString() + “\n”);

/*Check orchestration dependencyes*/
if (!p.checkDependencies()) {
       logger.fatal(
           “[CHECK DEPENDENCIES] “+
            AbstractPipe.getErrorMessage()
       );
       System.exit(-1);
}

/*Load and pipe the current burst*/
ArrayList<Instance> burst = …
p.pipeAll(burst);

(b)

Fig. 3. XML orchestrating facilities included in BDP4J: a) XML structure used 
to define task orchestration (configuration.xml) and b) BDP4J source to load 
task orchestration.

The source code included in Fig. 3b (configurePipeline method) 
makes it possible to automatically instantiate as many SerialPipes 
and ParallelPipes as necessary to load the orchestration and configure 
tasks (because task configuration parameters are also included in 
XML, Fig. 3a).

A typical BDP4J pre-processing pipeline would contain one or more 
TeePipes. As stated before, the mission of TeePipes is to bring together 
the information of instances to generate datasets in memory (through 
using Dataset class shown in Fig. 4a) or in disk (through using 
CSVDatasetWriter class) and continue the execution of the rest of the 
pipeline. This mission fits with the dataset generation issue shown in 
Fig. 1. One of the most important features added to CSVDatasetWriter 
and Dataset classes is the possibility of dynamically growing the 
number of columns and rows. After processing some data bursts, they 
can be analysed by using external ML APIs (feature ix). Due to the 
popularity of Weka ML library, we have implemented a feature to 
transform a BDP4J dataset stored in memory (Dataset class) to Weka 
dataset (weka.core.Instances) through the getWekaDataset method. 
Additionally, the CSVDatasetReader class implements the loading of 
a CSV file to instantiate a BDP4J Dataset (Fig. 4b).

(a)

CSVDatasetReader csvdr = 
 new CSVDatasetReader(“out.csv”);
Dataset ds =  csvdr.loadFile();
Instances wekaDS = 
 ds.getWekaDataset();
        
wekaDS.deleteStringAttributes();
wekaDS.setClassIndex(
 wekaDS.numAttributes() - 1
);
int num = wekaDS.numInstances();
int start = (num * 80) / 100;
int end = num - start;

Instances trn = 
 new Instances(wekaDS, 0, start);
Instances tst = 
 new Instances(wekaDS, start, end);

try {
 Evaluation rfEval = new Evaluation(tst);
 RandomForest rf = new RandomForest();
 rf.buildClassifier(trn);
 rfEval.evaluateModel(rf, tst);
} catch (Exception ex) {}

(b)
Fig. 4. Weka integration facilities included in BDP4J: a) BDP4J and Weka 
interaction architecture and b) BDP4J and Weka interaction snippet.
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As we can see from Fig. 4b, source lines highlighted in bold 
(first three sentences) allow the loading of Weka dataset, while the 
remaining lines show how we can take advantage of Weka API to run 
a Random Forest [43] classifier.

Furthermore, following the same orchestration behaviour 
of SerialPipes and ParallelPipes classes, we implemented 
ResumableSerialPipes and ResumableParallelPipes classes respectively. 
These classes support the resumption of the execution of a pipeline 
(feature x) that has been stopped for any reason (an application 
failure, accidental power down of computer...). The inner operation 
of the mentioned classes includes saving the state of instances after 
executing each task to allow resuming the pipeline from the last 
successfully executed task. One of the most relevant challenges to 
implement the resuming functionality was its compatibility with 
the data sharing between tasks. To this end, pipes can be marked by 
implementing SharedDataConsumer and/or SharedDataProducer 
interfaces. These interfaces include the methods readFromDisk and 
writeToDisk, respectively, to allow the programmer defining how 
to save and read the shared information to make it available when 
resuming the execution of a pipeline. These details are included in 
Fig. 5.

Fig. 5. BDP4J architecture details to support resuming function.

A resumable pipeline could be easily instantiated by defining 
the orchestration in source code (Fig. 4b) and replacing the use 
of SerialPipes and ParallelPipes by ResumableSerialPipes and 
ResumableParallelPipes, respectively. Additionally, the resuming 
behavior can be achieved with an XML file (Fig. 4a) using resumable 
and debug modifiers included in pipeline tag. When resumable is set to 
“yes” (“true” or “1”), the pipeline can be resumed. The debug modifier 
included in pipeline could be set to “no” (“false” or “0”) only if the last 
complete result of a task remains stored on disk, or “yes” if all partial 
results are kept on disk (useful to manually drop steps and repeat tasks 
and only applicable to ResumableSerialPipes).

Finally a GUI application (feature xi) to orchestrate tasks was 
created using JGraphX [44] framework. The GUI is launched when 
using “gui” as the first parameter for the execution of the main class 
org.bdp4j.Main and allows visually defining, executing and saving a 
pipeline orchestration.

BDP4J is released as open source (feature xii). Its tasks can 
only be developed using Java technology (non-Java programming 
languages are not supported) (feature xiii). Moreover, BDP4J does 
not provide resource management utilities (feature xiv) and does not 
allow optimising the use of resources. In this sense, the limitation 
of RAM could be easily done by using the -Xmx parameter of Java 
Virtual Machine (JVM) and the number of cores via the GNU/Linux 
taskset utility. Therefore, the development of additional resource 
management functionalities (mainly computing RAM requirements) 
will be addressed as future works.

The instance invalidation (feature xv) was implemented by adding 
the invalidate method in the Instance class (which can be called from 
task definition) and the management of invalidated instances in the 
BDP4J orchestration subsystem (SerialPipes/ResumableSerialPipes 
and ParallelPipes/ResumableParallelPipes). Methods pipe and pipeAll 

implemented in the orchestration classes skip the processing of 
invalidated instances. 

Additionally, the detection of the last data instance (feature 
xvi) is provided in the AbstractPipe class by providing a default 
implementation for isLast method. This implementation marks an 
instance i as last when the instance is processed alone through a call 
to pipe method or when i is the last valid instance of a collection of 
data (data burst) that is processed by calling the pipeAll method.

Given the support of resuming a pipeline from a certain position, 
we find it appropriate to take advantage of this feature in order to 
implement the debugging mode function (feature xvii). The debugging 
mode function allows developers of a task to avoid the processing of all 
previous required tasks (when they were previously executed) in order 
to reduce the time required to test whether the new task is operating 
properly. The code snippets (XML and Java) included in Fig. 6 provide 
a detailed description of how to take advantage of this functionality 
when the orchestration is defined in XML (Fig. 6a) or in Java (Fig. 6b). 
We highlighted in bold the instructions used to select the task that is 
being debugged.

As we can see from Fig. 6, the orchestrations defined in both 
columns are exactly the same. Hence, a task can be marked for debug 
when the orchestration is defined in XML or in Java, providing great 
flexibility for developers. In the case of using the XML to define the 
orchestration, the task (pipe) that is being debugged should include 
a debug tag, and the entire pipeline should be executed in resumable 
mode (resumable=”yes”). Additionally, for source code orchestrations, 
the debug mode implies the use of ResumableSerialPipes and 
ResumableParallelPipes classes.

As shown in this section, BDP4J covers important limitations found 
in current pipelining software. The implemented features provide 
flexibility to developers, allowing them to analyse and pre-process 
data obtained from different sources in order to solve different kinds 
of problems. Subsection A shows a case study of our framework to 
address the pre-processing and classification of SMS –Short Message 
Service– spam messages.

A. Using BDP4J
In order to show the simplicity of using the BDP4J framework, 

we developed a case study to apply different text pre-processing 
techniques over SMS spam messages included in the SMS Spam 
Corpus v.0.1 [45]. The project has been publicly shared through 
GitHub (https://github.com/sing-group/bdp4j_sample). This project 
contains a collection of eight text pre-processing tasks (some of them 
trivial) implemented in the Java package org.bdp4j.sample.pipe.impl. 
The implemented pipes (sorted by the right execution order) make it 
possible to: create a property with the size of the text file (FileSizePipe); 
load the target attribute from the file (File2TargetAssigningPipe); load 
SMS text from file (File2StringPipe); create a property with the length 
of the SMS text (MeasureLengthPipe); add all information generated 
up to this step to a CSV file (GenerateStringOutputPipe); tokenize the 
text of each instance (String2TokenArray); create a feature vector for 
each instance (TokenArray2FeatureVector); and add all information to 
a CSV File (GenerateFeatureVectorOutputPipe).

The class org.bdp4j.sample.Main (main) creates instances from the 
files included in the samples directory. In detail during this process, 
data and source attributes are initialized with an instance of java.
io.File representing the disk file containing SMS data. Instances are 
divided into three groups to simulate a burst operation. Moreover, this 
class also orchestrates a pipeline with all tasks defined in the project 
and use it to process the three bursts. After processing the instances, 
a NaïveBayes [46] classifier from Weka is executed over the generated 
data and the confusion matrix results (true positives, true negatives, 
false positives, and false negatives) are printed via system standard 
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output. Additionally, two CSV files are generated on a disk (one per 
each tee pipe called output.csv and output2.csv) that contains the pre-
processing results.

As can be easily found in the source code, two 
PropertyComputingPipe (FileSizePipe and MeasureLengthPipe), 
one TargetAssigningPipe (File2TargetAssignPipe), two TeePipe 
(GenerateFeatureVectorOutputPipe and GenerateStringOutputPipe) 
and three TransformationPipe (File2StringPipe, String2TokenArray, 
TokenArray2FeatureVector) tasks are provided as examples. Moreover, 
TokenArray2FeatureVector and GenerateFeatureVectorOutputPipe 
share a dictionary (org.bdp4j.sample.types.Dictionary) and 
hence, they implement the interfaces SharedDataProducer and 
SharedDataConsumer respectively to allow resuming and debugging 
functions.

Since Main class is provided and task implementations have 
been annotated with @AutoService annotation, the example could 
be executed by launching the generated jar file or by generating an 
alternative orchestration with BDP4J GUI. 

The creation of the bdp4j_sample project provides a simple form 
for showing the use of the BDP4J pipelining framework to other 
researchers and developers. During the last months, we have been 
using BDP4J for pre-processing data in the research activities of our 
research group. This work has given us some conclusions for usage, 
summarized in subsection B.

B. Performance Evaluation
We carried out a performance evaluation of BDP4J and other 

available frameworks introduced in Section II. In order to accurately 
evaluate the performance of the analysed frameworks we use void 
tasks (those doing nothing). Fig. 7 represents the benchmarking 
protocol designed for the evaluation of the frameworks.

(i) single task

(ii) two task in sequence

(iii) two task in parallel

(a)
x1k

x100k

1

1

1

2

2

(b)

(a)
x1k

x100k
(b)

(a)
x1k

x100k
(b)

Next
Burst

Fig. 7. Benchmarking design.

As shown in Fig. 7 our experimental protocol comprises three simple 
computational pipelines: (i) a pipeline composed exactly by one task, 
(ii) a pipeline that comprises the execution of two tasks in sequence 
and (iii) a pipeline that executes two parallel tasks. These pipelines 

<?xml version=”1.0”?>
<configuration>
 <!-- General properties -->
 <general>
  <samplesFolder>./samples</samplesFolder>
  <pluginsFolder>./plugins</pluginsFolder>
  <outputDir>./output</outputDir>
  <tempDir>./temp</tempDir>
 </general>
 <!-- the pipeline orchestration -->
 <pipeline resumable=”yes” debug=”yes”>
  <serialPipes>
   <pipe>
    <name>File2TargetAssignPipe</name>
   </pipe>
   <pipe>
    <name>File2StringPipe</name>
   </pipe>
   <pipe>
    <name>String2TokenArray</name>
    <debug/>
   </pipe>
   <pipe>
    <name>
      TokenArray2FeatureVector
    </name>
   </pipe>
   <pipe>
    <name>
      GenerateFeatureVectorOutputPipe
    </name>
    <params>
     <pipeParameter>
      <name>outFile</name>
      <value>out.csv</value>
     </pipeParameter>
    </params>
   </pipe>
  </serialPipes>
 </pipeline>
</configuration>

(a)

/* Debug String2TokenArray pipe */
String2TokenArray s2ta =  
     new String2TokenArray();
s2ta.setDebugging(true);
        
/* Create the processing pipe */
AbstractPipe p =  new ResumableSerialPipes(
  new AbstractPipe[]{
   new File2TargetAssignPipe(),
   new File2StringPipe(),
   s2ta,
   new TokenArray2FeatureVector(),
   new GenerateFeatureVectorOutputPipe()
  }
 );

logger.info(“orchest:” + p.toString() + “\n”);

/*Check orchestration dependencies*/
if (!p.checkDependencies()) {
  logger.fatal(
   “[CHECK DEPENDENCIES] “+
   AbstractPipe.getErrorMessage()
  );
  System.exit(-1);
}

/*Load and pipe the current burst*/
ArrayList<Instance> burst = …
p.pipeAll(burst);

(b)

Fig. 6. BDP4J debug mode snippet: a) Enabling the debugging for a task in a 
XML orchestration and b) Enabling the debugging for a task in source code.



International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº4

- 222 -

were executed 1,000 and 100,000 times in order to compare the impact 
of the checks made during the execution in the performance of the 
framework. The source code used for experimentation is available 
online [47]. The benchmark was executed in a computer with 64 
gigabytes of RAM and an Intel i7-6700 processor with four cores (eight 
threads). Table II shows the evaluation results. 

TABLE II. Performance Comparison of Analyzed Frameworks

Pipeline
(i) (i) (iii)

x 1k
COMPI 2s, 554ms 3s, 266ms 3s, 149ms

Cromwell 50s, 076ms 1m, 24s, 113ms 1m, 28s, 917s
Drake 31s, 133ms 30s, 946ms 95s 90ms
Mallet 1.05ms 1.09ms unsupported

MLPipeline 2s, 227ms 2s, 321ms unsupported
BDP4J 1.03 ms 4.42ms 56.34ms
x 100k
COMPI 48s 928ms 1m 37s 83ms 1m, 33s, 436ms

Cromwell unsupported unsupported unsupported
Drake 51m, 53s 51m, 34s 2h, 38m 29s
Mallet 10 ms 9 ms unsupported

MLPipeline 2s, 475ms 2s, 494ms unsupported
BDP4J 12.93 ms 15.24 ms 801.77 ms

As shown in Table II, Drake (which is written in R but allows 
executing tasks written in Java) fairly achieves the worst performance 
while Mallet is the most efficient framework. However, the 
performances achieved in Mallet and BDP4J when executing pipelines 
(i) and (ii) are very similar (a few milliseconds). The increase of time 
required by BDP4J for the execution of pipelines containing tasks 
executed in parallel is caused by the need to clone the instances 
in order to alleviate the programmer of the issues arising from 
concurrent programming. The impact on performance of this decision 
is significative, however the time required for the development of 
tasks is considerably reduced. Additionally, Cromwell has some issues 
with memory when processing large pipelines (repeating 100000 times 
the pipeline is not possible with 64GB of RAM). Keeping in mind the 
benefits of our proposal, we really believe BDP4J is a reliable solution 
for analysing data using Java technology. 

C. Learned Lessons and Main Outcomes
Our use of BDP4J for the development and execution of different 

pre-processing tasks over the last several months have led us to 
important findings. One of the most important findings is the great 
amount of human error that occurs during the development of 
applications. A significant number of these errors could be detected 
by using constraints, type checks, and dependencies implemented by 
BDP4J. People often wrongly think that constraints, type checks, and 
dependencies included in different programming models are merely 
time-consuming issues that negatively affect development because 
any IT professional can develop software with no errors. However, our 
experience has shown us that the existence of these elements really 
helps developers to avoid software errors and cause a low impact on 
the time required for defining pre-processing tasks.

Additionally, the use of debug mode has significantly sped up the 
development and debugging of tasks, given that the whole execution 
process is executed only once. In fact, when a pipeline is executed a 
second time, the task marked to be debugged will be the first executed. 
As long as the tasks that will be debugged can be quickly defined, the 
feature is very useful for developers.

Moreover, we have developed an extremely simple mechanism 
for defining tasks. When extending AbstractPipe class, only the 

methods getInputType, getOutputType and pipe (execute the task) 
should be defined. The BDP4J framework adds many sources to check 
constraints, types, and operation with no effort on the part of the 
developer. Most developers who tried BDP4J really appreciate the 
effort to minimize the source they should write for developing tasks. 

Finally, we would like to highlight the use of Apache Maven as a 
software management and building tool that facilitates compilation, 
packaging, and execution tasks. This finding, together with those 
previous mentioned, allow us to understand that we are working in 
the right direction to define the BDP4J framework. The next section 
provides detailed conclusions and future work to improve this 
framework.

IV. Conclusions and Future Work

During the last years, the exploitation of data has been increasingly 
used as a method to solve many problems and understand the inner 
details of real life. The main challenge to address in data exploitation is 
the existence of effective programming models able to take advantage 
of available data. In the current context, popular developing paradigms 
such as MapReduce are being abandoned while pipelining schemes are 
becoming more and more popular. Our intention in this work was to 
design and provide new and interesting functionalities for pipelining 
software. Particularly, pipelining frameworks should provide simple 
ways for defining tasks and incorporate mechanisms for early 
detecting errors.

We designed functionalities to avoid the processing limitations 
found in MapReduce schemes and other pipelining frameworks. 
Particularly, we introduce the burst-processing scheme that can be 
easily applied to the pre-processing of streaming sources of data (such 
as Twitter streams), while still allowing for the old batch processing 
schemes. Burst processing combined with the detection of the last data 
instance in any task (for flushing/closing files) makes it possible to 
analyse data after the execution of some bursts, thus avoiding the need 
for processing all input data before they are analysed. 

Finally, it should be noted that a great amount of technology and 
new processing techniques have been made available to data mining 
developers. As main contributions of this work (processing techniques), 
we would highlight the number of techniques used to detect errors 
(constraints, type checks and task dependencies), the resuming (and 
debug) capabilities of pipelines, and the instance invalidation (never 
seen before). These technologies can also be applied to improve 
other frameworks (especially those developed in other programming 
languages). 

Future work comprises the design of execution schemes to distribute 
computational requirements in a cluster of computers. To this end, we 
believe that a careful examination of available load balancing schemes 
would provide effective load distribution mechanisms to implement 
this functionality. Additionally, this feature will be complemented 
with the assessment of the amount of RAM necessary to execute a 
pipeline over a burst with certain size (resource management).
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