
International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº4

- 214 -

Keywords

Burst Processing, Data
Pre-processing, Java,
Pipeline Frameworks.

Abstract

The last several years have seen the emergence of data mining and its transformation into a powerful tool that
adds value to business and research. Data mining makes it possible to explore and find unseen connections
between variables and facts observed in different domains, helping us to better understand reality. The
programming methods and frameworks used to analyse data have evolved over time. Currently, the use of
pipelining schemes is the most reliable way of analysing data and due to this, several important companies are
currently offering this kind of services. Moreover, several frameworks compatible with different programming
languages are available for the development of computational pipelines and many research studies have
addressed the optimization of data processing speed. However, as this study shows, the presence of early error
detection techniques and developer support mechanisms is very limited in these frameworks. In this context,
this study introduces different improvements, such as the design of different types of constraints for the early
detection of errors, the creation of functions to facilitate debugging of concrete tasks included in a pipeline,
the invalidation of erroneous instances and/or the introduction of the burst-processing scheme. Adding these
functionalities, we developed Big Data Pipelining for Java (BDP4J, https://github.com/sing-group/bdp4j), a
fully functional new pipelining framework that shows the potential of these features.

DOI: 10.9781/ijimai.2021.10.004

* Corresponding author.

E-mail address: moncho.mendez@uvigo.es

Improving Pipelining Tools for Pre-processing Data
María Novo-Lourés 1,2,3, Yeray Lage1, Reyes Pavón1,2,3, Rosalía Laza1,2,3, David Ruano-Ordás1,2,3, José Ramón
Méndez1,2,3*

1 Department of Computer Science, University of Vigo, ESEI - Escuela Superior de Ingeniería Informática, Edificio Politécnico,
Campus Universitario As Lagoas s/n, 32004 Ourense (Spain)
2 CINBIO, University of Vigo, Research Group SI4, Department of Computer Science, 32004 Ourense
(Spain)
3 SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO (Spain)

Received 7 July 2020 | Accepted 22 July 2021 | Published 21 October 2021

I. Introduction and Motivation

Data mining techniques emerged as a set of tools for exploiting
heterogeneous and often unstructured data compiled from a wide

variety of information sources to improve decision support processes
in different domains (healthcare, commercial decisions, stocks market
predictions,...) [1]. Under this paradigm for addressing decision
support, facts could not be explained with simple and isolated variables
from the same domain, but as the combination of a large collection of
circumstances (variables) that occur in different and heterogeneous
domains [2]. Hence, stocks market predictions, for example, should
be modelled by compiling information about the moods of the people
(maybe from the news or from social networks), company results
(profit and loss), customer satisfaction, the company image (for non-
customers), etc. These intuitive and simple ideas became more and
more popular and originated the current revolution of big-data.

Tools and programming methods to implement the compilation and
pre-processing of data have evolved considerably over time. Currently
the most advanced tools to address these issues are included in big-data
frameworks, which facilitates the processing of enormous volumes of
information over large computer clusters. Particularly, MapReduce

[3], [4] is a powerful and earlier programming paradigm, mainly
popularized by Google and Hadoop Project, which simplifies the
processing of data using hundreds of cluster nodes. Several MapReduce
implementations are available including Apache Hadoop [5], Amazon
Elastic MapReduce [6], Disco MapReduce [7], [8] and Spark [9],
among others. However, MapReduce does not provide a complete
solution to easily address all the problems of pre-processing data [3],
[4], [10]. Particularly, the most relevant limitation of MapReduce is
the processing model (batch) which requires all data to be (up) loaded
into the cluster to execute its analysis. Consequently: (i) this model
is not suitable for processing real-time streaming sources (such as
twitter streaming data); and (ii) the harnessing of the computational
capabilities of the cluster is clearly hampered by the need for loading
the data. These limitations led to the introduction of other forms of
analysing data, such as the pipelining methods [11]. These methods
are based on dividing the data analysis process into a set of small
and easy to implement tasks; and orchestrating their sequential/
parallel execution. After the emergence of pipelining methods, many
pipelining frameworks were introduced [12] and several important
companies started offering effective pipeline-based data analysis
services such as AWS Data Pipeline [13], SnapLogic IIP [14] or Alooma
Enterprise Data Pipeline [15]. Due to the popularity of pipeline
technology, recent studies have addressed the issue of improving the
speed of data processing [16]–[20]. However, there are still many areas
for improvement of such frameworks, such as the facilities provided to

Regular Issue

- 215 -

developers or the implementation of mechanisms capable of detecting
errors at an early stage (constraints, datatype issues, etc.).

During the last years, Java has become popular in the development
of enterprise software [21]. By getting in touch with IT –Information
Technology– professionals and examining job offers, we found that
important companies (e.g., Inditex, PSA, CaixaBank) primarily use
Java technology in their developments. Hence the use of Java to
define pipelines (i) enables the possibility of reusing many software
components (especially persistence components to access their
information); (ii) facilitates the search of qualified developers; and (iii)
allows for the use of a wide variety of software libraries and services
that are currently developed in Java (sometimes exclusively) [22], [23].

In this context, this work focuses specifically on the pipelining
schemes used by enterprises and, therefore, primarily considers
pipelining frameworks supporting the execution of Java tasks. This
study identified some limitations of current software implementing
pipeline functions such as: (i) the definition or checking of constraints;
(ii) the invalidation inconsistent/error data; or (iii) the data sharing
between tasks. Particularly, some mechanisms should be introduced
to minimize the errors in the entire process (constraints). Additionally,
when invalid data are found they should be marked to discard (instance
invalidation) and should not be further processed. Finally, sharing
data between tasks cannot be safely implemented through external
repositories (databases, files, etc.) because some task execution
questions should be previously addressed (i.e. how additional data
instances -with regard to the initial ones- affect the process). To this
end, we have developed BDP4J [24], a new pipelining framework that
successfully address all limitations identified for analysed software.
In addition to BDP4J software, this work also contributes different
processing schemes for resuming or debugging the operation of
pipelines, several constraints that should be checked in pipelines, and
methods to implement the identified functionalities.

The rest of our work is structured as follows: Section II presents the
state of the art in Java frameworks to define computational pipelines
together with their limitations. Section III introduces BDP4J as a
framework able to solve the limitations that have been identified in
analysed software. Finally, section IV summarizes the main outcomes
and future work.

II. State of Art

As stated before, several pipeline-based tools for data processing
have been successfully introduced in recent years. In order to facilitate
the implementation of pipeline-based data solutions in enterprises
and reutilize previously developed software components, the use of
language-independent, and/or Java pipelining frameworks would
probably be the best solution. In this section, we analyse a set of
the most adequate frameworks, demonstrating their strengths and
weaknesses, in order to facilitate the definition of (big) data studies
by enterprises. We analyse the functionalities of some frameworks
that are no longer available (such as COMPSs [25], [26] whose URLs
and GitHUB repositories have been removed) or currently obsolete
(Conan2 [27], Dockerflow [28], [29], Suro [30] and Swift [31]–[33]).
Conan2 can only be built using Java 6 which is obsolete, Dockerflow
has been abandoned on 2017 (see readme.md in official GitHUB
repository), Suro can only be compiled using obsolete Gradle/JDK
versions and Swift requires Java endorsed dirs property which is
obsolete (see https://docs.oracle.com/javase/8/docs/technotes/guides/
standards/). Moreover, we also analyzed other available software
including COMPI [34], Cromwell [35], Drake [36], Mallet [37], [38]
and ML –Machine Learning– pipeline [9], [39], [40].

By studying the above-mentioned frameworks, we identified a

set of relevant features that are not addressed by all of them. Table I
summarizes the analysed features and displays a comparative analysis
of their presence in the studied frameworks

As shown in Table I, the vast majority of analysed frameworks do not
have any checking strategy while orchestrating tasks inside a pipeline
(i, ii). Keeping this in mind, we estimate the utility of type constraints
included in strong typing languages (such as Java) as an effective
method to prevent development errors (i). Inspired by strong typing
languages, we found type constraints appropriate to check whether
the type of output information generated by a task is consistent with
the input information required for the next task executed in sequence.
The type of input information for tasks that are executed in parallel
should be the same. We are strongly convinced of the need to add
some constraints to establish the right execution order of tasks (ii) and
prevent inconsistent pre-processing (for instance, stripping HTML tags
is mandatory before tokenizing contents). Additionally, in our view,
tasks can be classified into different categories (iii), thus contributing
to help users in their selection (if a GUI –Graphical User Interface–
is provided) and in the validation of their orchestration. The goal of
some tasks in particular is to simply compute instance properties and
not to transform the input data. Therefore, the classification of tasks
into different categories would provide the possibility of defining
constraints for validating tasks and their orchestration as well as to
detect the execution errors.

Additionally, taking advantage of parallel processing schemes (iv)
and/or distributed execution methods (v) could contribute to reduce
the data processing time required.

The communication between tasks is often not limited to the
output-input stream. As an example, in text mining, a dictionary is
created after the tokenizing process, and can be used later to build
dense vector representations. However, data sharing (vi) between
tasks in burst-based operation implies taking additional issues into
account. For example, in a large number of problems, the task that
generates the shared data should complete the processing of all data
instances belonging to the current burst before executing the task
that consumes the shared data. Additionally, we should also select
the fastest sharing mechanisms from those available. In this sense
the use of language-internal mechanisms (for example, a singleton-
based object) is preferred to that of external mechanisms (a database).
However, if only external mechanisms can be used, they should be
carefully selected to improve performance. In this sense, distributed
memory object caching systems (such as Memcached or Ehcache) are
clearly better than (slower) SQL-based database servers.

Loading task orchestration (vii) from a file (XML –eXtensible
Markup Language– or YAML –YAML Ain’t Markup Language–)
allows for providing independence between individual task definitions
and their orchestration. Additionally, these orchestration definition
languages would allow customizing tasks with specific execution
parameters and easily modifying the steps of the pipeline.

The dynamic loading of tasks (viii) from files included in a directory
(for instance .jar files) enables the user to develop customized tasks
and facilitates their development (because the tasks can be defined in
separate projects).

Once a great amount of data has been compiled, it must be analysed
by using ML strategies. Therefore, data mining developers would
greatly appreciate the provision of facilities for the integration of ML
frameworks (such as Weka) (ix).

The most relevant feature that could be provided from a pipeline
framework is probably the ability to transparently resume the
execution (x) of a particular pipeline when the application crashes.
To implement this functionality, we should address the persistence of
data instances after being processed by each task and check whether

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº4

- 216 -

the pipeline and data burst are the same when resuming the execution
of the pipeline. The storage of instances should be completely
transparent for developers and carried out as quickly as possible to
reduce the time requirements for data analysis.

Finally, there are minor features that improve the benefit of
using a data pipelining framework including, but not limited to, the
existence of a GUI application to support the orchestration of tasks
(xi), its availability as open source (xii), language agnosticism (i.e. the
possibility of implementing tasks in any programming language) (xiii),
or the inclusion of resource management utilities (xiv). These utilities
(for resource management) could allow assessing the resources (RAM
–Random Access Memory–) required for pre-processing data and/or

their reservation in cloud environments (as COMPSs do), or simply
limit the usage of CPU –Central Processing Unit– /RAM (as Cromwell).

As we can deduct from the current analysis, current software
implementing pipelining strategies have important limitations that
hamper their application to address the pre-processing of data.
This fact suggests the need to develop a pipelining framework and
implement all the features analysed in this study. Furthermore, we
have also identified several interesting features that have not been
raised by any of the analysed frameworks. Particularly, we found
the advances in the following directions to be suitable: (xv) instance
invalidation, (xvi) last instance notification, and (xvii) developer mode.

The instance invalidation (xv) is the capability of discarding a data

TABLE I. Relevant Features for Pipeline Frameworks

COMPSs COMPI Conan2 Cromwell
Dockerflow

(+Google Cloud
Dataflow API)

Drake Mallet
ML Pipeline

(Apache
Spark)

Suro Swift

(i)
Type check

(ii)
Dependency check

(iii)
Different kinds of tasks

(iv)
Parallel processing

(v)
Distributed

(vi)
Data sharing

(partially)

(vii)
Loading Pipeline from

File

(viii)
Dynamic loading of

tasks

(ix)
Integration with ML

Cloud Machine
Learning

Own ML
API

Spark ML

(x)
Resume execution from

a particular task

(xi)
Orchestration GUI

(xii)
Open Source

(xiii)
Language agnosticism

(xiv)
Resource manager

(xv)
Instance invalidation

(xvi)
Last instance
notification

(xvii)
Developer mode

Regular Issue

- 217 -

instance when we detect its invalidity during the pipelining process
(for instance when trying to download the contents of a tweet through
its Twitter ID that has been previously removed). The invalidation of
a data instance could be invoked in any task belonging to the pipeline
and implies that it will not be further processed (no other task will
be called with the instance). Despite the fact that this functionality
seems to be very simple and intuitively required, most pipeline
implementations do not incorporate it.

The main advantage of pipeline processing schemes is the
processing of streaming data instances (for instance a Twitter stream).
As shown in Fig. 1, before the beginning of the pipelining process (b),
a set of available data instances are buffered, in the form of burst (a)
to be processed when computational resources are available (after
processing the last data-instances burst).

Streaming
Sources

(a)
Burst
Bu�er

B1
B2

Bi

(b)
Burst
Handler

Dataset
Pipelining

Process

Caption:

Execution Flow Data Flow

CSVDataset

Next
Burst

Fig. 1. General burst operation overview.

As result of the pipelining process, a dataset is generated (or grown)
and stored in disk or main memory. In a task that saves the data to
disk (or any other resource dependent task), the identification of the
last data instance of a burst (xvi) would help to safely free resources
(closing/flushing opened files, database connections, etc.). As a
particular example, closing dataset files would make them available to
be used for further analysis until the execution of the dataset saving
task for the next burst.

As Fig. 1 shows, a framework would also provide facilities to store
datasets (disk or memory) and let them grow both in number of rows
and columns after processing each burst.

Finally, developers should be able to quickly test the proper
operation of their tasks by using a collection of real data. However,
to debug a certain task, all previous tasks defined in the orchestration
should be executed before debugging the target task. In such a situation,
providing mechanisms to achieve more efficiency when testing a new
task adds a great value to pipelining frameworks (xvii). In particular,
if the orchestration and input instances remain invariable for all test
executions, the state of instances used as input for a task that is being
debugged could be saved to disk (serialized) the first time they are
computed, in order to reuse them for later executions.

Given the list of the most adequate features that a pipelining
framework should provide, and starting from the simple pipelining
support included in Mallet, we designed BDP4J, a new pipelining
framework implementing most of the features that have been previously
shown. Section III identifies the details of the implementation and use
of the framework.

III. Introducing BDP4J

After analysing the pipelining frameworks, which provided
a wide list of indispensable features for improving pipelining
in enterprises, we developed BDP4J. BDP4J was inspired by the
pipelining architecture included in Mallet software. Using this pipeline
architecture as a base (and specifically the classes Instance, Pipe and
SerialPipes), we transformed the name of the classes to accommodate
them to the Java Code Conventions [41] and other non-explicit code
rules (i.e. the name of interfaces and abstract classes that usually start
with the prefix “Abstract” or “Default”). Specifically, Pipe, SerialPipes
and Instance classes from the Mallet framework were transformed
into AbstractPipe, SerialPipes and Instance BDP4J classes respectively.
Using this architecture as a starting point, we implemented most
features compiled in the previous section, achieving a product that is
different from the Mallet pipeline implementation.

Similar to Mallet, BDP4J uses the Instance class (see Fig. 2) to
represent a specific case (including raw data, properties, and the
target solution) and solve a certain problem. As an example, in
order to define an e-mail classifier, an Instance would represent the
information of a specific message. The raw message contents would
be included in source/data attributes; interesting features extracted
through pipelining process would then be stored in props attribute,
and the class of the message would be represented in target. Moreover,
data attribute would be transformed through the pipelining process
(from raw data to token list, feature vector…).

BDP4J tasks are represented as simple pipes (by implementing
the Pipe interface or, even better, by extending AbstractPipe class).
Moreover, the orchestration of pipes is defined through classes
SerialPipes and ParallelPipes. These details together with the basic
design of BDP4J are shown in Fig. 2. To facilitate readability, only
relevant methods/attributes have been included in the classes shown
in the diagram. Please refer to the Javadoc documentation (generated
through the build process) to obtain a complete list.

As we can deduct from Fig. 2, BDP4J Pipe interface was created to
allow developers to implement their tasks by extending, if necessary,
from other classes. However, the use of AbstractPipe abstract class
provides the implementation of all methods of Pipe interface, except
for pipe (which stands for the specific work that should be done), to
simplify the development of tasks. SerialPipes class keeps the same
functionality that was originally provided in Mallet software while
slightly changing the instance processing flow. Finally, BDP4J adds the
support for parallel tasks execution through the class ParallelPipes.
Configurator class is used for loading pipelines from files and is
explained below.

Each pipe or task implemented in BDP4J must implement the
methods getInputType and getOutputType to indicate the type of data
included in the Instance before and after executing it. This information
is used by SerialPipes and ParallelPipes to check data types in the
orchestration (feature i). Additionally, these types should dynamically
be checked with the Instance after executing the task.

When creating a task by extending the AbstractPipe class, the
developer must call on its constructor (through super) to specify
“Always Before” (alwaysBeforeDeps attribute) and “Not After”
(notAfterDeps attribute) task execution constraints (feature ii). “Always

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº4

- 218 -

Before” constraints indicate which tasks must be executed before the
current one (for instance, the identification of the text language should
probably be done before expanding abbreviations and/or slang terms to
select the appropriate dictionary). Moreover, “Not After” dependencies
indicate the tasks that cannot be executed after the execution of the
current one (for instance, the recognition of acronyms should not
be run after changing text to lowercase or removing punctuation
marks). checkDependencies and getErrorMessage methods included
in AbstractPipe class allow checking these constraints and obtaining
information about the specific errors found.

BDP4J has divided the tasks in the following categories (feature
iii): PropertyComputingPipe used only for computing instance
properties; TeePipe used for storing instances when needed by
user; TargetAssigningPipe used for assigning the real target class
on classification; and TransformationPipe, which transforms the
instance data. These task categories allow including additional
constraints on tasks. Hence, the input and output data types of a task
(getInputType and getOutputType) should be the same for all tasks
except for TransformationPipe, which could be different. Moreover,
the number of instance properties should be increased after an
instance is processed through a PropertyComputingPipe, and the
target attribute of an Instance should not be null after the execution
of a TargetAssigningPipe. Finally, the number of TargetAssigningPipe
included in a pipeline must be zero or one. In the future, the
classification of tasks could be used to automatically group the
functionalities in GUI pipeline management tools.

Currently, the support of parallel processing (feature iv) schemes
in BDP4J is limited to the use of ParallelPipes task orchestration
class. When several tasks are marked to be executed in parallel,
they are performed in separate threads. Although we believe that
we can take advantage of load balancing clustering schemes when
multiple computers are available (feature v), its support has not been
implemented yet and should be carefully designed.

Moreover, in order to adequately support burst data processing and
data sharing (feature vi), the original Mallet processing method for

data instances was changed. Mallet instance processing model is based
on processing one instance through all tasks included in the pipeline.
However sometimes we need all instances included in a data burst to
be processed by a certain task in order to fill the shared information
(for instance, when a text mining task builds a dictionary that will
be used by other tasks to create a dense vector representation or a
standard CSV –Comma-Separated Values– file). To cope with these
situations, BDP4J executes each task on all available instances of the
burst before starting the execution of the next task. This behaviour was
implemented in pipeAll methods of orchestration schemes (SerialPipes
and ParallelPipes).

BDP4J is able to load pipeline orchestration from XML files (feature
vii). This functionality is connected with the dynamic loading of
tasks from *.jar files (feature viii) and cannot be used independently.
In order to implement the first functionality, we took advantage of
Document Object Model (DOM) Application Programming Interface
(API). Configurator class (see Fig. 2) provides the functionality of
loading the pipeline configuration using DOM API. The XML file
should contain the configuration/general/pluginsFolder parameter,
which allows defining the directory where the *.jar files containing
task definitions are located. The dynamic loading of tasks from jar
files was implemented through the default Java service-provider
loading facility (java.util.ServiceLoader<S> included in Java 8). Using
this facility, BDP4J searches for Pipe implementations included in the
location specified by pluginsFolder parameter. To facilitate the use
of standard Java service loader by avoiding the manual creation of
file META-INF/services/org.bdp4j.pipe.Pipe, all classes implementing
tasks can be annotated with the @AutoService(Pipe.class) [42]. Fig. 3
shows how the orchestration of a pipeline can be easily represented
in XML format (Fig. 3a) and loaded for its execution using BDP4J
framework (Fig. 3b).

Fig. 2. Main classes comprising BDP4J.

Regular Issue

- 219 -

<?xml version=”1.0”?>
<configuration>
 <!-- General properties -->
 <general>
 <samplesFolder>./samples</samplesFolder>
 <pluginsFolder>./plugins</pluginsFolder>
 <outputDir>./output</outputDir>
 <tempDir>./temp</tempDir>
 </general>
 <!-- the pipeline orchestration -->
 <pipeline resumable=”yes” debug=”no”>
 <serialPipes>
 <pipe>
 <name>File2TargetAssignPipe</name>
 </pipe>
 <pipe>
 <name>File2StringPipe</name>
 </pipe>
 <pipe>
 <name>String2TokenArray</name>
 </pipe>
 <pipe>
 <name>TokenArray2FeatureVector</name>
 </pipe>
 <pipe>
 <name>
 GenerateFeatureVectorOutputPipe
 </name>
 <params>
 <pipeParameter>
 <name>outFile</name>
 <value>out.csv</value>
 </pipeParameter>
 </params>
 </pipe>
 </serialPipes>
 </pipeline>
</configuration>

(a)

/* Load XML configuration */
Configurator cfg =
 Configurator.getInstance(“configuration.xml”);

/*Load tasks from jar files*/
PipeProvider pipeProvider =
new PipeProvider(
 cfg.getProp(Configurator.PLUGINS_FOLDER)
);
HashMap<String, PipeInfo> pipes =
 pipeProvider.getPipes();

/*Load the pipeline orchestration*/
Pipe p =
 Configurator.configurePipeline(pipes);
logger.info(“orchest:” + p.toString() + “\n”);

/*Check orchestration dependencyes*/
if (!p.checkDependencies()) {
 logger.fatal(
 “[CHECK DEPENDENCIES] “+
 AbstractPipe.getErrorMessage()
);
 System.exit(-1);
}

/*Load and pipe the current burst*/
ArrayList<Instance> burst = …
p.pipeAll(burst);

(b)

Fig. 3. XML orchestrating facilities included in BDP4J: a) XML structure used
to define task orchestration (configuration.xml) and b) BDP4J source to load
task orchestration.

The source code included in Fig. 3b (configurePipeline method)
makes it possible to automatically instantiate as many SerialPipes
and ParallelPipes as necessary to load the orchestration and configure
tasks (because task configuration parameters are also included in
XML, Fig. 3a).

A typical BDP4J pre-processing pipeline would contain one or more
TeePipes. As stated before, the mission of TeePipes is to bring together
the information of instances to generate datasets in memory (through
using Dataset class shown in Fig. 4a) or in disk (through using
CSVDatasetWriter class) and continue the execution of the rest of the
pipeline. This mission fits with the dataset generation issue shown in
Fig. 1. One of the most important features added to CSVDatasetWriter
and Dataset classes is the possibility of dynamically growing the
number of columns and rows. After processing some data bursts, they
can be analysed by using external ML APIs (feature ix). Due to the
popularity of Weka ML library, we have implemented a feature to
transform a BDP4J dataset stored in memory (Dataset class) to Weka
dataset (weka.core.Instances) through the getWekaDataset method.
Additionally, the CSVDatasetReader class implements the loading of
a CSV file to instantiate a BDP4J Dataset (Fig. 4b).

(a)

CSVDatasetReader csvdr =
 new CSVDatasetReader(“out.csv”);
Dataset ds = csvdr.loadFile();
Instances wekaDS =
 ds.getWekaDataset();

wekaDS.deleteStringAttributes();
wekaDS.setClassIndex(
 wekaDS.numAttributes() - 1
);
int num = wekaDS.numInstances();
int start = (num * 80) / 100;
int end = num - start;

Instances trn =
 new Instances(wekaDS, 0, start);
Instances tst =
 new Instances(wekaDS, start, end);

try {
 Evaluation rfEval = new Evaluation(tst);
 RandomForest rf = new RandomForest();
 rf.buildClassifier(trn);
 rfEval.evaluateModel(rf, tst);
} catch (Exception ex) {}

(b)
Fig. 4. Weka integration facilities included in BDP4J: a) BDP4J and Weka
interaction architecture and b) BDP4J and Weka interaction snippet.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº4

- 220 -

As we can see from Fig. 4b, source lines highlighted in bold
(first three sentences) allow the loading of Weka dataset, while the
remaining lines show how we can take advantage of Weka API to run
a Random Forest [43] classifier.

Furthermore, following the same orchestration behaviour
of SerialPipes and ParallelPipes classes, we implemented
ResumableSerialPipes and ResumableParallelPipes classes respectively.
These classes support the resumption of the execution of a pipeline
(feature x) that has been stopped for any reason (an application
failure, accidental power down of computer...). The inner operation
of the mentioned classes includes saving the state of instances after
executing each task to allow resuming the pipeline from the last
successfully executed task. One of the most relevant challenges to
implement the resuming functionality was its compatibility with
the data sharing between tasks. To this end, pipes can be marked by
implementing SharedDataConsumer and/or SharedDataProducer
interfaces. These interfaces include the methods readFromDisk and
writeToDisk, respectively, to allow the programmer defining how
to save and read the shared information to make it available when
resuming the execution of a pipeline. These details are included in
Fig. 5.

Fig. 5. BDP4J architecture details to support resuming function.

A resumable pipeline could be easily instantiated by defining
the orchestration in source code (Fig. 4b) and replacing the use
of SerialPipes and ParallelPipes by ResumableSerialPipes and
ResumableParallelPipes, respectively. Additionally, the resuming
behavior can be achieved with an XML file (Fig. 4a) using resumable
and debug modifiers included in pipeline tag. When resumable is set to
“yes” (“true” or “1”), the pipeline can be resumed. The debug modifier
included in pipeline could be set to “no” (“false” or “0”) only if the last
complete result of a task remains stored on disk, or “yes” if all partial
results are kept on disk (useful to manually drop steps and repeat tasks
and only applicable to ResumableSerialPipes).

Finally a GUI application (feature xi) to orchestrate tasks was
created using JGraphX [44] framework. The GUI is launched when
using “gui” as the first parameter for the execution of the main class
org.bdp4j.Main and allows visually defining, executing and saving a
pipeline orchestration.

BDP4J is released as open source (feature xii). Its tasks can
only be developed using Java technology (non-Java programming
languages are not supported) (feature xiii). Moreover, BDP4J does
not provide resource management utilities (feature xiv) and does not
allow optimising the use of resources. In this sense, the limitation
of RAM could be easily done by using the -Xmx parameter of Java
Virtual Machine (JVM) and the number of cores via the GNU/Linux
taskset utility. Therefore, the development of additional resource
management functionalities (mainly computing RAM requirements)
will be addressed as future works.

The instance invalidation (feature xv) was implemented by adding
the invalidate method in the Instance class (which can be called from
task definition) and the management of invalidated instances in the
BDP4J orchestration subsystem (SerialPipes/ResumableSerialPipes
and ParallelPipes/ResumableParallelPipes). Methods pipe and pipeAll

implemented in the orchestration classes skip the processing of
invalidated instances.

Additionally, the detection of the last data instance (feature
xvi) is provided in the AbstractPipe class by providing a default
implementation for isLast method. This implementation marks an
instance i as last when the instance is processed alone through a call
to pipe method or when i is the last valid instance of a collection of
data (data burst) that is processed by calling the pipeAll method.

Given the support of resuming a pipeline from a certain position,
we find it appropriate to take advantage of this feature in order to
implement the debugging mode function (feature xvii). The debugging
mode function allows developers of a task to avoid the processing of all
previous required tasks (when they were previously executed) in order
to reduce the time required to test whether the new task is operating
properly. The code snippets (XML and Java) included in Fig. 6 provide
a detailed description of how to take advantage of this functionality
when the orchestration is defined in XML (Fig. 6a) or in Java (Fig. 6b).
We highlighted in bold the instructions used to select the task that is
being debugged.

As we can see from Fig. 6, the orchestrations defined in both
columns are exactly the same. Hence, a task can be marked for debug
when the orchestration is defined in XML or in Java, providing great
flexibility for developers. In the case of using the XML to define the
orchestration, the task (pipe) that is being debugged should include
a debug tag, and the entire pipeline should be executed in resumable
mode (resumable=”yes”). Additionally, for source code orchestrations,
the debug mode implies the use of ResumableSerialPipes and
ResumableParallelPipes classes.

As shown in this section, BDP4J covers important limitations found
in current pipelining software. The implemented features provide
flexibility to developers, allowing them to analyse and pre-process
data obtained from different sources in order to solve different kinds
of problems. Subsection A shows a case study of our framework to
address the pre-processing and classification of SMS –Short Message
Service– spam messages.

A. Using BDP4J
In order to show the simplicity of using the BDP4J framework,

we developed a case study to apply different text pre-processing
techniques over SMS spam messages included in the SMS Spam
Corpus v.0.1 [45]. The project has been publicly shared through
GitHub (https://github.com/sing-group/bdp4j_sample). This project
contains a collection of eight text pre-processing tasks (some of them
trivial) implemented in the Java package org.bdp4j.sample.pipe.impl.
The implemented pipes (sorted by the right execution order) make it
possible to: create a property with the size of the text file (FileSizePipe);
load the target attribute from the file (File2TargetAssigningPipe); load
SMS text from file (File2StringPipe); create a property with the length
of the SMS text (MeasureLengthPipe); add all information generated
up to this step to a CSV file (GenerateStringOutputPipe); tokenize the
text of each instance (String2TokenArray); create a feature vector for
each instance (TokenArray2FeatureVector); and add all information to
a CSV File (GenerateFeatureVectorOutputPipe).

The class org.bdp4j.sample.Main (main) creates instances from the
files included in the samples directory. In detail during this process,
data and source attributes are initialized with an instance of java.
io.File representing the disk file containing SMS data. Instances are
divided into three groups to simulate a burst operation. Moreover, this
class also orchestrates a pipeline with all tasks defined in the project
and use it to process the three bursts. After processing the instances,
a NaïveBayes [46] classifier from Weka is executed over the generated
data and the confusion matrix results (true positives, true negatives,
false positives, and false negatives) are printed via system standard

Regular Issue

- 221 -

output. Additionally, two CSV files are generated on a disk (one per
each tee pipe called output.csv and output2.csv) that contains the pre-
processing results.

As can be easily found in the source code, two
PropertyComputingPipe (FileSizePipe and MeasureLengthPipe),
one TargetAssigningPipe (File2TargetAssignPipe), two TeePipe
(GenerateFeatureVectorOutputPipe and GenerateStringOutputPipe)
and three TransformationPipe (File2StringPipe, String2TokenArray,
TokenArray2FeatureVector) tasks are provided as examples. Moreover,
TokenArray2FeatureVector and GenerateFeatureVectorOutputPipe
share a dictionary (org.bdp4j.sample.types.Dictionary) and
hence, they implement the interfaces SharedDataProducer and
SharedDataConsumer respectively to allow resuming and debugging
functions.

Since Main class is provided and task implementations have
been annotated with @AutoService annotation, the example could
be executed by launching the generated jar file or by generating an
alternative orchestration with BDP4J GUI.

The creation of the bdp4j_sample project provides a simple form
for showing the use of the BDP4J pipelining framework to other
researchers and developers. During the last months, we have been
using BDP4J for pre-processing data in the research activities of our
research group. This work has given us some conclusions for usage,
summarized in subsection B.

B. Performance Evaluation
We carried out a performance evaluation of BDP4J and other

available frameworks introduced in Section II. In order to accurately
evaluate the performance of the analysed frameworks we use void
tasks (those doing nothing). Fig. 7 represents the benchmarking
protocol designed for the evaluation of the frameworks.

(i) single task

(ii) two task in sequence

(iii) two task in parallel

(a)
x1k

x100k

1

1

1

2

2

(b)

(a)
x1k

x100k
(b)

(a)
x1k

x100k
(b)

Next
Burst

Fig. 7. Benchmarking design.

As shown in Fig. 7 our experimental protocol comprises three simple
computational pipelines: (i) a pipeline composed exactly by one task,
(ii) a pipeline that comprises the execution of two tasks in sequence
and (iii) a pipeline that executes two parallel tasks. These pipelines

<?xml version=”1.0”?>
<configuration>
 <!-- General properties -->
 <general>
 <samplesFolder>./samples</samplesFolder>
 <pluginsFolder>./plugins</pluginsFolder>
 <outputDir>./output</outputDir>
 <tempDir>./temp</tempDir>
 </general>
 <!-- the pipeline orchestration -->
 <pipeline resumable=”yes” debug=”yes”>
 <serialPipes>
 <pipe>
 <name>File2TargetAssignPipe</name>
 </pipe>
 <pipe>
 <name>File2StringPipe</name>
 </pipe>
 <pipe>
 <name>String2TokenArray</name>
 <debug/>
 </pipe>
 <pipe>
 <name>
 TokenArray2FeatureVector
 </name>
 </pipe>
 <pipe>
 <name>
 GenerateFeatureVectorOutputPipe
 </name>
 <params>
 <pipeParameter>
 <name>outFile</name>
 <value>out.csv</value>
 </pipeParameter>
 </params>
 </pipe>
 </serialPipes>
 </pipeline>
</configuration>

(a)

/* Debug String2TokenArray pipe */
String2TokenArray s2ta =
 new String2TokenArray();
s2ta.setDebugging(true);

/* Create the processing pipe */
AbstractPipe p = new ResumableSerialPipes(
 new AbstractPipe[]{
 new File2TargetAssignPipe(),
 new File2StringPipe(),
 s2ta,
 new TokenArray2FeatureVector(),
 new GenerateFeatureVectorOutputPipe()
 }
);

logger.info(“orchest:” + p.toString() + “\n”);

/*Check orchestration dependencies*/
if (!p.checkDependencies()) {
 logger.fatal(
 “[CHECK DEPENDENCIES] “+
 AbstractPipe.getErrorMessage()
);
 System.exit(-1);
}

/*Load and pipe the current burst*/
ArrayList<Instance> burst = …
p.pipeAll(burst);

(b)

Fig. 6. BDP4J debug mode snippet: a) Enabling the debugging for a task in a
XML orchestration and b) Enabling the debugging for a task in source code.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº4

- 222 -

were executed 1,000 and 100,000 times in order to compare the impact
of the checks made during the execution in the performance of the
framework. The source code used for experimentation is available
online [47]. The benchmark was executed in a computer with 64
gigabytes of RAM and an Intel i7-6700 processor with four cores (eight
threads). Table II shows the evaluation results.

TABLE II. Performance Comparison of Analyzed Frameworks

Pipeline
(i) (i) (iii)

x 1k
COMPI 2s, 554ms 3s, 266ms 3s, 149ms

Cromwell 50s, 076ms 1m, 24s, 113ms 1m, 28s, 917s
Drake 31s, 133ms 30s, 946ms 95s 90ms
Mallet 1.05ms 1.09ms unsupported

MLPipeline 2s, 227ms 2s, 321ms unsupported
BDP4J 1.03 ms 4.42ms 56.34ms
x 100k
COMPI 48s 928ms 1m 37s 83ms 1m, 33s, 436ms

Cromwell unsupported unsupported unsupported
Drake 51m, 53s 51m, 34s 2h, 38m 29s
Mallet 10 ms 9 ms unsupported

MLPipeline 2s, 475ms 2s, 494ms unsupported
BDP4J 12.93 ms 15.24 ms 801.77 ms

As shown in Table II, Drake (which is written in R but allows
executing tasks written in Java) fairly achieves the worst performance
while Mallet is the most efficient framework. However, the
performances achieved in Mallet and BDP4J when executing pipelines
(i) and (ii) are very similar (a few milliseconds). The increase of time
required by BDP4J for the execution of pipelines containing tasks
executed in parallel is caused by the need to clone the instances
in order to alleviate the programmer of the issues arising from
concurrent programming. The impact on performance of this decision
is significative, however the time required for the development of
tasks is considerably reduced. Additionally, Cromwell has some issues
with memory when processing large pipelines (repeating 100000 times
the pipeline is not possible with 64GB of RAM). Keeping in mind the
benefits of our proposal, we really believe BDP4J is a reliable solution
for analysing data using Java technology.

C. Learned Lessons and Main Outcomes
Our use of BDP4J for the development and execution of different

pre-processing tasks over the last several months have led us to
important findings. One of the most important findings is the great
amount of human error that occurs during the development of
applications. A significant number of these errors could be detected
by using constraints, type checks, and dependencies implemented by
BDP4J. People often wrongly think that constraints, type checks, and
dependencies included in different programming models are merely
time-consuming issues that negatively affect development because
any IT professional can develop software with no errors. However, our
experience has shown us that the existence of these elements really
helps developers to avoid software errors and cause a low impact on
the time required for defining pre-processing tasks.

Additionally, the use of debug mode has significantly sped up the
development and debugging of tasks, given that the whole execution
process is executed only once. In fact, when a pipeline is executed a
second time, the task marked to be debugged will be the first executed.
As long as the tasks that will be debugged can be quickly defined, the
feature is very useful for developers.

Moreover, we have developed an extremely simple mechanism
for defining tasks. When extending AbstractPipe class, only the

methods getInputType, getOutputType and pipe (execute the task)
should be defined. The BDP4J framework adds many sources to check
constraints, types, and operation with no effort on the part of the
developer. Most developers who tried BDP4J really appreciate the
effort to minimize the source they should write for developing tasks.

Finally, we would like to highlight the use of Apache Maven as a
software management and building tool that facilitates compilation,
packaging, and execution tasks. This finding, together with those
previous mentioned, allow us to understand that we are working in
the right direction to define the BDP4J framework. The next section
provides detailed conclusions and future work to improve this
framework.

IV. Conclusions and Future Work

During the last years, the exploitation of data has been increasingly
used as a method to solve many problems and understand the inner
details of real life. The main challenge to address in data exploitation is
the existence of effective programming models able to take advantage
of available data. In the current context, popular developing paradigms
such as MapReduce are being abandoned while pipelining schemes are
becoming more and more popular. Our intention in this work was to
design and provide new and interesting functionalities for pipelining
software. Particularly, pipelining frameworks should provide simple
ways for defining tasks and incorporate mechanisms for early
detecting errors.

We designed functionalities to avoid the processing limitations
found in MapReduce schemes and other pipelining frameworks.
Particularly, we introduce the burst-processing scheme that can be
easily applied to the pre-processing of streaming sources of data (such
as Twitter streams), while still allowing for the old batch processing
schemes. Burst processing combined with the detection of the last data
instance in any task (for flushing/closing files) makes it possible to
analyse data after the execution of some bursts, thus avoiding the need
for processing all input data before they are analysed.

Finally, it should be noted that a great amount of technology and
new processing techniques have been made available to data mining
developers. As main contributions of this work (processing techniques),
we would highlight the number of techniques used to detect errors
(constraints, type checks and task dependencies), the resuming (and
debug) capabilities of pipelines, and the instance invalidation (never
seen before). These technologies can also be applied to improve
other frameworks (especially those developed in other programming
languages).

Future work comprises the design of execution schemes to distribute
computational requirements in a cluster of computers. To this end, we
believe that a careful examination of available load balancing schemes
would provide effective load distribution mechanisms to implement
this functionality. Additionally, this feature will be complemented
with the assessment of the amount of RAM necessary to execute a
pipeline over a burst with certain size (resource management).

Acknowledgment

D. Ruano-Ordás was supported by a post-doctoral fellowship from
Xunta de Galicia (ED481D-2021/024). Additionally, this work was
funded by the project Semantic Knowledge Integration for Content-
Based Spam Filtering [grant number TIN2017-84658-C2-1-R] from the
Spanish Ministry of Economy, Industry and Competitiveness (SMEIC),
State Research Agency (SRA) and the European Regional Development
Fund (ERDF); and Consellería de Educación, Universidades e
Formación Profesional (Xunta de Galicia) under the scope of the

Regular Issue

- 223 -

strategic funding of Competitive Reference Group [grant number
ED431C2018/55-GRC].

SING group thanks CITI (Centro de Investigación, Transferencia e
Innovación) from University of Vigo for hosting its IT infrastructure.

References

[1] I. M. Dunham, “Big Data: A Revolution That Will Transform How We
Live, Work, and Think”,The AAG Review of Books,vol. 3, no. 1,pp. 19–
21,Jan. 2015.

[2] Q. Qi, F. Tao, “Digital Twin and Big Data Towards Smart Manufacturing
and Industry 4.0: 360 Degree Comparison”,IEEE Access,vol. 6,pp. 3585–
3593,2018.

[3] V. Kalavri, V. Vlassov, “MapReduce: Limitations, Optimizations and Open
Issues,” in 2013 12th IEEE International Conference on Trust, Security and
Privacy in Computing and Communications, 2013, pp. 1031–1038.

[4] D. Miner, A. Shook, Mapreduce Design Patterns Building Effective
Algorithms and Analytics for Hadoop and Other Systems. Oreilly &
Associates Inc, 2012.

[5] Apache Software Foundation, “Apache Hadoop.” 2018.
[6] Amazon, “Amazon Elastic MapReduce.” 2019.
[7] Disco Project, “DisCo MapReduce.” 2014.
[8] S. Papadimitriou, J. Sun, “DisCo: Distributed Co-Clustering with Map-

Reduce: A Case Study towards Petabyte-Scale End-to-End Mining,” in
2008 Eighth IEEE International Conference on Data Mining, 2008, pp.
512–521.

[9] Apache Software Foundation, “Apache Spark - Unified Analytics Engine
for Big Data.” 2018.

[10] J. Zeng, B. Plale, “Data Pipeline in MapReduce,” in 2013 IEEE 9th
International Conference on e-Science, 2013, pp. 164–171.

[11] P. O’Donovan, K. Leahy, K. Bruton, D. T. J. O’Sullivan, “An Industrial
Big Data Pipeline for Data-Driven Analytics Maintenance Applications
in Large-Scale Smart Manufacturing Facilities”,Journal of Big Data,vol. 2,
no. 1,p. 25,Dec. 2015.

[12] P. Di Tommaso, “Awesome Pipeline: A Curated List of Awesome Pipeline
Toolkits.” 2018.

[13] Amazon, “AWS Data Pipeline.” 2019.
[14] Snaplogic, “SnapLogic Intelligent Integration Platform,” 2019. [Online].

Available: https://www.snaplogic.com/products/intelligent-integration-
platform. [Accessed: 21-Jun-2020].

[15] Alooma, “Alooma Enterprise Data Pipeline.” 2019.
[16] S. G. Ahmad, C. S. Liew, M. M. Rafique, E. U. Munir, “Optimization of

Data-Intensive Workflows in Stream-Based Data Processing Models”,The
Journal of Supercomputing,vol. 73, no. 9,pp. 3901–3923,Sep. 2017.

[17] G. Kougka, A. Gounaris, A. Simitsis, “The Many Faces of Data-Centric
Workflow Optimization: A Survey”,International Journal of Data Science
and Analytics,vol. 6, no. 2,pp. 81–107,Sep. 2018.

[18] J. Leipzig, “A Review of Bioinformatic Pipeline Frameworks”,Briefings in
Bioinformatics,p. bbw020,Mar. 2016.

[19] P. A. Ewels et al., “The Nf-Core Framework for Community-Curated
Bioinformatics Pipelines”,Nature Biotechnology,vol. 38, no. 3,pp. 276–
278,Mar. 2020.

[20] M. Bourgey et al., “GenPipes: An Open-Source Framework for Distributed
and Scalable Genomic Analyses”,GigaScience,vol. 8, no. 6,Jun. 2019.

[21] D. Swersky, “Top 43 Programming Languages: When and How to Use
Them,” 2018. [Online]. Available: https://raygun.com/blog/programming-
languages/. [Accessed: 21-Jun-2020].

[22] E. Frank, M. A. Hall, I. H. Witte, The WEKA Workbench. Online Appendix
for “Data Mining: Practical Machine Learning Tools and Techniques,”
Fourth Edi. Morgan Kaufmann Publishers Inc., 2016.

[23] A. Moro, R. Navigli, “Babelfy.” 2014.
[24] Y. Lage, J. R. Méndez, M. Novo-Lourés, “Big Data Pre-Processing For Java

(BDP4J).” 2018.
[25] F. Lordan et al., “ServiceSs: An Interoperable Programming Framework

for the Cloud”,Journal of Grid Computing,vol. 12, no. 1,pp. 67–91,Mar.
2014.

[26] R. M. Badia et al., “COMP Superscalar: An Interoperable Programming
Framework”,SoftwareX,vol. 3–4,pp. 32–36,Dec. 2015.

[27] T. Burdett, N. Kurbatova, D. Hastings, Emma Faulconbridge, Adam
Mapleson, R. Davey, “Conan2 Lightweight Workflow Manager.” 2019.

[28] J. Bingham, S. Davis, N. Deflaux, “Dockerflow: A Workflow Runner That
Uses Dataflow to Run a Series of Tasks in Docker with the Pipelines
API,” 2017. [Online]. Available: https://github.com/googlegenomics/
dockerflow.

[29] Google Inc, “Cloud Dataflow Documentation,” 2019. [Online]. Available:
https://cloud.google.com/dataflow/docs/?hl=es-419. [Accessed: 21-Jun-
2020].

[30] Netflix, “Suro: Netflix Distributed Data Pipeline.” 2012.
[31] J. M. Wozniak, M. Wilde, I. T. Foster, “Language Features for Scalable

Distributed-Memory Dataflow Computing,” in Fourth Workshop on Data-
Flow Execution Models for Extreme Scale Computing, 2014, pp. 50–53.

[32] J. M. Wozniak, M. Wilde, I. T. Foster, “Swift Tutorial for Running on
Localhost,” 2014. [Online]. Available: http://swift-lang.org/tutorials/
localhost/tutorial.html. [Accessed: 21-Jun-2019].

[33] M. Hategan et al., “Swift-Lang, Swift-K,” 2019. [Online]. Available: https://
github.com/swift-lang/swift-k. [Accessed: 21-Jun-2019].

[34] H. López-Fernández, O. Graña-Castro, A. Nogueira-Rodríguez, M.
Reboiro-Jato, D. Glez-Peña, “Compi: A Framework for Portable and
Reproducible Pipelines”,PeerJ Computer Science,vol. 7,p. e593,Jun. 2021.

[35] Broad Institute, “Cromwell: Workflow Management System Geared
towards Scientific Workflows.” 2019.

[36] A. Malloy et al., “Drake.” 2015.
[37] S. Fong, Y. Zhuang, J. Li, R. Khoury, “Sentiment Analysis of Online News

Using MALLET,” in 2013 International Symposium on Computational and
Business Intelligence, 2013, pp. 301–304.

[38] A. K. McCallum, “MALLET: A Machine Learning for Language Toolkit.”
2002.

[39] Apache Software Foundation, “Apache Spark: ML Pipelines,” 2018.
[Online]. Available: https://spark.apache.org/docs/latest/ml-pipeline.
html. [Accessed: 21-Jun-2020].

[40] A. Liu, Apache Spark Machine Learning Blueprints, First. Birmingham,
UK: PACKT Publishing Ltd., 2016.

[41] D. S. F. Long, D. Mohindra, R.C. Seacord, D.F. Sutherland, “Svoboda,
Java Coding Guidelines: 75 Recommendations for Reliable and Secure
Programs”,Addison-Wesley,2013.

[42] Google LLC, “AutoService: A Collection of Source Code Generatos for
Java.” 2013.

[43] L. Breiman, “Random Forests”,Machine Learning,vol. 45, no. 1,pp.
5–32,2001.

[44] M. R. G. Alder, D. Benson, “Jgraph/Jgraphx.” 2014.
[45] E. P. S. J.M. Gómez Hidalgo, “SMS Spam Corpus v.0.1,” 2011.
[46] A. Pérez, P. Larrañaga, I. Inza, “Bayesian Classifiers Based on Kernel

Density Estimation: Flexible Classifiers”, International Journal of
Approximate Reasoning, vol. 50, no. 2,pp. 341–362,Feb. 2009.

[47] M. Novo-Lourés, Y. Lage, R. Pavón, R. Laza, D. Ruano-Ordás, J. R. Mendez,
“Benchmarking Code for Pipeline-Based Frameworks.” 2021.

María Novo

She was born in Galicia (Spain) in 1983. She graduated from
the University of Vigo on Computer Science Engineering
and she holds an MSc in E-Commerce from the University
of Salamanca. At present, she is a researcher on the SING
research group, where she is developing her PhD in spam
filtering using Big Data and Machine Learning techniques.

Yeray Lage

He was born in Galicia (Spain) in 1995. He recently
finished his Computer He was born in Galicia (Spain) in
1995. He recently finished his Computer Science Degree
making his end-of-degree project collaborating with SING
group. Currently, he is working as Full-Stack Developer in
a company specialized in Web Development.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº4

- 224 -

Reyes Pavón

She is a PhD from the University of Vigo and a member of
SING research group. Currently, she is Associate Professor
in the Computer Science Department of the University of
Vigo. Her main research interests are Artificial Intelligence,
classification methods and spam filtering. She is joint author
of several articles published in international prestigious
journals.

Rosalía Laza

She received a PhD in Computer Science from the
University of Vigo in 2003. At present, she is member of
SING research group and she is Associate Professor in
the Computer Science Department of the University of
Vigo. She is co-author of several books, book chapters,
and articles published in international prestigious journals;
most of these present practical and theoretical achievements

of case-based reasoning systems, intelligent artificial paradigm, classification
methods and spam filtering.

David Ruano-Ordás

He was born in Galicia (Spain) in 1985 and received his
PhD in Computer Science from the University of Vigo
(Spain) in 2015. He is computer science engineer with
high experience on Linux administration and software
development under the ANSI/C standard. He collaborates
as researcher with the SING group belonging to the
University of Vigo. Regarding to the research experience

he is mainly focused in the Artificial Intelligence area (automatic learning, or
evolutionary algorithms) applied to spam filtering and drugs-discovery domain.
Finally, he has participated in some regional research projects and has been co-
author of several articles published in journals belonging recognized editorials
such as Hindawi, Springer or Elsevier. (http://www.drordas.info/).

José R. Méndez

He was born in Galicia (Spain) in 1977. Currently, he
works at the computer science department of University
of Vigo. He worked as a system administrator, software
developer, and IT (Information Technology) consultant
in civil services and industry during 10 years. He is an
active researcher belonging to SING group and, although
collaborates in different applications machine learning,

his main interests are the development and improvement of anti-spam filters.
(http://sing-group.org/).

