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Abstract

Machine learning-based supervised single-channel speech enhancement has achieved considerable research 
interest over conventional approaches. In this paper, an extended Restricted Boltzmann Machine (RBM) is 
proposed for the spectral masking-based noisy speech enhancement. In conventional RBM, the acoustic 
features for the speech enhancement task are layerwise extracted and the feature compression may result 
in loss of vital information during the network training. In order to exploit the important information in the 
raw data, an extended RBM is proposed for the acoustic feature representation and speech enhancement. In 
the proposed RBM, the acoustic features are progressively extracted by multiple-stacked RBMs during the 
pre-training phase. The hidden acoustic features from the previous RBM are combined with the raw input 
data that serve as the new inputs to the present RBM. By adding the raw data to RBMs, the layer-wise features 
related to the raw data are progressively extracted, that is helpful to mine valuable information in the raw 
data. The results using the TIMIT database showed that the proposed method successfully attenuated the noise 
and gained improvements in the speech quality and intelligibility. The STOI, PESQ and SDR are improved by 
16.86%, 25.01% and 3.84dB over the unprocessed noisy speech.
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1 Department of Electrical Engineering, University of Engineering & Technology, Peshawar (Pakistan)
2 Department of Electrical Engineering, FET, Gomal University, Dera Ismail Khan (Pakistan)
3 School of Electrical Engineering, Shandong University, Jinan (China)
4 Department of Electrical Engineering, Islamia University, Bahawalpur (Pakistan)
5 Escuela Superior de Ingeniería y Tecnología, Universidad Internacional de La Rioja (Spain)

Received 9 March 2021 | Accepted 3 July 2021 | Published 11 March 2022

I. Introduction

THE aim of speech enhancement (SE) is to attenuate/suppress the 
background noise and recover the clean speech from the noise 

contaminated speech with better intelligibility and speech quality. 
The speech enhancement is mainly used in a speech communication 
system to improve the voice quality, recorded multimedia contents, to 
boost the automatic speech recognition (ASR) accuracy and for robust 
hearing aids. Many signal processing-based speech enhancement 
methods are proposed in literature to improve the performance of 
aforesaid applications which include spectral subtraction [1] and 
variants [2]-[4], Wiener filtering [5] and variants [6]-[7], minimum 
mean square error (MMSE) estimator [8] and the variants [9]-[10]. 
These methods are apt in various real-time speech applications because 
of less computational complexity. But, they show poor performance in 
many non-stationary acoustic conditions. To overcome this problem, 
supervised learning-based speech enhancement methods are opted 
[11]-[12]. Learning approaches, such as the regression, spectral-
mapping, and spectral-masking [13]-[19], Gaussian mixture models-
based SE (GMM) [20]-[21], support vector machines-based SE (SVM) 
[22] and non-negative matrix factorization (NMF) [23]-[24] have 

been developed and examined for the speech enhancement. In the 
past few years, speech enhancement is considered as a supervised 
learning problem, motivated from the time-frequency (T-F) masking 
in Computational Auditory Scene Analysis (CASA). In such methods, 
a trained learning machine directly estimates the clean speech or 
estimates a T-F mask such as ideal binary mask (IBM) and ideal ratio 
mask (IRM) which are then applied to the T-F representation of the 
contaminated speech to reconstruct clean speech [25]-[26]. Perhaps, 
paradigms of data-driven methods present a convenient explanation 
to grasp the complex mechanism of the acoustic speech distortion. 
Recently, a number of deep neural network (DNN) frameworks are 
developed with encouraging results. Starting from the autoencoders 
to feed-forward DNN, many frameworks have been designed for 
speech enhancement [27]-[33]. DNN-based methods deal with three 
attributes: complementary acoustic features, learning algorithm, 
and training-target. Pursuant to the above explanation, DNN-based 
supervised speech enhancement methods are categorized into the 
masking-based and mapping-based enhancement methods. However, 
we are dealing with masking-based method in this paper. 

II. Related Literature 

In the recent past, the supervised learning methods for speech 
enhancement have achieved enormous performance gain and 
outperformed the conventional signal processing-based speech 
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enhancement. The masking-based SE methods outperformed the 
mapping-based SE methods; but, large performance deterioration can 
happen as a result of the mismatch conditions. A large performance 
gain can be achieved if DNNs are layer-wise pre-trained by stacked-
multiple RBM (Restricted Boltzmann Machine) [34]. DNN is proposed 
for the binary classification and feed-forward DNNs and RBM pre-
training are used for subband classification for IBM estimation [27]. 
DNNs are pre-trained with Fuzzy RBM [32], [35] instead of the regular 
RBM and achieved significant performance by estimating various T-F 
masks [36]. A unified method based on Monte Carlo Markov Chain 
(MCMC) and Stochastic Gradient Descent (SGD) for RBM pre-training 
is proposed [37]. Bayesian estimators are designed for RBM pre-
training [38]. Other variants of RBM such as the recurrent-temporal 
RBM [39], Gaussian RBM, cardinality RBM, pointwise gated RBM, 
and conditional RBM have been formulated by modifying regular 
RBM. Recurrent neural network-based speech enhancement method 
is formulated which exploited recurrent-temporal RBM to explore 
temporal-correlation between speech frames [35]. The idea is extended 
to the features of input and output signals into elemental feature-
spaces. The network was fine-tuned by jointly optimized RNN with 
additional masking layer with a reconstruction constraint. A detailed 
review of the RBMs and their deep structures can be studied in [40]. 
Many recent studies on deep learning can also be found in [41]-[47]. 
The gap analysis is given in Table I. It can be observed that in literature 
either various networks have initialized the parameters with RBM 
without phase estimation or randomly initialized the parameters with 
phase estimation. But, the proposed method initialized the network 
parameters with a more robust way and also the phase is estimated.   

In this paper, we examined the supervised learning algorithms in 
order to train DBN for time-frequency mask (T-F) estimation. Deep 
learning in speech enhancement is the arrangement of many hidden 
layers such that the network learns from the input features. Different 
from shallow neural networks, DNN should not be trained directly 
by using standard backpropagation algorithm. Since errors propagate 
through the network and the gradient becomes infinitesimally small 
that can affect the weights updating in the previous layers. Gradient-
vanishing is one of the core challenges in the deep learning. To address 
the vanishing problem, a multi-layered framework is used, known as 
Deep Belief Network, a pre-trained DNN with multiple-stacked RBMs. 
Following the pre-training, the standard backpropagation algorithm 
is employed. The acoustic features are progressively extracted by 
multiple-stacked RBMs during the pre-training phase. The hidden 
acoustic features from the previous RBM are combined with the raw 
input data to serve as the new inputs to the current RBM. By adding the 
raw data to each RBM, layer-wise features related to raw data can be 
progressively extracted, which is helpful to mine valuable information 
in the raw data [48]. The aim of this work is not to design a state-
of-the-art, but rather to examine the proposed pre-training method 
and compare the performance with DNN using the typical RBM-based 
pre-training for speech enhancement. The contributions of this paper 
are summarized and discussed as. (i): A novel pre-training method 
is proposed by stacking RBMs. The acoustic features are gradually 
extracted by multiple-stacked RBMs during pre-training phase. The 

hidden acoustic features from a previous RBM are combined with 
the raw input data to serve as the new inputs to the current RBM. 
The network parameters are initialized in the unsupervised fashion 
using RBM. The parameters are further fine-tuned via adaptive 
gradient descent and backpropagation algorithm. It is observed that 
the proposed pre-training method outperformed the DNNs which 
are initialized randomly or pre-trained with typical RBM. (ii): Less 
computational complexity and fast convergence is achieved by the 
proposed method as compared to the conventional DNN and DBN 
frameworks. With similar number of the hidden layers and quantity of 
hidden neurons, the proposed method achieved better speech quality 
and intelligibility. The reason for the quick network convergence (less 
MSE errors) is the adaptation of new pre-training method.

The reminder of this paper is organized as follows. Section III 
recapitulates the RBM and DBN frameworks. The proposed RBM for 
speech enhancement is presented in Section IV. Experiments are given 
in Section V. Results are explained in Section VI. The conclusions are 
given in Section VII.

III. Restricted Boltzmann Machine (RBM) and Deep 
Belief Network (DBN) 

Restricted Boltzmann Machine [34] is an elemental part of DBN 
framework and is mainly composed of visible and hidden layers 
used for many applications including speech enhancement. Unlike 
Boltzmann machine (BM), a RBM confines the interconnections of peer 
neurons in order to guarantee the mutual independence. The typical 
RBM structure is shown in Fig. 1. RBM gives probabilistic models and 
their parameters are consisting of the weights and biases. Let a RBM 
be represented by v visible layer and h hidden layer, respectively. The 
joint probability density of v and h is given as:

 (1)

Where, E (v, h) indicates the energy function where type of function 
is determined by the nature of variables in the visible layer. Two 
common variables in the visible layer are the binary and Gaussian. 
The binary-binary and Gaussian-Gaussian energy functions are given 
by equations as:

  (2)

 (3)

h(1) h(2) h(3) h(L)

h ∈ BH

v ∈ BH

W ∈ EVxH  λ= [W, a, b] 

v(1) v(2) v(3) v(L)

..........

..........

Fig. 1. RBM Network Structure.

TABLE I. Gap Analysis of Literature

Reference Neural Network Pre-Training Phase Estimate
[32] DBN with multiple Mask Estimation Networks are pre-trained with RBM without raw data No Phase Estimation
[38] DBN with Bayesian Estimators Networks are pre-trained with RBM without raw data No Phase Estimation
[37] MCMC and SGD DBN pre-training with RBM Networks are pre-trained with RBM without raw data No Phase Estimation
[39] Recurrent RBM for Pre-training Networks are pre-trained with RBM without raw data No Phase Estimation
[30] Feed Forward DNN with Mask Estimation Networks are randomly initialized without raw data Phase Estimated
[26] Feed Forward DNN with Mask Estimation Networks are randomly initialized without raw data No Phase Estimation

Proposed Feed Forward DBN with Mask Estimation Networks are pre-trained with RBM with raw data Phase Estimated
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where vj and hi indicate the activation states of the hidden layer 
neuron j and visible layer neuron i, respectively; αj and βi are bias terms 
whereas wji indicates the weights used to connect the vj and hi. σj and 
σi indicate the standard deviation terms. With the joint and marginal 
probabilistic distributions, i. e, p(v, h), p(v) and p(h), the conditional 
probabilistic distributions p(h|v) and p(v|h) can be achieved by the 
Bayesian presumption as:

 (4)

 (5)

For Gaussian neurons, the conditional distributions follow the 
normal distributions. Deep belief networks consist of multiple stacked 
RBMs and an output layer added over the final RBM, as shown in Fig. 
2. The training process of DBN includes a layer-wise unsupervised 
pre-training and fine-tuning. During the pre-training step, layer-wise 
greedy scheme is used for RBM training. Once a RBM is trained, its 
hidden layer is served as a visible layer to the next RBM. Thus, all 
RBMs in the network are trained in this fashion by maximizing input 
data probabilities. Contrastive divergence (CD) method [49]-[50] is 
applied for parameters updating. After pre-training, a T-F masking 
layer is appended to the final hidden layer. The entire DBN network 
is further fine-tuned by reducing the errors between estimated and 
preset masks. The backpropagation is employed to gradually pass 
the errors from the final to base input layer. In this way, the entire 
network parameters are continuously updated.

IV. Proposed RBM-based Speech Enhancement Method 

Though DBN framework effectively extracts features and achieves 
quick convergence by executing pre-training and fine-tuning, yet 
there can be a room to improve the learning performance. In deep 
learning, by increasing the number of hidden layers and with layer-
wise compression process, important information in the raw data is 
usually lost in higher layers. To reduce this problem, we extended 
conventional DBN to amply detain the important information in 
the raw data by multiple stacked-RBMs. By using the raw data as 
supplementary inputs to the visible layers to pre-train every RBM, 
the input raw data participates in entire compression process. As a 
result, the extracted acoustic features are greatly related to input raw 
data and the potential important information is copiously kept. Unlike 

conventional DBN, the proposed extended version of DBN framework 
can repetitively extract the important information from input raw 
data, thereby provides deep compressed representations which are 
in correlation with the input raw data. Fig. 3 illustrates the proposed 
DBN framework which consists of the pre-training and fine-tuning 
procedures, respectively. In the pre-training process, the input raw 
data is appended to visible layers of all RBMs. The weight matrices are 
composed of wI and wH, where wI connects the hidden layer with the 
input raw data, and wH connects the hidden features of the preceding 
RBM with upper hidden layer. After that, contrastive divergence and 
the maximum likelihood rules are used to update the RBM parameters. 
By doing so, we can improve the network learning potential, and can 
accurately initialize the network parameters for fine-tuning process. 
During the fine-tuning process, an output layer is added for mask 
estimation. Finally, the backpropagation is performed iteratively in 
order to update parameters of network by minimizing the MSE loss 
function between estimated and preset mask. 

A. Pre-Training
The pre-training process of the proposed DBN is to train all RBMs 

individually. For the first RBM, there is no need to extend input raw 
data. Every RBM updated its weights and biases which are based on 
the k-step CD learning (CD-k) method and maximum likelihood rule. 
In general, maximum likelihood rule is applied to achieve suitable 
parameters of the network (δ = {w, α, β}) that excellently fit the input 
data distribution. By determining logarithmic partial derivatives of data 
p(v=vData), the gradient updating for network parameters is given as:

   (6)

Since it is challenging to determine the second terms in Eq. (6) 
precisely, CD-k method is used to achieve the estimated solution. It 
is intended to transfer the data among hidden and visible layers for 
k times, such that the network states can characterize the model 
distribution after k iterations. The input to RBM vData can be articulated 
as v(0) as shown in Fig. 2. By determining the sampling of the probability 
p(h|v(0)), the state of the hidden neurons can be achieved as h(0). Also, 
v(1) can be achieved by sampling of p(v|h(0)). The learning procedure, 
from v(0) to v(1), is known as one-step Gibbs sampling. After performing 
k-step Gibbs sampling (k→∞), a stationary distribution is achieved, 
whereas v(k) reflects the model distribution. By predicting expectations 
over p(v), equation (6) can be expressed as:

Output layer

h(1)

W(1)

v

v(1) v(2) v(3) v(L)

..........

.......... h(1)

h(2)
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..........
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Fig. 2. The DBN framework with Three Hidden Layers.
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 (7)

The first term is called as negative-term whereas the second term 
is known as the positive-term, respectively. The negative-term reflects 
the distribution of raw data and the positive-term reflects distribution 
of the model. During training, the k-step CD takes k = 1, that meets the 
required of calculation for the accuracy. If we substitute Eq. (3) into Eq. 
(7), equations (Eq. (8)-Eq. (10)) can be obtained. The RBM parameters 
(δPRE = WPRE, αPRE, βPRE) can be updated via following equations:

 (8)

 (9)

 (10)

 (11)

Where, the parameters μ and υ indicate momentum and learning 
rate, respectively, whereas weighting matrix wPRE is composed of 
wI and wH such that wPRE = [wI, wH]. Algorithm-A and Algorithm-B 
explains the k-step CD rule and the pre-training of proposed DBN, 
respectively. 

Algorithm-A: k-step CD Process

Input: RBM (v, h), Training Batch B

Output: Estimated Gradient ∆w, ∆α, ∆β
1: init Δwji = Δαj = Δβi = 0, for j = 1, ..., m; i = 1, ..., n
2: for all samples ∈ B do
3: v(0) ← sample
4: for t = 0, ..., k-1 do
5:        for i = 1, ..., n do sample hi

(t) from p(hi | v(t))

6:       for j = 1, ..., n do sample vi
(t+1) from p(vj | h(t))

7: sample hi
(k) from p(hi | v(k)) for i = 1, ..., n

8: for j = 1, ..., m, j = 1, ..., n do
9:        Δwji ← Δwji + vj

(0).hi
(0) − vj

(k).hi
(k)

10:      Δαj ← Δαj + vj
(0) − vj

(k)

11:      Δβi ← Δβi + hi
(0) − hi

(k)

Algorithm-B: DBN layer-by-layer Pre-Training

Input: Training Set Y

Output: Pre-Trained DBN Framework

1: for all RBM in DBN framework

2: init Network Parameters; w, α, β
3: if training model is RBM then  input ← Y
4: else input ← combine H and Y
5: for epoch = 1, ...., e do

6:          for k=1, ..., �loor  do

7:          B ← take batch from input
8:          Δw, Δα, Δβ ← Algorithm-1: k-CD

9:          w ← w + μ.Δw
10:        α ← α + μ.Δα
11:        β ← β + μ.Δβ
12: H ← Input × w + β

B. Fine-Tuning
In fine-tuning of the proposed DBN, the additional layer for output 

is appended at final hidden layer in order to get probabilities of the 
samples. The parameters in the proposed DBN  are 
initialized by pre-trained parameters  as: 

 (12)

Where, m indicates the hidden layer’s number, the raw data 
neurons and subsequent parameters that are dropped after pre-
training. Random values are used for parameters  of output 
layer. Thus, the parameters .By 
using the standard forward-propagation, the loss errors MSE can be 
computed between estimated and preset mask. Finally, based on the 
adaptive moment estimation (Adam), parameters of the proposed DBN 
are further tuned by following equations:

 (13)

 (14)   

ERBM-1

Pre-Trained
ERBM-1

Pre-Trained
ERBM-1

Input Data
(Raw Data)

Raw Data for
Next Layer

Raw Data for
Next Layer

ERBM-2

ERBM

Output layer
(Fine Tuning)

Pre-Trained
ERBM-2

Pre-Trained
ERBM-3

Fig. 3. The Proposed DBN framework structure with three hidden layers during pre-training and fine-tuning.
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 (15)

 (16)

Where υ(Epoch+1) indicates learning rate with initial rate of υ(0) set 
according to the requirement. The terms μ1

(Epoch) and μ2
(Epoch) show the 

first momentum estimate and second raw momentum estimate. The  
ν1, ν1, ρ are Adam parameters.

V. Experiments

A. Dataset
In experiments, we selected clean speech utterances from TIMIT 

database [51]. TIMIT corpus includes time-aligned and phonetically 
balanced 16-bit, 16 kHz speech waveform files. The clean utterances 
are used for speech enhancement and speech recognition. It contains 
broadband recordings of 630 speakers of eight major dialects of 
American English, each reading ten phonetically rich sentences. 
In order to evaluate the performance of the proposed method in 
different noisy backgrounds, 10 different noise sources are selected 
from the Aurora-4 [52] database, given in Table II. The spectrograms 
of the noise sources are demonstrated in Fig. 4. To produce the noisy 
speech, we used four signal-to-noise (SNR) levels, -4dB to 2dB with a 
2dB step. To train the proposed DBN framework, we have used 2000 
speech utterances from different speakers of both genders. For all 
SNRs, the input training utterances are mixed with 10 noise sources  
(2000 x 4 =8000 speech utterances). To test the proposed method, 1000 
speech utterances from different speakers are used. The experimental 
results are averaged over 10 noise sources.

TABLE II. Background Noise Sources (N1-N10)

N1: Airport Noise, N2: Babble Noise, N3: Buccaneer, N4: Car Noise, N5: 
Café Shop Noise, N6: Destroyerengine Noise, N7: Destroyerops Noise, N8: 

Factory Noise, N9: Hall Noise, N10: Street Noise

Airport Noise Babble Noise Buccaneer Noise

Time (sec)

Fr
eq

ue
nc

y
Fr

eq
ue

nc
y

Fr
eq

ue
nc

y

2
0

2000

4000

4 6 8

2
0

2000

2000

0

4000

4000

6000

8000

4 6 8

2
0

2000

4000

4 6

1 2 3

10 20 30 40 50

8

2
0

2000

4000

4 6 8

50
0

5000

10000

100 150 200

50
0

5000

10000

0

5000

10000

100 150 200

50
0

5000

10000

100 150 200

Time (sec) Time (sec)

Time (sec) Time (sec) Time (sec)

Time (sec) Time (sec) Time (sec)

Car Noise Cafe Shop Noise Destroyer Engine Noise

DestroyerOps Noise Factory Noise Hall Noise

Fig. 4. Spectrograms of Background Noise Sources.

B. Acoustic Features 
The acoustic features are extracted from the input speech frames. 

The frame length and shift in the proposed method are fixed to 20 msec 
and 10 msec, respectively. The acoustic features set is composed of 13-d 
relative spectral transformed perceptual linear prediction coefficients 
(RASTA-PLP), 31-d Mel-frequency cepstral coefficients (MFCC), 64-d 
gammatone filter-bank energies (GFE), 15-d amplitude modulation 
spectrogram (AMS), where d represents feature dimensions. The 
GFE features are extracted from the T-F representation, known as 
Cochleagram usually employed in computational auditory scene 
analysis. Cochleagram expresses the mechanism of the human 
auditory system. We used a 64-channel gammatone filterbank to 
extract the GFE features. Furthermore, delta features are computed 
and affixed to the acoustic feature sets. RASTAMAT toolbox is utilized 
to extract all the acoustic features. We have used second order auto-
regressive moving average filter (ARMA) to obtain the flat temporal 
trajectories of the acoustic features. The mathematical expression for 
ARMA is given as:

 (17)

where A(t) shows the feature vectors at time frame t, Ᾱ(t) 
corresponds to the filtered feature vectors and k is the order of filter. 
In order to add the temporal information, a context window of five 
frames is used in the proposed method. As a result, we attained 1230-d 
feature vectors. All feature vectors are normalized to zero mean and 
unit variance before fed to the deep neural networks. 

C. Network Architecture
In this paper, a DBN network with a novel pre-training method 

is employed to learn the magnitude+phase aware spectral-mask. The 
network architecture is described in this section. DBNs are learning 
machines and have shown to perform better in speech enhancement. 
The DBN architecture in this study consists of five layers; an input layer, 
three hidden layers, and an output layer. The size of the input layer is 
1230 neurons, that is, 246*5=1230, including 246-d acoustic features 
and features window composed of 5 frames. Each hidden layer consists 
of 1024 hidden neurons and the output layer contains 517 visible 
neurons. From the input to output layer, architecture of the proposed 
DBN has [1230, 1024, 1024, 1024, 517] neurons. Backpropagation and 
dropout regularization are used during fine-tuning. Adaptive gradient 
descent algorithm with a momentum parameter μ is used to optimize 
DBN. 512 samples batch size is used. The scaling factor for adaptive 
gradient descent is set to 0.0010 and the learning rate υ is reduced 
linearly from 0.06 to 0.002. 100 epochs are used during the process. 
For the first few epochs, the μ is fixed at 0.5 and the rate is increased 
to 0.8 for remaining epochs. The MSE loss function based on the mask 
approximation is considered. In supervised spectral masking-based 
SE, the loss functions are usually formulated to estimate the masking 
parameters that efficiently restore the clean speech by attenuating 
undesired noise components in T-F units. The time-domain enhanced 
speech signals are finally recovered by applying inverse STFT (iSTFT) 
using the noisy phase or estimated phase. In this study, the enhanced 
speech is recovered by using the estimated phase. Spectral-masking 
methods are found to be successful as T-F masks are dynamically 
bounded; therefore, achieves quick convergence. In deep learning-
based SE, many approaches are opted to estimate a T-F mask and 
depend on the training-target or the optimization-domain.  In mask-
approximation (MA) domain, the T-F masks are estimated such that 
mean square error (MSE) with preset T-F mask is minimized [53], and 
is given by equation as:

 (18)
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Where  and  indicates the estimated and preset T-F 
masks. The rectified linear unit (ReLU) activation converts a weighted 
sum of the inputs to the model neuron’s output. Recent studies show 
that deep MLPs with ReLU function can successfully be trained by 
using large training data. Thus, ReLU is used as activation function 
in hidden layers and sigmoid activation function is used in output 
layer. The reason for selecting the sigmoid as an output activation 
function is its dynamic range [0 1]. It is used for models that predict 
the output probabilities, since probability exists between 0 and 1. Also, 
the dynamic range of IRM mask exists between 0 and 1. The activation 
functions are:

 (19)

D. Evaluation Metrics and Parameters
We extensively evaluated the proposed method by using four 

objective measures. Perceptual evaluation of speech quality (PESQ) 
[54] and signal-to-distortion ratio (SDR) are used to quantify speech 
quality. PESQ, an ITU-T P.862 recommendation calculates the speech 

quality of enhanced speech with an output value ranging from 0.5 to 
4.5. A high PESQ value implies better quality. SDR also measures the 
quality. Short-time objective intelligibility (STOI) and extended STOI 
(ESTOI) are used to quantify the intelligibility. STOI [55] and ESTOI 
[56] measure the intelligibility of the enhanced speech with an output 
value ranging from 0 to 1. A high STOI and ESTOI value implies better 
intelligibility. The STOI and ESTOI values are obtained by correlation 
between clean and enhanced speech signals in short-time overlapped 
segments. Segmental SNR (SSNR) and output SNR (SNRO) are used to 
quantify the residual noise in enhanced speech. 

VI. Results

In this section, we provide the major findings of this study. We 
objectively evaluated the proposed SE method and compared the 
proposed method with baseline DBN. We additionally compared the 
proposed method with other related speech enhancement methods 
from various classes.  

TABLE III. Performance Evaluation in Terms of STOI and ESTOI in Four Input SNRs Using TIMIT Corpus and Three Background Noises. DBNP: 
Proposed DBN and DBNB: Baseline DBN 

Noise Type → Airport Noise Babble Noise Factory Noise
SNR -4dB

Methods STOI ESTOI STOI ESTOI STOI ESTOI
Noisy 62.82 30.61 57.31 23.46 56.58 23.53
DBNP 78.47 49.48 66.27 37.84 78.22 42.80
DBNB 76.94 47.82 65.74 37.18 75.69 39.14

SNR -2dB
Noisy 67.17 36.05 61.18 28.68 60.74 27.71
DBNP 81.03 53.11 71.53 43.22 69.10 37.38
DBNB 80.59 52.64 71.62 42.84 68.42 35.22

SNR 0dB
Noisy 71.83 41.63 65.43 34.01 65.24 33.24
DBNP 85.05 64.87 76.33 51.63 74.97 48.00
DBNB 85.02 64.63 76.36 51.64 74.44 47.81

SNR 2dB
Noisy 76.14 47.70 70.79 40.14 69.87 39.21
DBNP 86.95 67.73 80.66 57.32 79.11 55.98
DBNB 86.96 67.36 80.31 57.24 78.88 55.51

TABLE IV. Performance Evaluation in Terms of SDR and PESQ of DBNs in Four Input SNRs Using TIMIT Corpus and Three Background Noises. 
DBNP: Proposed DBN and DBNB: Baseline DBN 

Noise Type → Airport Noise Babble Noise Factory Noise
SNR -4dB

Methods SDR PESQ SDR PESQ SDR PESQ
Noisy -3.79 1.58 -4.88 1.44 -3.71 1.34
DBNP 3.31 1.83 1.52 1.64 -0.17 1.61
DBNB 2.94 1.70 1.16 1.41 -0.53 1.48

SNR -2dB
Noisy -1.83 1.72 -1.80 1.60 -1.81 1.44
DBNP 4.79 1.96 2.98 1.78 4.51 1.89
DBNB 4.34 1.90 2.91 1.63 4.47 1.87

SNR 0dB
Noisy 0.12 1.82 0.13 1.73 0.15 1.56
DBNP 6.09 2.23 4.56 1.94 6.31 2.11
DBNB 5.75 2.01 4.55 1.77 5.97 1.98

SNR 2dB
Noisy 2.10 1.95 2.12 1.85 2.12 1.69
DBNP 7.38 2.35 6.26 2.15 7.44 2.29
DBNB 7.32 2.17 6.27 2.07 7.32 2.09
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A. Objective Evaluation
We reported the in depth evaluation for three noise sources, for 

example, using TIMIT database in Table III and Table IV, where we 
have used MA-based MSE loss function for training networks. We 
examined DBN with the proposed pre-training scheme and compared 
to the DBN with regular pre-training scheme. The T-F mask with 
the proposed pre-training scheme significantly improved the quality 
and intelligibility of the noisy speech. Clearly, DBNP outscored the 
conventional baseline DBNB. For example, at -4dB airport noise, 
DBNP improved the STOI and ESTOI by 9.65% and 18.87% over the 
unprocessed noisy speech. Similarly, the STOI and ESTOI at -4dB 
airport noise are improved by 1.54% and 1.66% over the DBNB. In 
addition, DBNP improved the STOI and ESTOI by 8.96% and 14.38% 
over noisy speech at -4dB babble noise. Equally, DBNP improved the 
STOI and ESTOI at -4dB factory noise by 2.53% and 3.66% over the 
DBNB. DBNP improved the SDR at -4dB and -2dB airport noise by 
7.10dB and 6.62dB over the noisy speech. Similarly, DBNP improved 
the SDR at -4dB and -2dB babble noise by 0.40dB and 0.45dB over the 
DBNB. At 0dB factory noise, the DBNP improved the SDR by 5.96dB 
and 0.34dB over the unprocessed noisy speech and DBNB, respectively. 
Similarly, the PESQ at -4dB, -2dB and 0dB babble noise are improved 
by 13.88%, 11.25%, and 12.13% over the noisy speech. Also, the PESQ 
at -4dB, -2dB and 0dB airport noise are improved by 15.83%, 13.95%, 
and 10.4% over the DBNB, respectively. The PESQ, SDR, STOI, and 
ESTOI gains of the proposed pre-training scheme are improving in 
all noise sources. The average PESQ, SDR, STOI, ESTOI, SSNR and 
SNRO improvements are demonstrated in Fig. 5. The average PESQ, 
SDR, STOI, ESTOI, SSNR and SNRO scores with the DBNP and DBNB 
are given in Table V. The outputs of various objective measures 
indicate that the proposed pre-training scheme is performing better. 
The average outputs (STOI, ESTOI, PESQ, SDR, SSNR and SNRO) are 
improved over DBNB by 1.47%, 1.59%, 9.45%, 8.02%, 16.20% and 6.0%, 
respectively. In order to examine the noise reduction potentials of the 

proposed method, we used Segmental SNR (SSNR) and output SNR 
(SNRO). It is clear from Table V that the proposed method attenuated 
the background noise and achieved better SSNR and SNRO as compared 
to other neural networks with the conventional pre-training scheme. 
Time-varying spectral analysis graphically demonstrates the vital 
speech patterns over the time at different frequency bands. In order to 
envisage performance of the proposed SE, spectrograms of the clean, 
noisy and enhanced speech samples are plotted in Fig. 6. For better 
understanding, PESQ, STOI, SDR and SSNR are pointed out over the 
spectrograms. It is noticeable that DBNP successfully attenuated the 
background noise frequencies, and provides a better reconstructed 
speech compared to the DBNB. In order to envisage the impacts of 
phase estimation in the proposed method, spectrograms of the clean, 
noisy speech, DBNP, and DBNB outputs are plotted in Fig. 6. The 
proposed pre-training scheme considerably improved the speech 
quality and intelligibility.

B. Comparison With Related Methods
The proposed DBN-based SE method is further judged against 

other related SE methods including baseline DBN (DBNB), DNN, deep 
denoising autoencoder (DDAE) [57], and LMMSE to validate the 
performance. It is observed that the DBN with proposed pre-training 
scheme (DBNP) achieved considerable improvements in terms of the 
PESQ, STOI, and SDR as well as outscored the related SE methods. 
On the other hand, the PESQ, STOI, and SDR scores of the baseline 
DBN underperformed as compared to the DNN and DDAE. Table VI 
validated that DBNP outscored the baseline DBN, DNN and DDAE, as 
well as LMMSE with reasonable margins. For illustration, the STOI is 
improved from 67.12% with DBNB at -4dB airport noise to 72.13% with 
DBNP and improved STOI by 5.01%. Similarly, the PESQ is improved 
from 1.56 with DBNB at -4dB airport noise to 1.79 with DBNP and 
improved PESQ by 14.74%. Also, the SDR is improved from 0.98dB 
with DNN, 0.73dB with DDAE and 0.23 with LMMSE to 1.57dB with 
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Fig. 5. The average PESQ, SDR, STOI, and ESTOI improvements in all noise sources.

TABLE V. Average Comparison Performance of DBNP and DBNB in All Noise Sources at Four Input SNRs Using TIMIT Corpus 

Input
SNRs

DBNP DBNB

STOI ESTOI SDR PESQ SSNR SNRo STOI ESTOI SDR PESQ SSNR SNRo
-4dB 73.43 45.08 1.77 1.82 2.48 3.55 71.59 43.16 1.09 1.63 2.13 3.13
-2dB 77.49 51.62 4.67 2.08 3.43 4.57 75.99 49.89 4.14 1.89 3.01 4.34
0dB 81.46 57.35 6.04 2.21 3.80 6.43 80.13 55.90 5.72 2.06 3.09 5.98
2dB 84.51 63.01 7.44 2.33 4.95 7.38 83.31 61.78 7.26 2.23 4.39 7.23
Avg. 79.22 54.27 4.98 2.11 3.66 5.48 77.75 52.68 4.55 1.95 3.15 5.17
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DBNP and improved SDR by 0.56dB, 0.84dB and 1.34dB, respectively. 
At 2dB SNR, the average STOI is improved from 82.05% with DBNB to 
83.11% with DBNP and improved STOI by 1.06%. Similarly, the PESQ 
is improved from 2.11 with DBNB to 2.23 with DBNP and improved 
PESQ by 5.68%. Also, the SDR is improved from 7.08dB with DNN, 
6.42dB with DDAE and 3.87dB with LMMSE to 7.23dB with DBNP and 
improved SDR by 0.15dB, 0.81dB and 3.36dB, respectively.  

Table VII demonstrates the performance of the proposed pre-
training method in terms of the SNRO, ∆SNR, and SSNR, respectively. 
The SSNR measure is employed in order to quantify the residual noise 
distortion in the output speech. The proposed DBNP considerably 
improved the SNRO and achieved significant performance gain in 
terms of the SNRO. The ∆SNRs for DBNP are higher that for the related 
SE methods. For example, the SNRO at -4dB is improved from 2.98dB 
with DNNB, 3.01dB with DNN and 2.23dB with LMMSE to 3.56dB with 
DNNP and increased SNRO by 0.58dB, 0.55dB, and 1.33dB, respectively. 
In case of the SSNR, a consistent output score signifies that DBN-based 
SE with the proposed pre-training notably attenuated the background 
noise, confirmed by time-varying spectrograms in Fig. 6. 

Time (sec)

Clean: PESQ = 4.5, STOI = 1 Noisy: PESQ = 1.32, STOI = 72.8, SDR = 0.12

DBNp: PESQ=2.41, STOI=86.6, SDR=6.5 DBNB: PESQ=2.3, STOI=87.4, SDR=6.2 

0.5
0

2000

4000

6000

8000

1.51 2.52 0.5 1.51 2.52

0.5
0

2000

4000

6000

8000

1.51 2.52 0.5 1.51 2.52

Fr
eq

ue
nc

y

Time (sec)

Time (sec)

Fr
eq

ue
nc

y

Time (sec)

Fig. 6. Time-varying spectral analysis.

C. Network Complexity and Convergence
The complexity of DBNB/DBNP relies on the number of network 

parameters and the forward-backward propagation during tuning of 
the neural network. In the proposed DBN-based SE method, we have 
initialized the network parameters by a novel pre-training scheme 
instead of the randomly initialization. We observed that a network 
initialized with the proposed pre-training scheme converges quickly 
as compared to the randomly initialization or initialization with 
typical pre-training scheme. Moreover, the network complexity also 
relies on the quantity of hidden neurons and their weights. Greater the 
quantity of hidden neurons greater will be the network complexity. All 
DBNs have similar network architecture, quantity of hidden layers, 
neurons in the hidden and visible layers; however, the proposed DBN 
converged quickly and showed less complexity. The reason behind the 
quick convergence (less MSE loss) is incorporation of the novel pre-
training scheme. With similar hidden neurons quantity, the proposed 
DBN-based SE method provided lower MSE errors, and this fact can be 
observed in Fig. 7. The complexity of the proposed DBN is illustrated 
in Table VIII, symbolized by “O”. The forward-backpropagation relies 
on input features dimension: FD, training data quantity: TD, quantity 
of hidden neurons: TH, quantity of output neurons TO, and quantity of 
epochs for parameters tuning TE.  
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TABLE VI. Average Performance Evaluation Against Related Speech Enhancement Methods

Processing 
Methods

-4dB -2dB 0dB 2dB

STOI PESQ SDR STOI PESQ SDR STOI PESQ SDR STOI PESQ SDR

Noisy 58.90 1.45 -4.11 63.0 1.58 -1.81 67.50 1.70 0.13 72.26 1.83 2.11

DBNP 72.13 1.79 1.57 76.45 2.02 4.33 80.76 2.18 5.94 83.11 2.23 7.23

DBNB 67.12 1.56 1.09 73.54 1.81 3.97 78.60 1.95 5.52 82.05 2.11 6.97

DNN 71.33 1.61 0.98 75.87 1.87 4.02 80.43 2.02 5.23 83.47 2.19 7.08

DDAE 70.16 1.54 0.73 73.77 1.73 3.21 77.71 1.89 4.32 80.82 2.00 6.42

LMMSE 65.33 1.48 0.23 69.31 1.67 2.18 71.33 1.78 2.98 75.11 1.93 3.87

TABLE VII. Output SNR and SSNR Performance at Input SNRs Against Related SE Methods

Methods
-4dB -2dB 0dB 2dB

SNRO ∆SNR SSNR SNRO ∆SNR SSNR SNRO ∆SNR SSNR SNRO ∆SNR SSNR

DBNP 3.56 7.67 2.43 4.75 6.75 3.31 6.36 6.36 3.73 7.21 5.21 4.94

DBNB 2.98 6.98 1.92 4.03 6.03 2.92 5.76 5.76 3.08 6.31 4.31 3.67

DNN 3.01 7.01 1.98 4.12 6.12 3.01 5.89 5.89 3.11 6.53 4.53 3.98

LMMSE 2.23 6.23 1.61 2.73 4.73 1.79 4.88 4.88 2.74 5.79 2.73 3.27
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TABLE VIII. Complexity of the Network 

Operations  Proposed Network
Forward-Backward Propagation O(TD TE (FD + TH + 2TH

2 + TH TO ))
Average Pre-Training Time 3.33 Hours for 2000 Utterances 
Average MSE at 100 Epochs 0.08 Approximately 

VII.  Discussion and Conclusions 

We have proposed and examined a supervised DBN-based speech 
enhancement method to reduce/attenuate the background noise in 
single-channel systems. We pre-trained and fine-tuned the DBNs 
by employing a novel pre-training scheme which incorporates 
important information available in the raw data to learn a T-F mask. 
The estimated mask is applied to the noisy speech by using the noisy 
phase to achieve the enhanced version of degraded speech. In the 
proposed DBN framework, the acoustic features are progressively 
extracted by multiple-stacked RBM during the pre-training. The 
hidden acoustic features from the preceding RBM are combined with 
raw input data to serve as the new inputs to in-progress RBM. By 
feeding the raw data to RBMs, layer-wise features related to the raw 
data can progressively be extracted, which showed useful to mine 
valuable information in the raw data. The proposed study used the 
estimated phase during the speech reconstruction to further improve 
the performance. All acoustic features are the integration of the raw 
acoustic features in windows, since temporal-dynamics provides 
important information for speech. The fundamental perception 
to utilize temporal-dynamics is to employ the DBN architecture, 
an extension of the feedforward DNN. The DBN framework grabs 
the long-term temporal-dynamics by using the pre-trained RBM 
parameters. DBNP are pre-trained to estimate the IRM, and achieved 
by 1.47%, 1.59%, 9.45%, 8.02%, 16.20% and 6.0% improvements over 
the DBNB in terms of the STOI, ESTOI, PESQ, SDR, SSNR and SNRO, 
respectively. The achieved improvements are significant in the 
speech enhancement. In order to test the generalization ability of 
the proposed DBN, we have employed the TIMIT database which 
is composed of male and female speakers. The ∆SNRs and SSNR for 
DBNP are higher compared to the related SE methods. We achieved 
less computational complexity and quick convergence as compared 
to the baseline DBNs. The spectrogram of the DBNP indicates a better 
reconstructed speech signal, suggesting the benefits of the proposed 
pre-training scheme. To summarize, the proposed DBN-based SE is 
simple and performed better in terms of improving the intelligibility 
and quality in the background noisy environments. 

future work 

Presently, most of the speech processing algorithms operate only 
with the spectral magnitude, leaving the spectral phase unexplored. 
With recent advancement in deep neural networks, the phase 
processing became more important as an innovative and emergent 
prospective of the DNN-based speech enhancement. In the future, 
the authors will develop the DBN with phase estimation to test the 
intelligibility and quality potentials in the complex noisy environments. 
The unsupervised learning algorithms with modifications can also 
lead to comparable performances [58] - [60].
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