
Special Issue on Artificial Intelligence in Economics, Finance and Business

- 65 -

* Corresponding author.

E-mail address: abaldomi@inf.uc3m.es

Keywords

Cloud Computing,
Machine Learning,
Prediction, Price
Forecasting.

Abstract

Elastic Cloud Compute (EC2) is one of the most well-known services provided by Amazon for provisioning
cloud computing resources, also known as instances. Besides the classical on-demand scheme, where users
purchase compute capacity at a fixed cost, EC2 supports so-called spot instances, which are offered following
a bidding scheme, where users can save up to 90% of the cost of the on-demand instance. EC2 spot instances
can be a useful alternative for attaining an important reduction in infrastructure cost, but designing bidding
policies can be a difficult task, since bidding under their cost will either prevent users from provisioning
instances or losing those that they already own. Towards this extent, accurate forecasting of spot instance
prices can be of an outstanding interest for designing working bidding policies. In this paper, we propose the
use of different machine learning techniques to estimate the future price of EC2 spot instances. These include
linear, ridge and lasso regressions, multilayer perceptrons, K-nearest neighbors, extra trees and random forests.
The obtained performance varies significantly between instances types, and root mean squared errors ranges
between values very close to zero up to values over 60 in some of the most expensive instances. Still, we can
see that for most of the instances, forecasting performance is remarkably good, encouraging further research
in this field of study.

DOI: 10.9781/ijimai.2022.02.003

AWS PredSpot: Machine Learning for Predicting the
Price of Spot Instances in AWS Cloud
Alejandro Baldominos*, Yago Saez, David Quintana, Pedro Isasi

Computer Science and Engineering Department, Universidad Carlos III de Madrid, Leganés, Madrid
(Spain)

Received 30 July 2020 | Accepted 25 January 2022 | Published 8 February 2022

I. Introduction

Amazon Web Services (AWS) is an Amazon ecosystem comprising
a large number of cloud services. This ecosystem is in a process of

continuous growth, with new services or functionalities added every
few months.

One of the most well-known AWS services is EC2 (Elastic Cloud
Compute), an application that provides Infrastructure-as-a-Service
(IaaS) for cloud computing. These services allow users to launch
on-demand instances (virtual machines) in order to satisfy certain
computational needs. This option is interesting when a user or
company has a variable computing load, thus avoiding the need to
acquire specific infrastructure whose administration and maintenance
can become very expensive.

Besides on-demand instances, EC2 allows users to bid for computing
capacity that is not in use. This enables users to establish a maximum
bidding price and, in case they be the winner of the bid, then they are
able to use the corresponding computational capacity. In EC2, these
instances are called “spot instances”. The hourly cost of spot instances
can be significantly lower than on-demand instances; however, the
instance will only belong to the user as long as the bid is higher than
the spot price. In other case, the instance will be terminated and the
user will not be able to access it anymore.

AWS allows to query the price of spot instances in real time [1].
Additionally, users can study the historic evolution of EC2 instances
of a certain type, up to three months in the past, as it can be seen
in Fig. 1.

In this paper, we aim at designing and developing a system able
to predict the future price of a spot instance in EC2, with the final
objective of easing the optimization of the bidding procedure. To do
so, we will rely on historic information in the spot instances prices.

The remainder of this document is structured as follows: in Section
II we present some basic concepts which are key to understand the
current proposal, in Section III we will briefly describe the state of the
art and some related work.

Then, in Section IV,we will identify different data sources,
explaining the acquisition process, and in Section V we will describe
the cleansing and processing stages.

Later, in Section VI we will detail the procedure for learning
regression models that fit the instance prices and in Section VII we
will provide quality metrics to assess the performance of the learned
prediction models and discuss the results obtained.

Finally, in Section VIII we will provide some conclusive remarks
regarding the work performed in this paper as well as suggest lines
of future research. In , we will present the prediction system delivered
as a service, describing the infrastructure underlying the prediction
system and an API for accessing it.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº3

- 66 -

II. Structure of the Paper

Before proceeding with the description of the proposal, it is
important to introduce some relevant concepts that are required to
understand which factors affect the instance price (both in the case of
on-demand and spot instances). These factors are the following:

• Region: it refers to the Amazon datacenter where the instance will
be launched. Some examples of regions are the following: North
Virginia (us-east-1), Ohio (us-east-2), North California (us-west-1),
Canada (ca-central-1), Ireland (eu-west-1), etc.

• Availability zone: it is a more precise area within the region. It is
identified with a letter after the region codename, for instance,
region “us-east-1” contains zones from “us-east-1a” to “us-east-1f”.
Instances, even those of the same type, can see their cost affected
depending on their availability zone.

• Type and size: the instance type determines the compute
capabilities it provides. Most often, the instance types adheres to
the following convention: <type>.<size>. For example, an instance
p3.16xlarge is an instance of type P3 (general use GPU computing)
and of size 16xlarge, meaning in this case that it contains 8 GPUs.

Amazon provides an updated listing with all the different instance
types and their specifications [2]. This factor is the one that affects
the most the instance cost.

• Operating system: also called “product” the instance cost can vary
depending on whether it runs a Windows environment or a UNIX/
Linux one.

III. Related Work

The problem of forecasting the prices of EC2 spot instances is of
clear interest, since it allows companies of different sizes to work on
optimal bidding strategies that can optimize economic resources spent
on cloud computing infrastructure. For this reason, this problem has
been observed mostly from two perspectives. The first perspective
relies on the study of EC2 spot pricing as an economic problem, using
approaches based on econometrics or other financial tools to design
bidding models. The second perspective, which is the one followed in
this paper, relies on techniques of computational intelligence to frame
the approach as a supervised learning problem.

Fig. 1. Panel showing the evolution of the EC2 spot instance price in the AWS console, for a specific instance type and different availability zones, over a period
of three months. On-demand (non spot) price is shown in the black line.

Special Issue on Artificial Intelligence in Economics, Finance and Business

- 67 -

One early work which aims at reverse engineering the EC2 spot
pricing scheme is provided by Ben-Yehuda et al. [3], where they build
a model concluding that the prices are not fully market-driven, but are
most of the times generated randomly within a small range of values.
They do not suggest a bidding strategy as such, but rather work on a
thorough economic analysis of the pricing models.

Another statistical analysis of the pricing scheme of EC2 spot
instances is provided much more recently by Portella et al. [4]. Again,
they do not focus on a bidding strategy or price forecasting, but obtain
a useful conclusion from the analysis: by bidding at 30% of the on-
demand price, availability of over a 90% can be attained, although the
specifics vary based on the instance type. Another work by Lumpe
et al. [5] focuses as well on a descriptive statistical analysis and
econometric study of EC2 spot prices, with authors also devising a
bidding strategy that minimises the bidding cost while guaranteeing a
certain probability of availability over a defined threshold.

Another early work by Tian et al. [6] suggests a decision model
for provisioning computing resources in EC2 by combining different
schemes, combining spot instances with the classical on-demand
model. In the paper, they introduce a model able to predict the demand
and spot prices are expected to vary as a result. Interestingly, they
do not focus only on price forecasting, but also in how to diversify
instances to deal with potential loss of spot instances (in case their
actual price exceeds the bidding price).

Tang et al. [7] address the problem of tackling an optimal bidding
strategy. In this case, authors use Markov decision processes, and
prove a theorem by which any sequence of bidding decisions can be
obtained by a dual-option strategy, either bidding the maximum spot
price or giving up at each time. In a more recent work [8], the authors
apply this strategy under service-level agreement constraints. In both
works, the authors do not focus on price forecasting as an intermediate
task to build the bidding policy.

Chhetri et al. [9] have studied the streamlined EC2 spot markets,
a different model where prices are softened by using long-term
trends in demand and supply. They combine econometric indices as
well as computational techniques (logistic regression and principal
component analysis) to perform their study. Authors extract
interesting conclusions from their analysis: median spot prices have
grown in the streamlined model, and sophisticated bidding strategies
are less useful in this pricing model. Also, they suggest how to perform
bidding price estimation.

When focusing on spot price forecasting, Chhetri et al. [10] use
time-series decomposition and look-backs, attaining results that
compare or slightly outperform other more classical approaches. For
the evaluation, they constrain to eight Microsoft Windows-based
instance types in the Sydney region, attaining root mean squared
errors that achieve values of 0.559 in c3.xlarge instances.

Another approach using regression random forests has been
provided by Khandelwal et al. [11], where they learn models to
perform one-day and one-week ahead forecasting. They state that
this technique outperforms other methods, reporting a mean absolute
percentage error of less than 10% for one-day and less than 15% for
one-week forecasting.

A more recent approach has been proposed by Lancon et al.
[12], where they use long short-term memory neural networks and
claim a reduction of 95% in mean average percentage error as when
compared to a baseline model. Unfortunately, absolute errors do not
seem to be reported in the paper. We also found this problem in a
recent contribution by Malik and Bagmar [13]. These authors discuss
a technique to analyze and predict the spot prices for instances using
random forests. The authors report mean average percentage errors in
the range from 0.15% to 56.2% depending on the instance type.

Recently, Chittora and Gupta [14] explored the feasibility of relying
on 2-layer stacked LSTM model for this task using 3 months of spot
price data for 5 instances. The results for next day spot price forecast
show mean absolute percentage errors under 10% and root mean
squared errors below 20%, outperforming the standard LSTM and the
3-layer LSTM considered as alternatives.

Finally, Liu et al. [15] benchmarked kNN regression against linear
regression, support vector machine, random forest, multi-layer
perceptron and gcForest using the MAPE5%, which represents the
number of results whose absolute percentage error is less than or equal
to 5% as a percentage of the number of total results, as performance
metric. According to their results, kNN regression offered the best
performace with a MAPE5% up to 94% in 1-day-ahead prediction and
94.06% in 1-week-ahead, respectively.

In this work, we will carry out an extensive comparison of diverse
machine learning techniques towards forecasting of EC2 spot prices.
To the best of our knowledge, this is the most detailed work when it
comes to tackling a larger number of EC2 instance types and reporting
results in a separate manner for each of them, as well as comprehensive
due to the large number of techniques tested.

IV. Data Sources

In this section we will present the different data sources used
in order to train and validate the regression models for the price
prediction of EC2 spot instances.

A. Approach
The instance price data is modeled as a time series. This series can be

seen as a sequence of values for each instant of time, existing a different
series for each region, instance type and operating system. Each value
in the time serieswill contain a timestamp indicating the moment of
time towhich it refers, as well as the instance price at that time.

The data in the time series can be obtained via two different
approaches: recovering them from historic archives or querying the
prices in real time. In the first case, we would be talking of previously
captured data, stored for their later recovery. Meanwhile, in the second
case we would refer to new data that is changing as time happens.

The availability of historic data is useful for feeding the models
with a large amount of values (e.g., corresponding to several years).
Conversely, access to real-time data is useful to provide feedback to
the model and updating it periodically to ensure that its predictions
are updated to the current characteristics of the time series.

B. History Data Sources
In this work we have used two different data sources providing

information of archived historical data of EC2 spot instances prices.

1. AWS Spot Pricing Market
Dataset provided by the Data Science Awards 2017 competition,

which is publicly available for download in Kaggle. This involves a
CSV file for each of the regions [16]. The structure of these CSV files
is shown in Table I.

TABLE I. Structure of AWS Spot Pricing Market CSV Files

Timestamp Type OS Zone Price

2017-05-06 17:29:01 c4.large Linux ca-central-1a 0.0139

2017-05-06 17:29:01 m4.4xlarge Windows ca-central-1b 0.8328

This dataset is very complete as it gathers many different types of
possible instances, for every operating system and comprising eleven
AWS regions. However, the main drawback of this dataset has to do

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº3

- 68 -

with its limited of the time period considered, since it only includes
instance prices between February and May 2017, not providing time
series longer than three months.

This is of course a problem when trying to capture seasonal
patterns. To illustrate this with an example, it could be reasonable to
hypothesize that in summer season instances are cheaper, because of
the low demand (there are fewer companies actively requiring cloud
computing services). Conversely, there could be demand peaks at
other moments, such as back-to-work period or Christmas campaigns.

Moreover, there could exist inter-annual trends, such as a decrease
in the average instance cost, which cannot be detected since the
dataset only comprises data from 2017.

2. Spot Price Archive
Spot Price Archive is a historic data archive of EC2 spot instances

prices provided by Western Sydney University, Australia. The archive
provides a graphical interface for accessing data [17] (see Fig. 2) and
was developed for a project aiming at modeling the spot instances
price [18].

This dataset is much more complete regarding the length of time
series, since it provides data for all years comprised between 2009 and
2016. As a drawback, it imposes some limitations over the previous
dataset, since it only comprises certain regions and instance types.

In particular, Data Science Awards dataset provided prices for
68 instance types and 11 regions, whereas Spot Price Archive only
contains 15 instance types in 8 regions. Besides, the number of

Fig. 2. Graphical user interface of Spot Price Archive.

Special Issue on Artificial Intelligence in Economics, Finance and Business

- 69 -

availability zones is also more limited. For example, region us-east-1
comprises six zones (from us-east-1a to us-east-1f), from which the
former dataset gathers five and the latter only four.

Despite of being more restricted, this historic dataset will be used
to improve the prediction performance over those instance types and
regions included in the dataset, providing more information about
seasonal behaviors along the year as well as inter-annual trends.

Data from this dataset can be downloaded in CSV files. The
acquisition process can be automated because URLs for the CSV files
always follow the same convention, with the following base URL:

http://spot.scem.uws.edu.au/ec2si/Download.jsp

This URL accepts the following query parameters, which can be
specified in the GET request: Zone (the availability zone), Type (the
instance type), Product (the operating system), IntervalFrom (the start
date, formatted as “yyyy-mm-dd 00:00:00.0” and IntervalTo (the end
date, with the same format).

The CSV files obtained are structured as shown in Table II. It can
be seen howthis structure is equivalent to the previous dataset, since
the values in the columns corresponding to the availability zone, the
instance type and the operating system are known beforehand.

TABLE II. Structure of Spot Price Archive CSV Files

Timestamp Price

2012-11-05 12:00:00 0.006

C. Real-Time Data Sources
Historic data allows us to learn regression models that can take into

consideration inter-annual trends and seasonal factors. Nevertheless,
it is important to periodically feedback these models in order to keep
them upgraded and get useful and accurate predictions over time. In
this work we consider the use of one source of real-time data.

1. EC2 API
The most convenient way to obtain real-time data is to use EC2’s

API, which has an endpoint (describe_spot_price_history) [19] that
returns the history of prices from the current time up to 90 days into
the past. By calling this endpoint, we can obtain real-time data.

The endpoint returns a JSON-encoded object with the following
structure, as described in the specification:

{
 "SpotPriceHistory" : [
 "AvailabilityZone" : <zone>,
 "InstanceType" : <type>,
 "ProductDescription" : <os>,
 "Timestamp" : datetime(yyyy, m, d),
 "SpotPrice" : <price>
], ...
}
These fields identify the instance type, the zone and the operating

system, as well as the timestamp and the price. Therefore, we will be
able to easily transform this data into CSV files with the format that
we had seen previously in the case of historic data.

V. Data Processing

Before training the regression models for instance price prediction,
we will perform some basic processing of the data in order to extract
relevant features that can be useful for training the models, as well as
to standardize the output format of the different data sources.

A. Feature Selection
After acquiring the data, the available attributes are those

characterizing the instance (availability zone, type and operating
system) and the timestamp.

The instance features comprise categorical data which will not
be subject to any additional processing. However, in the case of the
timestamp, it is stored as a text string, which is not particularly useful.
We will use it to retrieve some features which can be of interest:

• Year: the year can be relevant to discover inter-annual trends,
as whether the price of a certain instance type decreases as new
instances are released.

• Month: the month is an important feature to detect intraannual
seasonal trends, such as whether the price is lower in summer
months, when demand may be lower due to the holidays season.

• Day of month: it is difficult to know whether this is a relevant
feature, but it could be in the case of intra-monthly trends.

• Day of week: it can be interesting to detect whether prices change
on weekdays versus weekends.

• Hour: it can be of interest because the cost could change based on
days as opposed to nights. For this reason, this feature could also
depend on the instance region. We have omitted the minute and
second since they do not seem to be relevant features affecting the
instance price.

B. Output Format Standardization
As we saw in the previous section, all data from different sources

is equivalent when it comes to the features (columns). When it comes
to rows, they also follow the same format, which is the one provided
by Amazon EC2 API: a row is only shown when there is a change
in the instance price. This means that the difference between two
consecutive timestamps is not constant, and also that there is not
explicit information about the price at every timestamp, although this
information can be easily inferred.

In this standardization, we reduce the resolution of the timestamp
from seconds to hours, as we explained previously. In some cases,
the prices can slightly vary within the same hour, in which case we
compute the median of the different values. We have decided to use
the median instead of the mean to avoid adding values that did not
appear originally in the input data.

Finally, we fill the non-existing rows between the start and end date.
Since rows only exist when there is a change in the price, newrows
will have as the price the last value available immediately before the
time of the row being added.

VI. Model Learning

In this section we will explain the machine learning techniques
used to train the regression models for instance price prediction. First,
we will discuss some design decisions regarding the training process,
and later we will detail the training procedure.

A. Design Decisions
When learning a regression model from a time series such as the

one described in this paper, we can mainly choose among two different
approaches.

In the first approach, we would use the information available in the
time series to predict the next value, which is unknown. In this case,
the attributes are formed by the price in the n previous times. In other
words, given (t0, t1, ..., tn), we want to predict the value at time tn+1.

This approach, despite being very common, does not seem the
most appropriate for solving the problem. The first reason is that the
quality of predictions degrades when we want to predict values that
are far in the future, since we would be using as input some features

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº3

- 70 -

whose value is unknown and are just an estimation (this means that
for predicting tn+m, we will need values (tn+1, tn+2, ..., tn+m−1), which are
not known). The second reason, which is domain-dependent, is that
this time series is very static, and in some cases an instance can hold
the same price during hours or even days. For this reason, a prediction
model would like turn to keep the price invariant, missing all the times
that the price is actually updated.

The second approach, which we have deemed more interesting in
this work, is to introduce as input the parameters that were previously
described: year, month, day of month, day of week and hour, as well
as availability zone, instance type and operating system. In this case,
knowing the values in the time series immediately before the desired
prediction time instant is irrelevant, since they are not used for the
prediction. As a consequence of this, the approach has the advantage
that the quality of the prediction is not affected by how far in the
future the desired value is.

Finally, we have decided to train a model for each instance type.
This is due to the fact that there is a significant heterogeneity between
different instance types, and one model could find difficulties when
dealing with such an amount of diverse data. Nevertheless, given a
fixed instance type, the price is much more stable, even though it
still can vary significantly depending on the availability zone, the
operating system, and the date and time.

B. Learning Procedure
In order to train the models, we will use the Scikit-learn library for

Python [20].

The first step is to use one-hot-encoding (OHE) to convert
categorical attributes into binary features in order to establish a
data format which can be accepted by this library. As an example,
if we had a sample whose operating system is “Windows”, the OHE
encoding would generate three binary features, from which feature
“os_windows” would be set to one and features “os_linux-unix” and
“os_suse-linux” would be zero.

When it comes to the process of learning a regression model
from the available data, there are numerous techniques that could be
used, and it can be difficult to determine beforehand which of such
techniques could work best. In fact, it could happen that a technique
works the best on a certain instance type, but be outperformed by
other techniques in other types. In this case, we could not claim that a
technique is the best performer.

Because of this, we will test different machine learning techniques
with each type of instance. In particular, these techniques are the
following:

• Linear regression: a standard algorithm that will learn a hyperplane
fitting input data with the least square error.

• Linear regression with ridge regularization: same as the previous
one yet imposing a penalty in the size of the regression coefficients.

• Linear regression with lasso regularization: same as the first one,
but preferring solutions with fewer parameters.

• Multilayer perceptron: a neural network that can act as a universal
function approximator. In the chosen setup, it comprises one
hidden layer with 100 units.

• K-nearest neighbors: a geometric model where the K closest
instances to the one being predicted are retrieved, and their
outputs are averaged to provide a prediction. In the chosen setup,
K is set to five.

• Extra Trees: an ensemble grouping several models and weighting
their outputs. In particular, in this case these models will be
regression trees, where each one will be trained using a random
sample of the data and a random subset of the features. In the

current setup, the ensemble will be formed of 10 models.

• Random Forests: similar to Extra Trees, yet with less randomness
when it comes to choose the attributes to build the decision trees.

• AdaBoost: an ensemble where a regression model is first fitted
over the original data and then additional models are trained over
this data, but giving a higher weight to instances poorly estimated
by previous models.

• Bagging: an ensemble where several regression models are trained
over different samples of data.

We have chosen these techniques since they capture a large diversity
of the machine learning techniques. For instance, linear regression is a
simple model aiming at learning a line within the space of features and,
along with the variations using ridge and lasso regularization, they are
a good representative of linear models. The multilayer perceptron is
the best representative of a feed-forward neural network. K-nearest
neighbors is a simple model based on analogy, that is able to capture
complex frontiers of decision in the space of features, under the
hypothesis that similar instances will have a similar output. Finally,
we have tried different ensembles based on decision trees, which
are models able to learn rules for making a decision based on the
features’ values. We have only tested ensembles of decision trees since
individual trees will often take longer to train and will rarely obtain
better results, as they are more prone to overfitting.

Table III summarize the hyperparameters used for these techniques.
These hyperparameters have been chosen after a prior stage of
sensitivity analysis.

TABLE III. Hyperparameters of the Different ML Techniques

Technique Parameter Value

Ridge / Lasso Regularization strength 1

MLP

Number of layers
Number of units
Activation function
Optimizer

1
100
ReLU
Adam

KNN
Number of neighbors (K)
Distance metric

5
Euclidean

RF / ET / Bagging Number of models 10

AdaBoost Number of models 50

Once the techniques are chosen, we will follow the next procedure:
First, we will split the dataset for each instance type into a training
set and a test set. Instead of performing a random division of data, we
have decided that data from September 2017 be assigned to the test set,
with previous information assigned to the training set.

Later, for each instance type we will train each model ten times.
This decision is motivated by the fact that most of the previously
described techniques are stochastic, and therefore one single run could
introduce an important bias. Finally, for each instance type we will
serialize the best model, so we can recover it later when aiming to
predict the price of a spot instance in the future.

VII. Model Evaluation

To validate the different models, we will compute three quality
metrics for the best model obtained and compare it to a baseline. Such
baseline will correspond to the performance of a naive regression
model that would always predict the average price. The most
improvement over such baseline, the best performance of the model.

The metrics reported in this work are the following:

• Root Mean Squared Error (RMSE) is the square root of the mean of
squared errors. Therefore, being yi the real price for sample i and

Special Issue on Artificial Intelligence in Economics, Finance and Business

- 71 -

(i) the price estimated by the regression model, RMSE is computed
as in (1).

 (1)

The closest this value is to zero, the most accurate the model
predictions will be.

• Explained Variance Score (EVS) computes to which extent a
regression model captures the distribution of the original data. It
is computed as shown in (2).

 (2)

The value will be better as it approaches one. In the case of the
baseline, since the mean is always returned, then EVS will be zero.

• R2 Score, or coefficient of determination, measures to what extent
the model will estimate future samples, and is computed as shown
in (3).

 (3)

Again, the value will be better as it approaches one. For the baseline,
since yi is the mean value, R2 score will be zero. Notwithstanding, a
model arbitrarily worse could have a negative score in this metric.

Table IV shows the results of the evaluation in terms of the
previously defined metrics, also showing the technique leading to
the best obtained model. In the case of the baseline, only the RMSE
is shown, since EVS and R2 score are always zero. The last column
displays an estimation of the model quality depending on its R2 value.

A. Discussion
As it can be seen, results vary significantly depending on the

instance type. For some types, such as c3, r3, m1, m3 or i3, we have
achieved models that are able to successfully predict prices for almost
the entire family. As we suggested earlier, the best model can vary
from one instance type to another, although the multilayer perceptron
or ensembles often behave well in many cases.

Conversely, some instance types obtain poor results, even if RMSE
always improves over the baseline. This happens because the instance
type has a small spot offer, therefore turning the market price more
unpredictable. This effect is clearly seen in some instance types.

For example, f1.16xlarge instances have an on-demand cost of 13.2
dollars per hour, but a baseline RMSE over 65 dollars. The reason is
that in a scenario with few offer, the price can be set to the maximum
established by AWS, which is ten times the on-demand price, i.e., 132
dollars. This can severely affect the time series, leading to a bumpy
landscape that can harden the process or learning a regression model.
In such cases, an alternative would be needed to improve these models
performance.

Regarding machine learning techniques, there is not a clear winner
that shows an outstanding prediction capability for all of the diversity
of EC2 instance types. Generally speaking, linear regression is not
dominant except for a small set of instances, regardless of whether
regularization is used or not. This seems to indicate that most instance
types have spot prices that do not have a linear dependency on the
input features. Also, KNN is not displaying a good performance except
for a couple of instance types. We can also see how MLP seems to
be the model of choice for those instance types where prediction is
more difficult and leads to worse result. This can be due to the fact
that MLP is able to approximate the series of prices better than any
other model, but it is still insufficient for considering the result as a

good prediction. Conversely, ensembles of decision trees are found
most often among the best models to achieve successful regression.
Given this information, it seems that price prediction is rarely a linear
problem, except for a few cases of instance types.

VIII. Conclusions

In this paper we have described all the steps carried out to tackle the
problem of predicting EC2 spot instance prices. In this problem, we are
interested in knowing the price of a certain spot instance at some point
in the future, in order to be able to bid consequently. In order to solve
this problem, we have used two different historical datasets, as well as
data extracted in real time from the EC2 API, providing data from the
last three months. Once data is retrieved, we have transformed then in
order to extract relevant features from the timestamp and have later
trained a regression model for instance type. The rationale beyond
training separate models based on the instance types is that there is a
very high variability in the prices depending on the type.

In particular, we have used Scikit-learn to test different regression
techniques and selected those improving the quality metrics for each
instance type: RMSE, EVS and R2. When looking at the results, we
notice that some instance types obtain almost perfect models, whereas
in others the baseline (a base prediction of the average price) was
barely outperformed. This difference can be explained at least partially
due to the characteristics of the instance.

Finally, we have developed a Prediction-as-a-Service system which
we have deployed in the cloud. The infrastructure underlying this
service as well as the API documentation is described in the appendix.

In order to further improve this work, we could add the support
for more instance types and availability zones, by retrieving enough
data from the EC2 API. Also, we could introduce more features to
the problem, taking into account that these features must be known
beforehand for those instances we want to predict. An example of
such attribute could be whether the day is a national holiday in the
region where we want to predict the price.

Appendix: Prediction-as-a-Service

In this appendix, we will detail the backend infrastructure required
for storing the models, keeping them updated and enabling real-time
prediction using a public endpoint (web service), as well as describe
the interface for using the prediction system as a service.

A. Infrastructure
The CSV data and serialized models will be stored in the cloud, in

an S3 bucket.

In a periodic fashion, a batch process will update the models. To do
so, it will create an EC2 instance that will download the data from S3,
include the most recent data using the EC2 API and finally retrain the
machine learning model with the new data. This model will be stored
in S3 replacing the previous version.

To provide the prediction service, we have deployed the
implementation of our API over AWS Lambda. This cloud service
allows us to run code in a serverless infrastructure, i.e., without
requiring us to manually deal with the server resources, and providing
an URL that could be used by the API clients. Moreover, AWS
guarantees the service scalability, therefore allowing large number of
concurrent requests without increasing the latency or response times.

B. API
The endpoint, available in AWS Lambda and accessible through

AWS API Gateway is the following:

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº3

- 72 -

TABLE IV. Performance of the Machine Learning Models for Each Instance Type

Type Baseline RMSE Technique RMSE Best EVS R2 Result
t1.micro 0.049 ExtraTrees 0.025 0.741 0.741 +
m1.small 0.117 ExtraTrees 0.005 0.998 0.998 + +

m1.medium 0.235 RandomForest 0.007 0.999 0.999 + +
m1.large 0.473 ExtraTrees 0.063 0.982 0.982 + +
m1.xlarge 0.936 ExtraTrees 0.024 0.999 0.999 + +
m2.xlarge 0.389 MLP 0.374 0.079 0.079 – –
m2.2xlarge 0.933 Lasso 0.933 0 0 – –
m2.4xlarge 2.707 ExtraTrees 1.620 0.644 0.642 +
m3.medium 0.267 ExtraTrees 0.025 0.991 0.991 + +

m3.large 0.465 RandomForest 0.098 0.956 0.955 + +
m3.xlarge 0.927 RandomForest 0.180 0.962 0.962 + +
m3.2xlarge 1.889 AdaBoost 0.471 0.941 0.938 + +
m4.large 0.052 KNN 0.006 0.988 0.987 + +
m4.xlarge 0.110 AdaBoost 0.068 0.634 0.602 +
m4.2xlarge 0.193 AdaBoost 0.067 0.899 0.871 ++
m4.4xlarge 2.818 MLP 2.238 0.357 0.357 –
m4.10xlarge 11.703 MLP 7.989 0.558 0.533 +
m4.16xlarge 16.422 MLP 10.793 0.562 0.561 +
c1.medium 0.093 MLP 0.087 0.129 0.129 – –
c1.xlarge 1.723 ExtraTrees 1.212 0.503 0.498 –
c3.large 0.491 RandomForest 0.030 0.996 0.996 + +
c3.xlarge 1.163 RandomForest 0.014 1 1 + +
c3.2xlarge 2.117 RandomForest 0.596 0.921 0.920 + +
c3.4xlarge 4.360 Ridge 2.106 0.762 0.762 + +
c3.8xlarge 8.990 MLP 2.492 0.932 0.923 + +
c4.large 0.303 Ridge 0.094 0.904 0.903 + +
c4.xlarge 0.950 ExtraTrees 0.131 0.981 0.981 + +
c4.2xlarge 1.122 MLP 0.439 0.847 0.844 + +
c4.4xlarge 2.989 MLP 2.014 0.549 0.522 +
c4.8xlarge 6.106 KNN 3.412 0.674 0.674 +

x1.16xlarge 44.522 MLP 26.098 0.656 0.656 +
x1.32xlarge 104.019 MP 57.215 0.682 0.675 +

r3.large 0.478 RandomForest 0.141 0.912 0.912 + +
r3.xlarge 1.198 ExtraTrees 0.061 0.997 0.997 + +
r3.2xlarge 1.761 ExtraTrees 0.773 0.807 0.807 + +
r3.4xlarge 4.375 ExtraTrees 1.578 0.869 0.869 + +
r3.8xlarge 11.143 ExtraTrees 3.108 0.922 0.9 + +
r4.large 0.046 Ridge 0.007 0.977 0.977 +
r4.xlarge 0.126 Ridge 0.099 0.389 0.388 –
r4.2xlarge 0.725 MLP 0.692 0.089 0.085 – –
r4.4xlarge 3.161 AdaBoost 2.670 0.321 0.285 –
r4.8xlarge 8.448 MLP 6.560 0.398 0.391 –
r4.16xlarge 26.507 MLP 13.310 0.757 0.748 +
p2.xlarge 0.116 LinearRegression 0.105 0.195 0.181 – –
p2.8xlarge 55.079 MLP 27.525 0.751 0.732 +
p2.16xlarge 86.914 MLP 57.599 0.531 0.492 –
g2.2xlarge 0.9 Lasso 0.9 0 0 – –
g2.8xlarge 16.048 MLP 11.418 0.411 0.401 –
cg1.4xlarge 2.120 RandomForest 0 1 1 + +
f1.2xlarge 0.142 MLP 0.102 0.155 0.142 – –
f1.16xlarge 65.664 MLP 65.393 0 0 – –
i2.xlarge 2.469 RandomForest 0.802 0.894 0.892 + +
i2.2xlarge 4.741 AdaBoost 3.224 0.598 0.530 +
i2.4xlarge 11.903 Bagging 6.743 0.673 0.673 +
i2.8xlarge 20.549 MLP 11.261 0.707 0.697 +
i3.large 0.590 ExtraTrees 0.153 0.933 0.933 + +
i3.xlarge 1.010 RandomForest 0.323 0.898 0.897 + +
i3.2xlarge 1.949 Bagging 0.802 0.831 0.831 + +
i3.4xlarge 5.789 MLP 4.281 0.454 0.453 –
i3.8xlarge 17.312 ExtraTrees 6.288 0.868 0.867 + +
i3.16xlarge 34.811 MLP 13.566 0.851 0.847 + +
cc2.8xlarge 9.748 MLP 8.623 0.100 0.051 – –
d2.xlarge 0.242 Lasso 0.242 0 0 – –
d2.2xlarge 4.871 MLP 4.232 0.207 0.206 – –
d2.4xlarge 8.198 LinearRegression 7.021 0.263 0.262 –
d2.8xlarge 17.020 MLP 12.643 0.451 0.448 –
h1.4xlarge 12.074 MLP 6.681 0.692 0.692 +
cr1.8xlarge 15.786 MLP 2.073 0.983 0.983 + +

The last column shows the quality of the model according to its coefficient of determination, which is directly correlated with the other quality metrics. In
particular, the legend for this column is the following: –– means that the model is very poor (R2 <0.25), – means that the model is poor (0.25 ≤ R2 < 0.5), +
means that the model is reasonably good (0.5 ≤ R2 < 0.75), and finally ++ means that the model is very good (R2 ≥ 0.75)).

Special Issue on Artificial Intelligence in Economics, Finance and Business

- 73 -

https://slcswaq0e2.execute-api.us-east-1.amazonaws.com
/dsawards/predict

This endpoint must be accessed through a POST request, with a
JSON body including the following parameters:

• type: instance type (required).

• os: instance operating system (required).

• datetime: time desired for the prediction, which must be in the
format “yyyy-mm-dd hh” (required).

• regions: regions for which a prediction should be returned. A list
with one or more regions can be specified, and the service will
return the prediction for all zones in each region. This parameter
is optional and, if not specified, then all regions will be considered.

An example of a well formed body in the API call would be the
following:

{
"type" : "c3.xlarge",
"os" : "Linux/UNIX",
"datetime" : "2017-09-13 13",
"regions" : ["us-east-1"]
}
Such a valid request will return a JSON object whose keys are the

availability zones and the values are the estimated prices. For instance,
for the previous call:

{
"us-east-1a" : 2.109, "us-east-1b" : 0.155,
"us-east-1c" : 0.155, "us-east-1d" : 0.155,
"us-east-1e" : 0.155, "us-east-1f" : 0.155,
}

Acknowledgment

Authors would like to thank Data Science Awards committee for
proposing the competition.

This work has been supported by the Madrid Government
(Comunidad de Madrid-Spain) under the Multiannual Agreement with
UC3M in the line of Excellence of University Professors (EPUC3MXX),
and in the context of the V PRICIT (Regional Programme of Research
and Technological Innovation).

References

[1] Amazon Web Services, “Amazon EC2 Spot Instances Pricing.” Accessed:
Oct. 15, 2021, [Online]. Available: https://aws.amazon.com/ec2/spot/
pricing.

[2] Amazon Web Services, “Amazon EC2 Instance Types.” Accessed: Oct. 15,
2021, [Online]. Available: https://aws.amazon.com/ec2/instance-types.

[3] O. A. Ben-Yehuda, M. Ben-Yehuda, A. Schuster, D. Tsafrir, “Deconstructing
Amazon EC2 spot instance pricing,” ACM Transactions on Economics and
Computation, vol. 1, no. 3, p. 16, 2013.

[4] G. Portella, G. N. Rodrigues, E. Nakano, A. C. Melo, “Statistical analysis
of Amazon EC2 cloud pricing models,” Concurrency and Computation.
Practice and Experience, vol. 31, no. 18, p. e4451, 2018.

[5] M. Lumpe, M. B. Chhetri, Q. B. Vo, R. Kowalcyk, “On estimating
minimum bids for Amazon EC2 spot instances,” in 2017 17th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, Madrid,
Spain, 2017, IEEE.

[6] C. Tian, Y. Wang, F. Qi, B. Yin, “Decision model for provisioning virtual
resources in Amazon EC2,” in 2012 8th Intl. Conf. Network and Service
Management and 2012 Workshop on Systems Virtualization Management,
Las Vegas, NV, USA, 2012, IEEE.

[7] S. Tang, J. Yuan, X.-Y. Li, “Towards optimal bidding strategy for Amazon
EC2 cloud spot instance,” in 2012 IEEE Fifth International Conference on
Cloud Computing, Honolulu, HI, USA, 2012, IEEE.

[8] S. Tang, J. Yuan, C. Wang, X.-Y. Li, “A framework for Amazon EC2
bidding strategy under SLA constraints,” CIEEE Transactions on Parallel

and Distributed Systems, vol. 25, no. 1, pp. 2–11, 2014.
[9] M. B. Chhetri, M. Lumpe, Q. B. Vo, R. Kowalczyk, “To bid or not to bid in

streamlined EC2 spot markets,” in 2018 IEEE International Conference on
Services Computing, San Francisco, CA, USA, 2018, IEEE.

[10] M. B. Chhetri, M. Lumpe, Q. B. Vo, R. Kowalczyk, “On forecasting
Amazon EC2 spot prices using time-series decomposition with hybrid
look-backs,” in 2017 IEEE International Conference on Edge Computing,
Honolulu, HI, USA, 2017, IEEE.

[11] V. Khandelwal, A. Chaturvedi, C. P. Gupta, “Amazon EC2 spot price
prediction using regression random forests,” IEEE Transactions on Cloud
Computing, vol. 8, no. 1, pp. 59–72, 2020.

[12] J. Lancon, Y. Kunwar, D. Stroud, M. McGee, R. Slater, “AWS EC2 instance
spot price forecasting using LSTM networks,” SMU Data Science Review,
vol. 2, no. 2, p. 8, 2019.

[13] M. Malik, N. Bagmar, “Forecasting price of amazon spot instances using
machine learning,” International Journal of Artificial Intelligence and
Machine Learning, vol. 11, pp. 71–82, 07 2021.

[14] V. Chittora, C. P. Gupta, “Dynamic spot price forecasting using stacked
lstm networks,” in 2020 3rd International Conference on Intelligent
Sustainable Systems (ICISS), 2020, pp. 1080–1085.

[15] W. Liu, P. Wang, Y. Meng, C. Zhao, Z. Zhang, “Cloud spot instance
price prediction using knn regression,” Human-centric Computing and
Information Sciences, vol. 10, no. 1, p. 34, 2020.

[16] Kaggle, “AWS Spot Pricing Market Dataset.” Accessed: Oct. 15, 2021,
[Online]. Available: https://www. kaggle.com/noqcks/aws-spot-pricing-
market.

[17] Western Sydney University, “Spot Price Archive.” [Online]. Available:
http://spot.scem.uws.edu.au/ ec2si.

[18] B. Javadi, R. Thulasiram, R. Buyya, “Statistical Modeling of Spot Instance
Prices in Public Cloud Environments,” in 4th IEEE/ACM International
Conference on Utility and Cloud Computing, Melbourne, Australia, 2011,
2011, IEEE.

[19] Amazon Web Services, “EC2-Boto 3 Docs.” Accessed: Oct. 15, 2021,
[Online]. Available: http://boto3.readthedocs.io/en/latest/ reference/
services/ec2.html#EC2.Client. describe_spot_price_history.

[20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, “Scikit-
learn: Machine Learning in Python,” Journal of Machine Learning
Research, vol. 12, pp. 2825–2830, 2011.

Alejandro Baldominos

Alejandro Baldominos holds a Ph.D. in Computer Science
and Technology by Universidad Carlos III de Madrid,
where he is currently working as a researcher in the
Evolutionary Algorithms, Neural Networks and Artificial
Intelligence group. His current research line involves the
application of evolutionary computation to the evolution
of the topology of deep neural networks. Additionally,

he has also published several papers in journals and international conferences
regarding the application of machine learning to diverse real-world fields.

Yago Saez

Yago Saez received the degree in computer engineering
in 1999. He got his Ph.D. in Computer Science from the
Universidad Politécnica de Madrid, Spain, in 2005. Since
2007 till 2015 he was vice-head of the Computer Science
Department from the Carlos III University of Madrid,
where he got a tenure and is nowadays associate professor.
He belongs to the Evolutionary Computation, Neural

Networks and Artificial Intelligence research group (EVANNAI) and member
of the IEEE Computational Finance and Economics Technical committee.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº3

- 74 -

David Quintana

David Quintana holds Bachelor degrees in Business
Administration and Computer Science. He has an M.S.
in Intelligent Systems from Universidad Carlos III de
Madrid and a Ph.D. in Finance from Universidad Pontificia
Comillas (ICADE). He is currently Associate Professor at
the Computer Science Department at Universidad Carlos
III de Madrid. There, he is part the bio-inspired algorithms

group EVANNAI. His current research interests are mainly focused on
applications of Computational Intelligence in finance and economics.

Pedro Isasi

Pedro Isasi is Graduate and Doctor in Computer science by
the Polytechnic University of Madrid since 1994. Currently,
he is University professor and head of the Evolutionary
Computation and Neural Networks Laboratory in the
Carlos III University of Madrid. His research is centered in
the field of the artificial intelligence, focusing on problems
of Classification, Optimization and Machine Learning,

fundamentally in Evolutionary Systems, Metaheuristics and artificial neural
networks.

