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Abstract

Despite the fact that agent technologies have widely gained popularity in distributed systems, their potential 
for advanced management of vehicle traffic has not been sufficiently explored. This paper presents a traffic 
simulation framework based on agent technology and fuzzy logic. The objective of this framework is to act on 
the phase layouts represented by its sequences and length to maximize throughput and fluidize traffic at an 
isolated intersection and for the whole multi-intersection network, through both inter- and intra-intersection 
collaboration and coordination. The optimizing of signal layouts is done in real time, and it is not only based on 
local stream factors but also on traffic stream conditions in surrounding intersections. The system profits from 
agent communication and collaboration as well as coordination features, along with decentralized organization, 
to decompose the traffic control optimization into subproblems and enable the distributed resolution. Thus, the 
separate parts can be resolved rapidly by parallel tasking. It also uses fuzzy technology to handle the uncertainty 
of traffic conditions. An instance of the proposed framework was validated and designed in the ANYLOGIC 
simulator. Instantiation results and analysis denote that the designed system can significantly develop the 
efficiency at an individual intersection as well as in the multi-intersection network. It reduces the average travel 
delay and the time spent in the network compared to multi-agent-based adaptative signal control systems.
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I. Introduction

THE optimization of signal light control in urban areas is at the 
forefront of research in the field of Artificial Transportation 

Systems (ATS). ATS can be implemented by different approaches 
and technologies. The widely used artificial intelligence techniques 
for optimizing traffic signals are the Genetic Algorithm, Artificial 
Neural Network, Fuzzy logic, Multi-Agent System (MAS), Case-
Based Reasoning, and Reinforcement Learning (RL). In this paper, we 
combine agent technology and fuzzy logic to design a cooperative real-
time traffic signal optimization system, where the signal control plan 
is frequently updated to meet the non-stationary traffic state. Agent 
technologies have been widely accepted as one of the most responsive 
tools to deal with a wide-reaching distributed system. That’s why 
agent-based systems are well suited for the traffic and transportation 
domain, since these systems are geographically distributed in a non-
stationary environment [1]. Agents can use perceptive data and 
received information from other agents to achieve their goals. Each 
agent can cooperate with neighboring agents and adjust his reactions 
in real time to his surroundings as they change. Therefore, multi-
agent technology treats a complicated system in a distributed manner; 
it splits the complex control system into simple subtasks, therefore 
allowing parallel and fast decision-making [2].

With this being considered, the Multi-agent Cooperative Traffic 
Signal Optimization (MCTSO) is proposed to maximize the signalized 
intersection throughput and reduce congestion in urban arteries 
with three contributions: (1) the real-time optimization is introduced 
to adapt the system in a timely way to the continuously changing 
conditions and disturbances, supported by online monitoring of the 
optimum indicators to detect congestion and maintain the system not 
far off from the suitable operating point as much as possible. (2) Two-
stage coordination, including intra-junction coordination, which is 
enabled to prioritize the higher congested stream, and inter-junction 
coordination, which is used to generate a fluidized scenario downstream 
of the congested stream, is used. (3) Distributed collaboration control, 
splitting the network into sub-areas whose control is easier, is used to 
allow parallel-tasking. Therefore, the functionality of an MAS will not 
reside in the agents themselves, but will be ubiquitously distributed to 
allow the system to perform tasks in parallel, avoiding an additional 
computational cost [3].

In this article, we propose a distributed and adaptative, as well 
as online, optimized traffic signal control scheme enabled by a 
decentralized multi-agent system, where each group of agents 
represents a signalized intersection control unit, each group 
coordinates and collaborates with adjacent surrounding groups, and 
each group achieves local optimization, taking into consideration 
global network optimization. We use an artificial fuzzy logic algorithm 
to tackle the fuzzy condition of the road environment. Our proposed 
MCTSO differs from existing approaches due to agent specialization. 
The group contains specialist agents for each role, and it is designed 
and adapted to a specific task, which allows us to improve the agent 
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efficiency and make its role more accurate. Additionally, in MCTSO 
the combination of two-stages of coordination and collaboration 
aims to develop a clearer view of the environment, make decisions of 
common benefit, and avoid local optimization.

The rest of the paper is organized as follows: The second section 
analyzes and discusses the related works about intelligent traffic signal 
control and artificial intelligence techniques. The third section gives 
a global overview of the traffic control problem. The fourth section 
details the proposed multi-agent system. The fifth section provides 
the detailed results of the simulation tests carried out on the AnyLogic 
platform. Finally, we conclude in the sixth section.

II. Related Works

The MAS is rapidly growing as one of the most powerful popular 
technologies proposed to solve complicated problems in different 
fields, such as electrical engineering, computer science, electronic 
commerce, civil engineering, and transportation systems.

In a transportation system and with the diversity of actors involved, 
agent technology can be used in the various components of the system, 
such as drivers and vehicles [4] [5], traffic light [6], phases [7], and to 
handle diverse aspects, e.g., congestion [8], the green transportation 
system [9], and route guidance[10]. In urban traffic networks, 
signalized intersections are one of the most important and influential 
ingredients, and the traffic signal is the most utilized instrument for 
scheduling and managing traffic flow. In what follows we analyze and 
discuss succinctly several studies that use a multi-agent system and 
artificial intelligence techniques to perform intelligent traffic signal 
control.

Regarding the architecture of multi-agent-based signal control, most 
approaches usually divided the road network into regions or sub-parts 
that cover one or more intersections. These sub-parts are controlled by 
a cell of one or more agents. The organizational structure of agents can 
be modeled in various ways. The organizational structure determines 
the interactions, roles, and structures of the agent’s community. It can 
be designed in many forms, such as flat, hierarchical, holonic, teams, 
and federation [11].

Many studies have reported using a hierarchical scheme to 
manage the traffic signal. Jin and Ma [12] use reinforcement learning 
to introduce a hierarchical multi-agent-based control scheme. The 
agents are categorized as the region agent (RA), intersection agent 
(IA), and turning movement agent (TA), listed in the order of the 
hierarchy. Communication and cooperation between agents at equal 
levels are elevated through the decentralized representation of the 
framework. Nevertheless, agents at the lower level have to reach an 
accord between their own goals and those given by the agents on the 
next level up. Like Jin and Ma, Xu et al. [13] introduced a three-layer 
optimizing control system that includes intersection controller agents 
(ICAs), sub-zone controller agents (SZCAs), and network controller 
agents (NCAs), which represent the lowest, middle, and highest 
layers, respectively. The interaction takes place across all levels to 
optimize the signal timing strategy, while coordination is granted by 
the SZA. Nonetheless, besides the overcharge data at higher levels, 
the focal decision process might produce a bottleneck in these levels, 
lengthen the response time, and limit the system’s scalability. Flat [14] 
and holonic [15] structures are also proposed for multi-agent-based 
traffic signal control. Otherwise, it is widely recognized that there is 
no specific operating multi-agent architecture that is absolute for all 
traffic signal control systems; additionally, various operating models 
can be combined. 

Pre-timed signal control cannot adapt to the non-stationary traffic 
state. It has been a while since interactive system control became a 

trend in traffic management. The first appearance of adaptative 
traffic control was in the last decade of the second millennium, with 
the release of the cycle and offset optimization technique (SCOOT) 
in the 1980s, the Sydney cooperative adaptive traffic system (SCATS), 
and the green link determining (GLIDE) system. Thereafter, these 
adaptative control systems were implemented in many countries to 
manage traffic control in metropolitan areas, and others have been 
developed ( for a  review of the self-adaptive traffic signal control, see 
[16] ).

Recently, more focus has been placed on multi-agent-based systems 
for urban traffic management [17]. It has been proposed that several 
transport system problems be solved in a distributed manner. However, 
disturbance management requires particular abilities that a MAS 
cannot guarantee alone. Consequently, to create intelligent traffic 
signal controllers, a MAS integrates various intelligent techniques. 
For example, many models combined the multi-agent approach with 
the RL approach to optimize a signal timing plan [18]. The agents 
employ their ability to communicate with the environment to learn 
and optimize their decision-making behavior. Foremost among the 
model-free RL methods, Q-learning   (QL) is the model most used 
by researchers using multi-agent reinforcement learning (MARL) in 
intelligent traffic light control. A work [19] uses fuzzy Q-learning 
and agent technologies to develop a traffic lights control framework. 
Each agent interacts with neighbor agents by getting a reward from 
each decision. . The control decision is made by using the number of 
vehicles input to schedule green phase duration. The aim is to maximize 
the reward and decrease average delay time. El-Tantawy et al. [20] 
improve the travel time and overall delay using QL and a decentralized 
junction-based model. The model-free RL can be implemented when 
dealing with a non-deterministic model of the environment, as it does 
not require pre-assignment of the environment.

Concurrently, some researchers investigated the potential of 
fuzzy-logic-based control, which has a rule-based inference system 
and is based on human reasoning. FL is suitable for handling the 
control of a single intersection [21] characterized by uncertainty, 
fuzzy circumstances, inexact data, and typically controlled by rules. 
Because the MAS has a restricted capability to deal with fuzzy 
circumstances, the incorporation of an MAS and fuzzy inference can 
show considerable effectiveness in enhancing signal settings in traffic 
light control [22] [23].

 In these studies, the cooperation mechanism is limited at the inter-
junction level, which reduces the local control efficiency in favor 
of global control. Also, the concentration of fuzzy logic in one level 
creates an overload at fuzzy components. Our proposed multi-agent 
control system is a model based on the two levels of coordination and 
collaboration, local at the intersection and within the surrounding 
neighbors. Each intersection is represented by a controller group 
in which the decision is made via two levels of fuzzy logic and 
coordination with adjacent group controllers. 

III. Traffic Control Problem Description

According to the US Census Bureau, metropolitan areas will 
contain 6.7 billion people [24]. This growing urbanization increases 
the traffic road demand because of a high number of vehicles seeking 
to use the road infrastructure. Road traffic in urban areas is a nested 
phenomenon, on the one hand because of the many contributors 
that act autonomously and on the other hand because of the 
uncertainty of the road network. When the number of vehicles on an 
infrastructure exceeds its capacity, traffic congestion occurs, resulting 
in slow movements and queues that stretch over time. Therefore, the 
congestion is a parallel evolutionary anomaly, in both space and time. 
Consequently, to inexpensively mitigate this anomaly, we can optimize 
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traffic space occupation with an acceptable delay. Signal control is the 
basic method and an effective one to alleviate congestion as well as 
to fluidize traffic at the intersection [25]. Optimized signal control 
can significatively increase infrastructure capacity and reduce travel 
time [26]. Additionally, it helps to reduce fuel consumption and the 
emission of air pollutants and improves the health of citizens, too [27].

A. Signalized Intersection Features 
A road intersection is a crossing of several roads that contains three 

functional zones (Fig. 1) managed by a tricolor traffic light; the red 
queues the vehicles in a storage area, the green gives access to the exit 
zone through the conflict zone, and the yellow is a transition period 
from green to red to allow the vehicles to evacuate the conflict zone.

Conflict area
Exit area

Storage area

Fig. 1. Functional areas of an intersection of two one-way roads.

B. Intersection Network Modeling
The intersection network is viewed as a disturbed system that is 

modeled by a strongly connected oriented graph G = (C, A), where 
(C) is a set of nodes that represent the intersections and (A) is a 
set of arcs that represent the links that connect these intersections. 
Each intersection, as a component of the disturbed system, has 
its own requirements; therefore, it coordinates with its adjacent 
intersection.  Two intersections connected by an arc are considered 
adjacent. Adjacent intersections cooperate and share their data to 
achieve a common goal of the system, which is to optimize traffic flow 
management.

Each arc Aij is bounded by two intersections: i, the initial junction 
and the arc flow origin, and j, the terminal junction and the arc 
flow destination. Downstream of an arc is the group of succeeding 
arcs succ(Aij) = {Ajk , (i, j, k) ∈ C}, where the outflows of the arc 
can be routed. Upstream of an arc is the set of predecessor arcs  
pred(Aij) = {Aki ,(i, j, k) ∈ C} where the inflows of the arc arrive.

An arc is characterized by static information, such as the storage 
area length and max capacity, and dynamic information, namely the 
state of the traffic signal at the stop line of the arc (green or red). The 
concentration T (1) at a given segment is the number of vehicles N (in 
private vehicle units, PVUs) using this segment at a time t, relative to 
the segment length.

 (1)

An intersection has a set of incoming arcs E(i) = {Aji , (i, j) ∈ C} 
and a set of outgoing arcs S(i) = {Aji , (i, j) ∈ C}. All intersections are 
controlled by a signal light, concerning the colors to be used and also 
their succession or order of appearance. A green phase is a lap of time 
during which a group of compatible arcs is activated, i.e., the arc flows 
are allowed to cross the intersection. The cycle is the appearance order 
of all of the phases, and a traffic control strategy is the scheduling 

method that defines how the phases participate in the cycle and their 
layout (length and sequence). Fig. 2(a) shows an intersection with 4 
incoming and outgoing arcs and 4 adjacent intersections. Fig. 2(b) 
gives a representation of a cycle, phase, and the arcs that are activated 
during each phase.
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Phase
Arc

A13 A31 A23 A32 A43 A34 A53 A35

C
ycle

φ1 1 1 0 1 0 1 0 1
φ2 0 1 1 1 0 1 0 1
φ3 0 1 0 1 1 1 0 1
φ4 0 1 0 1 0 1 1 1

(b)

Fig. 2. Representation of activated and not-activated arcs in a 4-phase traffic 
light intersection. (a) Intersection with 4 incoming arcs and 4 outgoing arcs; 
(b) truth table of 4-phases and the arc cycle for each phase.

An intersection is considered congested if it does not manage to 
evacuate all of the storage areas of the activated arcs after a green 
phase time; in other words, it is considered congested if the stop time 
of an incoming arc exceeds the cycle time duration.

IV. Agent Modeling

The organizational design of the urban traffic-responsive control 
system (UTCS) is spatially and functionally distributed. Each 
intersection is viewed as a network sub-section and controlled by 
a community of autonomous, cooperative, and intelligent agents. 
Commonly, agents are perceived as analyzing at a level with an 
abstraction upper than components and objects, which makes a MAS 
suitable for complex and distributed problems.

The proposed MAS has a decentralized architecture with two 
levels of collaboration. Each signalized intersection is controlled by 
an intersection control group (ICG), which defines the signal control 
strategy. This strategy optimizes phase layouts while it is executed to 
meet the continuously changing surrounding environment, whereas 
the control of the whole intersection network is fully distributed and 
is accomplished through the collective and coordination capability 
of ICGs. In sum, the system goal is achieved with two levels of 
coordination, which are the following: 

• Inter-junction collaboration: This allows coordination between 
connecting ICGs.

• Intra-junction collaboration: This allows interactions between the 
agents belonging to the same ICG.

We build our MAS by applying the concept of the model-driven 
architecture (MDA) [28] to construct our system. We propose to create 
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an increasingly detailed system from the abstract to a concrete concept 
following a process in five stages as follows: 

1. Select the organizational structure of the MAS.

2. Analyze the system requirements.

3. Structure the UTCS into groups of agents.

4. Identify agents and roles.

5. Implement the generic structure of an agent-oriented system in 
the AnyLogic simulator.

A. The Organizational Structure of the MAS
The selection of the organizational structure is a very essential 

stage in MAS development and has an impact on the succeeding 
stages. Various specifications drive the definition of the organizational 
structure, including the environment characteristics, the architecture 
of the real-world organization, the ability of the MAS to support the 
computation and coordination complexity of the scenario, and the 
necessity of respecting the organizational rules and minimizing the 
complexity of the design.

Our proposed MAS has a decentralized architecture with two levels 
of collaboration based on the metamodel AALAADIN [29], which is 
built on three main notions: agent, group, and role. Fig. 3 shows a 
diagram of this model.

Agent: The agent is defined as an active entity that communicates 
and plays a specific role inside its group. The metamodel does not pose 
any constraint on the internal architecture of agents.

Group: The group is an atomic aggregate of agents sharing services 
with other groups. Each agent belongs to a group; in our case, the 
concept of belonging to a group is limited to one group.

Role: The role is an abstract representation of an agent’s tasks, 
function, or activities. Each agent can have multiple roles, and each 
role is accomplished by an agent group.

We define the organizational structure as a decentralized set of 
group sharing services.

Agent

Agentlnrole

Role

Group

belongs

belongs

1..*

1

1

*

*

*

*
*

*

* *

haveuses

structured
by

Fig. 3.  Organizational structure of the group of agents.

B. Analyzing the System Requirements
The functional architecture of the UTCS includes a set of 

components. Fig. 4 represents the main components of a regulation 
system. These components generate an optimized traffic control 
strategy based on the following scenario:

• The optimization process is initialized after each recurring interval 
to update the traffic signal control plan.

• The captures are placed at the stop line of the incoming arc to develop 
a local view of the traffic conditions by observing the storage areas.

• The incoming arcs are monitored to define and update the 
arc traffic state indicators. These indicators are calculated by 
observing the local state collected by the captures and considering 
that of succeeding arcs.

• During the optimizing process, if the degree of saturation in the 
downstream is intolerable, the upstream indicators are adjusted to 
slow evacuation and relieve saturation.

• The coordinator provides the traffic condition stat of connecting 
intersections and shares the local intersection stat.

• The phase managers use the traffic state provided by arc monitors 
to define the phases’ states and request a traffic signal control 
update.

• The cycle time is prefixed and divided between all intersection 
phases. Unused lap time will be reallocated to other phases or 
subtracted from the cycle time.

• The intersection controller updates the control strategy during the 
progress of the cycle. 

• Each arc has a right to green time one and one time only in the 
cycle, and all the links with at least one queued vehicle at the stop 
line should have green time. 

• The pedestrian phase is outside of the scope of our approach.

Coordinator Arc Monitors

Phases Managers

Component

Legend

Exchange data
with connecting

intersection
Update control plan request

Update

Monitoring

succeeding arcs stat

arc state indicators

data collection

Captures

Object

intersection controller

Road Network

tra�ic control
strategy

Fig. 4. Components of intersection control.

C. Structure the UTCS Into Groups of Agents
We assume that the structural aspect of a MAS consists of two 

parts: a classification structure and a role structure (see section D). The 
classification structure indicates how agent groups are determined 
and how they interact with each other. This classification is based on 
the roles of agents and their social interactions. To structure the agent 
community into groups, we rely on the classic software engineering 
rule: high cohesion and low coupling. Therefore, agents sharing more 
roles and goals will be in the same group, and agents that do not share 
roles, or have few common roles, are placed in two distinct groups.

The representation of a UTCS by a MAS is based on a mapping 
between the UTCS and MAS that we propose (Table I). Commonly, 
each intersection is managed by a group control that consists of five 
main components: an arc monitor for each incoming arc; two phase 
managers, one for the green phase and the other for the red phase; a 
coordinator; and an intersection controller.

TABLE I. Alignment of UTCS / MAS

UTCS component Agent Group
Arc monitor 

Intersection Control Group 
(ICG)

Phase managers
Coordinator

intersection controller

D. Identify Roles and Agents
The MCTSO applied to the signalized intersection network contains 

a set of ICGs. Each ICG was assigned to an intersection and charged 
with full control over the incoming streams. Each ICG includes 
a number of agents classified into 5 types: an ARC agent, which is 
associated with each incoming arc, two Phase agents (the Active Phase 
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agent (APA) manages the current green phase and the Inactive Phase 
agent (IPA) manages other phases), a Coordinator agent (CA), and a 
Decision agent (DA).

1. ARC Agent
 Each incoming arc is managed by an agent. The goal of this kind 

of agent is to monitor the arc storage area in a timely and continuous 
manner. Arc agents have only a local view of the environment. To 
minimize the complexity degree of the system, no agent can have a full 
overview of the network. They use sensors placed at the stop line that 
cover the whole storage zone to define the arc state, taking into account 
the outflow streams. Depending on the signal state at the arc stop line, 
the arc stat is defined by the urgency indicators when the signal is 
red, which are the stop ratio (SR) and congestion ratio (CR). They are 
calculated using data collected from sensors and the congestion ratio 
from downstream (CRd) received from the Coordinator agent. When 
the signal is green, the arc stat is defined by extend indicators, which 
are the CR and CRd.

SR (2) represents the waiting time ratio of vehicles in the storage 
area and is defined as the duration of elapsed red time since the last 
switch (ts ) divided by the cycle length (c) minus the total yellow signal 
length (ty ). CR (3) is the number of enqueued vehicles in the arc storage 
zone over the capacity of the arc.

 (2)

 (3)

where Tmax is the maximum concentration of vehicles in the arc; Tt 
is the concentration at an instant t; ts is the vehicle stop time on the red 
signal; c is the cycle length; and ty is the yellow signal length.

To reduce the phase transitions when there is no traffic, arcs waive 
their green turn by setting the urgency indicators or extend indicators 
equal to 0 when

• There are no enqueued vehicles in arcs, since the empty arc does 
not need green time.

• The CRd is equal to or greater than 1, which means that the 
concentration downstream surpasses or reaches its maximum 
capacity, since the congested outgoing arc is not able to get more 
inflow.

This type of agent will be conscious of all of the other intersection 
agents. It cooperates with the Coordinator agent to define the arc 
traffic condition state, with the phase agents to propose the suitable 
phase layout update and with the Decision agent to implement the 
optimized control strategy.

2. Phase Agents
A phase is seen as a state machine. This automaton has two states: 

Active and Not Active (Fig. 5). Depending on the states of a phase, we 
have adopted two agents to manage all phases in an intersection: the 
APA, which manages the activated phase, and the IPA, which manages 
the not-activated phases.

Extend current green phase

Selected to
green time

Change current
green time

Extend current green phase

Active

Not Active

Fig. 5. Phase state.

The goal of the APA is to maximize the green time allocated to the 
arcs that make up the current green phase, while the IPA’s goal is to 
reduce the stop time of the other phases. The phase agents compete; 
each agent seeks to extend its active time and otherwise limit the time 
of the other phase agents.

a) IPA
The IPA controls the phase sequences. It selects a phase from all 

phases, except the current phase and the already activated phase in the 
cycle, to be a candidate for the next green time. This agent examined 
the urgency degree of approved phases by evaluating arc urgency 
indicators provided by arc agents; a phase is represented by the most 
urgent arc. The phase urgency degree is obtained by the fuzzy process 
after the verification of the max/min constraint.

Selection of candidate phase:
The candidate phase is calculated through the collaboration and 

coordination with the Arc and Coordinator agents. The IPA is the 
controller of phase scheduling and sequence. It proposes an advisable 
phase order for the current traffic state. The flowchart of the candidate 
phase selection process is presented in Fig. 6 and consists of six steps:

Step 1. The IPA starts the phase selection process by creating 
a collaboration-group and initializes it to the list of all intersection 
arc agents classified in the phase set (one arc agent may belong to 
many phases).

Step 2. The IPA sends a request to the collaboration-group members 
to inform them that the phase selection process has been started and 
orders them to begin calculating the arcs’ urgency indicators.

Step 3. Each arc agent of the collaboration-group calculates its 
urgency indicators.

Step 4. The IPA receives all responses and calculates the urgency 
degree of each phase using a fuzzy selection mechanism. The highest 
urgency phase will be selected and suggested to receive green time. 
The selected phase and its urgency degree value will be sent to the 
Decision agent.

Step 5. If the suggested phase gets the green time, the IPA removes it 
from the collaboration-group list; it also removes their arc agent if they did 
not belong to other phases of the current collaboration-group members.

Step 6. The phase selector waits a predetermined time (min. red 
time) and returns to step 2 while the collaboration-group is not empty.

Init

Start

Get Arcs urgency indices

Fuzzy inference mechanism

Phases Priority

Select highest priority phase

Remove it from list

Delay
MinRedTime

Collaboration-group
is empty?

No

No
Yes

Yes

Send selected phase and
priority degree to DA

Candidate
activated

Fig. 6. Flowchart of the candidate phase selection process.
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Fuzzy selection mechanism:
The IPA combines the inputs CR, CRd, and SR to create the urgency 

degree output of the candidate phases. The outputs of the phase agents 
are used as input in the DA process to make the final decision. 

The membership functions SR, CR, and CRd are standardized. 
According to this, there are four membership functions, including 
Small (S), Medium (M), Large (L), and Very Large (VL), for these 
inputs. The linguistic variables as well as the membership functions 
are shown in Fig. 7. The technique used in all of the defuzzification 
process is the Center of Gravity (COG) method.

x
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S VL L M
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M
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Fig. 7. Membership functions of inputs.

To define the most appropriate phase for green time, a set of rules is 
defined for the phase selection process. Fig. 8 shows several rules that 
were used to perform the system simulation. The “AND” operation is 
performed by using the max t-norm (Łukasiewicz). 

RULE 11 : IF CR IS M AND CRd IS S AND SR IS S THEN UrgencyDegree IS S;

RULE 12 : IF CR IS M AND CRd IS S AND SR IS M THEN UrgencyDegree IS M;

RULE 13 : IF CR IS M AND CRd IS S AND SR IS L THEN UrgencyDegree IS L;

RULE 14 : IF CR IS M AND CRd IS M AND SR IS S THEN UrgencyDegree IS S;

RULE 15 : IF CR IS M AND CRd IS M AND SR IS M THEN UrgencyDegree IS M;

RULE 16 : IF CR IS M AND CRd IS M AND SR IS L THEN UrgencyDegree IS L;

RULE 17 : IF CR IS M AND CRd IS L AND SR IS S THEN UrgencyDegree IS S;

Fig. 8. Fuzzy rules of phase urgency degree determination process.

b) APA
This type of agent is charged with managing the activated phase. 

Its goal is to maintain if possible the green time for the current phase 
until it has evacuated all of its enqueued vehicles. Using the extended 
indicator provided by active arc agents, it calculates the phase extended 
degree. The extended degree indicates the extended green time need 
level. To define the extension need degree, the APA collaborates with 
the set of arc agents involved in the current green phase. 

The phase extender process is executed after each 1/3 of allocated 
green time, which the same as the min. red time. This will synchronize 
the two-parallel process of phase agents. The APA starts the extend 
process by sending a request message to the agents managing the 
active arcs demanding the extend indicators.

 The extended indicators of all active arcs will be passed into the 
fuzzy mechanism to determine the phase extend degree and send it to 
the DA to request an extension. As mentioned previously, the input CR 
and CRd are standardized. An example of the rules used to define the 
extended degree is shown in Fig. 9.

RULE 3 : IF CR IS S AND CRd IS M THEN ExtendDegree IS PNo;

RULE 4 : IF CR IS S AND CRd IS L THEN ExtendDegree IS PNo;

RULE 5 : IF CR IS M AND CRd IS S THEN ExtendDegree IS PYes;

RULE 6 : IF CR IS M AND CRd IS M THEN ExtendDegree IS Maybe;

RULE 7 : IF CR IS M AND CRd IS L THEN ExtendDegree IS PNo;

RULE 8 : IF CR IS L AND CRd IS S THEN ExtendDegree IS Yes;

Fig. 9. Fuzzy rules of phase extend degree determination process.

3. Coordinator Agent
The objective of the CA is to coordinate with the connecting control 

group. It represents the communication interface agent of the ICG and 
plays a mediator role in all external communications. It exchanges 
the state of incoming arcs with the adjacent CA group member. It 
takes the succeeding arcs stat request from the local arc agents and 
contacts the CAs of the appropriate groups to get the requested data 
and response to the request. For its part, it provides the local arc stat to 
other groups. The CA controls all of the interaction flow with the ICG 
outside the environment, and it assures coordination and collaboration 
with others.

4. Decision Agent
The DA is the agent axis of our architecture; it decides to extend 

the active phase or switch to the selected phase. The decision is made 
in a collaborative way to avoid local optimization. The DA receives 
simultaneous requests from phase agents and then decides via fuzzy 
inference to either extend the current phase or to switch to the 
candidate phase. This agent sends the final decision to the phases and 
arc agents in real time.

The DA starts the decision process by checking the parameters of 
the phases to evaluate if the max. elapsed time of red and green time 
is reached. Then, it uses a fuzzy mechanism to make the decision and 
informs the phase and arc agents. Fig. 10 shows the decision-making 
process.

Fuzzy mechanism

input

Decision

Init

Start process

Back to ISA

Get Extended
request

Get SelectedPhase
request

Set Active phase
to selectedPhase

Inform Phases
agents

Extended the
active phase

No

No

No

Yes

Yes

Yes

R_Max
is Reached

switch?

Cycle is
end?

G_Max
is Reached

Fig. 10. Fuzzy decision mechanism.

The DA uses the phase urgency degree and extend degree provided 
by the phase agents to make the final decision. As in Fig. 11, there are 
five membership functions, including Zero (Z) Low (L), Medium (M), 
High (H), and Very High (VH), for the phase urgency degree. For the 
extended degree, there are five membership functions, including No 
(N), Perhaps No (PNo), Maybe Yes (MYes), Perhaps Yes (PYes), and Yes 
(Y). Finally, there are only two membership functions for the decision 
to switch to a candidate phase: No and Yes.

The decision-making process is based on a set of fuzzy rules. Fig. 12 
shows an example of these rules.
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Fig. 11. Membership functions.

RULE 13 : IF ExtendDegreeIS Mybe AND UrgencyDegree IS Mybe THEN Decision IS No ;

RULE 14 : IF ExtendDegreeIS Mybe AND UrgencyDegree IS PYes THEN Decision IS Yes ;

RULE 15 : IF ExtendDegreeIS Mybe AND UrgencyDegree IS Yes THEN Decision IS Yes ;

RULE 16 : IF ExtendDegreeIS PYes AND UrgencyDegree IS No THEN Decision IS No ;

RULE 17 : IF ExtendDegreeIS PYes AND UrgencyDegree IS PNo THEN Decision IS No ;

RULE 18 : IF ExtendDegreeIS PYes AND UrgencyDegree IS Mybe THEN Decision IS No ;

Fig. 12. Fuzzy rules of the decision process.

The interaction of different agents in the designed MCTSO is 
illustrated in Fig. 13. All agents have a communication model to 
perceive their environment and handle the exchanged data flow 
within the agent society. A common Agent Communication Language 
(ACL) has been used to fulfill the communication model goals. 

Control

Control
Exchange data

Exchange data

Current phase
extended degree

Elected phase
urgency degree Active

Phase Agent

Inactive
Phase Agent

Coordinator
Agent

Arc
Agent

ICG

ICG

ICG

Decision
Agent

Extend indicators

Urgency indicators

Local stat

Neiboring stat
Control

Fig. 13. The architecture of the MCTSO.

V. Experimental Results and Performance Analysis

The performance of the proposed system is validated and designed 
in the ANYLOGIC simulator, which is used to handle both the agent 
modeling and traffic simulation using a virtual road network that is 
shown in Fig. 14. It consists of 9 intersections controlled by 9 ICGs. 

C1 C2 C3

C4 C5 C6

C7 C8 C9

Fig. 14. Road network.

The fuzzy inference mechanism has been programmed in the JAVA 
language, using jFuzzyLogic, an open-source Fuzzy Logic library, and 
an FCL language implementation, which offers a fully functional and 
complete implementation of a fuzzy inference [30]. To link jFuzzyLogic 
to AnyLogic, we add the jFuzzyLogic library to Java external libraries 
in AnyLogic [31].

Fig. 15 describes the procedure of setting up a simulation for the 
MCTSC system. First, the road network is extracted in image format. 
AnyLogic is then used to convert the image into a simulation network. 
After obtaining the simulation network, vehicle mobility is generated 
using an origin-destination matrix. The arrival rate is adjusted to 
simulate the different scenarios of traffic demand. Then, the agent-
based-modeling approach of AnyLogic is used to implement agents, 
and jFuzzyLogic library to handle the fuzzy decisions.

Scenarios
Simulation of
urban tra�ic

update control
strategy

Traffic conditions
Traffic light information

Control
variables

State
variables

Agent Modelling

Jfuzzy Logic

fuzzy 
knowledge base

Results

Road network

Origin-destination
matrix

Scenario
preparation

Fig. 15. The procedure of simulation.

A. Experimental Setup
In the study area, the frequency of entry at the source point is 

adjusted to simulate the varying traffic demand from the peak hour 
to the slack period. During the simulation, new vehicles are generated 
with an origin-destination matrix (OD). The OD simulates requests 
for network uses and represents possible situations of urban traffic 
conditions. The evaluation is carried out at both local intersections, to 
evaluate the local optimization, and for the whole network, to evaluate 
a global optimization.
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Arcs are monitored up to the storage area length. We assume that 
the arc storage area can be varied proportionally to the lane number 
and the length of the given link. For links longer than 400 m, we 
monitor the point 150 m from the stop line, or 30 PVU, with 5 m as the 
typical car length, and all of the links in the other cases.

B. Results and Analysis
We assess the performance of MCTSO by referring to two control 

methods, namely the adaptative traffic signal optimization and 
adaptative multi-agent traffic signals control proposed by [32]:

• Adaptative traffic signal optimization (ATSO): standard version of 
the proposed MCTSO without agents.

• Adaptative multi-agent traffic signals control (AMTSC): represents 
a control traffic signals method based on multi-agent systems to 
control the traffic signals. The agents are organized in holonic 
architecture and a holonic Q-learning method is adopted to learn 
signals timing in two holarchical levels.

Since a feasible approach should smoothly deal with different traffic 
conditions, all control systems are tested on similar conditions and 
under 3 different scenarios: the first scenario allows the assessment 
of the performance of methods under low traffic demand, with 18000 
PVU/hour as arrival rate. The second scenario describes medium traffic 
demand and represents a moderate congestion situation, with an arrival 
rate of 27000 PVU/hour. The third scenario provides results for high 
traffic demand with an arrival rate of 36000 PVU/hour. Each method is 
run for 180 minutes in each scenario case. Each case is repeated for 50 
iterations to increase the reliability of the collected results.

In this study, the vehicle travel time and travel speed are chosen 
to build up an overview of the general performance of the control 
methods. The travel time represents the time between the departure 
of the vehicle from the origin point and the arrival at the destination 
point. Such criteria will provide us with the optimization level of 
our approach, and it includes the average stop time and network 
throughput indices. 

Table II depicts the average vehicle’s travel time and speed for 
each assessment scenario. It particularly shows that MCTSO allows 
the fastest travel time under all scenarios, and by consequence 
improves the number of vehicles that can use the network and reach 
their destinations compared to the other control methods. The results 
show that all control methods have acceptable performance under 
the first scenario, due to the low level of traffic flow. Increasing the 
arrival rate causes the congestion to get worse; the ATSO method 
presents an unacceptable travel time and speed. Thus, ATSO is not 
proficient with medium and higher congestion levels. At the higher 
level of congestion, our proposed method optimizes both travel 
time and speed, and it reduces these criteria compared to other 
controllers. We notice that in low traffic demand the average travel 
time attained by our proposed framework is 16,71% lower than that 
in ATSO, 6,82% than the AMTSC. While in medium traffic demand 
the corresponding improvement of the proposed framework is 20,36% 

and 11,08, respectively. The improvements become more important in 
high traffic demand and attain 37,65% compared to ATSO and 22,05% 
compared to AMTSC. As to the average travel speed, we observed that 
the MCTSO provided 8,26% according to the ATSO model and 4,82% 
improvement according to AMTSC in low traffic conditions, while this 
improvement rises 20,91% and 13,21% according to ATSO and AMTSC 
respectively in normal traffic density. In a heavy density scenario, the 
proposed model has better speed performance about 26,57% compared 
to the ATSO model and 16,76% compared to AMTSC. Furthermore, the 
standard deviation of the vehicle’s travel time and travel speed of the 
proposed approach is lower than that in the other control methods. 
A high standard deviation means that there is  a large  amount of 
variability among the data, while a low standard deviation means that 
the data is less spread, thus very reliable. Consequently, the proposed 
approach is more reliable.

In addition, the ANOVA two factor with  replication test yields a 
p-value of ≈ 0 (3,39E-40 for travel time and 2,18E-97 for travel speed) 
that is much smaller than the 0,05 level of alpha significance, meaning 
that the changes in used control methods had statistically a significant 
impact on the travel time in different traffic demand. 

The reduction in travel time is due to the reduction in the set of 
key performances and by consequence, in a set of intersection indices. 
Fig. 16 summarizes the intersection metrics’ key performances. 
The measurements are first locally aggregated in each intersection 
and at each time over evaluation scenarios; then, the performance 
average and other indices are calculated. The measurements show 
that MCTSO outperforms other controllers’ methods in almost all 
metrics. Unfortunately, other methods failed to optimize green time 
management to mitigate traffic conditions.

Regarding the indices in Fig. 16, our proposed controller gives 
more throughput cars with less green time in all scenarios. This is due 
to optimizing the splitting of green time over all phases, reutilizing 
unused green time in phases with no cars in the storage zone. Also, 
the reduction in the average red time minimizes the travel time. The 
results also show a reduction in the number of cycles per intersection, 
which means that the system is suspended due to an empty storage 
zone in all intersection arcs. This augments the performance of the 
control system and makes evacuating the surrounding intersection 
more likely.

The results show that the proposed system is a practical approach 
and works smoothly with different traffic conditions.

VI. Conclusions

In this paper, a Multi-agent Cooperative Traffic Signal Optimization 
(MCTSO) is proposed to reduce congestion on urban roads by 
optimizing traffic light control with three contributions. First, the 
MCTSC interactive system involves real-time optimization. Second, 
there are two levels of coordination, the inter-junction and intra-
junction, to avoid local optimization and build a control strategy 

TABLE II. Percentage Improvement in Travel Time and Speed Over the Other Control Methods

low traffic demand medium traffic demand high traffic demand

Parameters ATSO AMTSC MCTSO ATSO AMTSC MCTSO ATSO AMTSC MCTSO

Avg. travel time (s) 76,00 69,56 65,12 96,00 88,60 79,76 130,96 116,12 95,14

Standard deviation of delay 7,84 6,78 4,07 7,62 6,77 4,55 7,33 6,57 4,55

improvement travel time (%) 16,71% 6,82% N/A 20,36% 11,08% N/A 37,65% 22,05% N/A

Avg. travel speed (km/h) 38,76 40,03 41,96 29,13 31,11 35,22 22,51 24,4 28,49

Standard deviation of delay 8,34 7,76 5,08 7,86 7,49 4,15 8,61 6,26 4,22

improvement travel time (%) 8,26% 4,82% N/A 20,91% 13,21% N/A 26,57% 16,76% N/A
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that takes into consideration all connecting intersections. Third, 
distributed control restricts the cooperative scope in neighbors and 
allows the parallel control.

The proposed system can handle a large multi-intersection 
network with many alterations in the road infrastructure, and hence 
facilitates extensibility. The system also increases the robustness and 
throughput of the network, as shown in the simulation executed in 
the AnyLogic simulator. The performance of the proposed approach 
has been compared to the same approach without agents and 
another adaptative multi-agent optimization. In these performance 
comparisons, the average travel time and speed were selected as 
signaling performance criteria. In low traffic demand scenarios, 
the proposed Multi-agent Cooperative Traffic Signal Optimization 
model provided 16,71%–6,82% improvement in average travel time 
and 8,26%–4,42% improvement in average travel speed compared 
to both adaptative traffic signal optimization and adaptative multi-
agent traffic signals control respectively. These improvement values 
become more important when traffic demand increases and the traffic 
congestion goes worst, and they are respectively up to 37,65%–22,05% 
for average travel time and to 26,57%–16,76% for average travel speed 
compared to adaptative traffic signal optimization and adaptative 
multi-agent traffic signals control models in high traffic demand. 
Both local and network performance keys are investigated based on 
the computational experiments in different traffic condition scenarios. 
The proposed agent-based optimization shows a better result and can 
adapt smoothly with different traffic demands. It can significantly 
optimize performance keys such as travel time, stop time, intersection 
throughput, and so on.

In the future, the framework shall be further extended to other traffic 
control fields. For traffic signal control, one extension of this approach 
is to include priority vehicles and add the special management of 
priority links. Meanwhile, it is necessary to develop the intelligent 
optimization approach for operations concerning large uncertainties 
in the road network, such as disturbances and emergencies.

references

[1] B. Chen and H. H. Cheng, “A review of the applications of agent 
technology in traffic and transportation systems,” IEEE Transactions on 
Intelligent Transportation Systems, vol. 11, no. 2, pp. 485–497, 2010, doi: 
10.1109/TITS.2010.2048313.

[2] M. R. Evans and D. S. Elston, “Agent-Based Modeling and Simulation for 
Transportation, VASTO: Evolutionary Agent System for Transportation 
Outlook,” pp. 1–88, 2013.

[3] de la P. F. Román J.A., Rodríguez S., Highlights of Practical Applications 
of Scalable Multi-Agent Systems. The PAAMS Collection, vol. 616. Cham: 
Springer International Publishing, 2016.

[4] K. Małecki, “A computer simulation of traffic flow with on-street parking 
and drivers’ behaviour based on cellular automata and a multi-agent 
system,” Journal of Computational Science, vol. 28, pp. 32–42, 2018, doi: 
10.1016/j.jocs.2018.07.005.

[5] H. Hamidi and A. Kamankesh, “An Approach to Intelligent Traffic 
Management System Using a Multi-agent System,” International Journal 
of Intelligent Transportation Systems Research, vol. 16, no. 2, pp. 112–124, 
2018, doi: 10.1007/s13177-017-0142-6.

[6] T. Anagnostopoulos, C. Luo, J. Ramson, K. Ntalianis, V. Kostakos, and 
C. Skourlas, “A multi-agent system for distributed smartphone sensing 
cycling in smart cities,” Journal of Systems and Information Technology, 

 

  

0

10

20

30

40

medium tra�ic
demand

high tra�ic
demand

     

ATSO AMTSC

AMTSC

MCTSO

MCTSO

medium tra�ic
demand

high tra�ic
demand

ATSO AMTSC MCTSO

0

20

40

60

80

100

     

0

20

40

60

80

100

120

0

500

1000

1500

2000

2500

3000

Average green time (s)

Average number of cycles Average intersection thoughput/h

Average red time (s)

(a) (b)

  
(c) (d)

low tra�ic
demand

medium tra�ic
demand

high tra�ic
demand

ATSO AMTSC MCTSO

low tra�ic
demand

low tra�ic
demand

medium tra�ic
demand

high tra�ic
demand

low tra�ic
demand

ATSO

Fig. 16. The intersection metrics’ key performances. The first chart shows the average green time assigned to active phases, the second chart shows the average 
red time assigned to inactive phases, the third chart shows the average number of cycles, and the fourth chart shows the average intersection throughput. All 
these measurements had been taken for each method and under different scenarios.



- 10 -

International Journal of Interactive Multimedia and Artificial Intelligence

vol. 22, no. 4, pp. 119–134, 2020, doi: 10.1108/JSIT-12-2018-0158.
[7] Z. Zhang, J. Yang, and H. Zha, “Integrating independent and centralized 

multi-agent reinforcement learning for traffic signal network 
optimization,” Proceedings of the International Joint Conference on 
Autonomous Agents and Multiagent Systems, AAMAS, vol. 2020-May, pp. 
2083–2085, 2020.

[8] M. C. Ho, J. M. Y. Lim, K. L. Soon, and C. Y. Chong, “An improved 
pheromone-based vehicle rerouting system to reduce traffic congestion,” 
Applied Soft Computing Journal, vol. 84, p. 105702, 2019, doi: 10.1016/j.
asoc.2019.105702.

[9] K. L. Soon, J. M. Y. Lim, and R. Parthiban, “Coordinated Traffic Light 
Control in Cooperative Green Vehicle Routing for Pheromone-based 
Multi-Agent Systems,” Applied Soft Computing Journal, vol. 81, p. 105486, 
2019, doi: 10.1016/j.asoc.2019.105486.

[10] A. Eydi, S. Panahi, and I. N. Kamalabadi, “User-based Vehicle Route 
Guidance in Urban Networks Based on Intelligent Multi Agents Systems 
and the ANT-Q Algorithm,” International Journal of Transportation 
Engineering, vol. 4, no. 3, pp. 147–161, 2016.

[11] A. Dorri, S. S. Kanhere, and R. Jurdak, “Multi-Agent Systems: A 
Survey,” IEEE Access, vol. 6, pp. 28573–28593, 2018, doi: 10.1109/
ACCESS.2018.2831228.

[12] J. Jin and X. Ma, “Hierarchical multi-agent control of traffic lights based 
on collective learning,” Engineering Applications of Artificial Intelligence, 
vol. 68, no. January, pp. 236–248, 2018, doi: 10.1016/j.engappai.2017.10.013.

[13] M. Xu, K. An, L. H. Vu, Z. Ye, J. Feng, and E. Chen, “Optimizing multi-
agent based urban traffic signal control system,” Journal of Intelligent 
Transportation Systems: Technology, Planning, and Operations, vol. 23, no. 
4, pp. 357–369, 2018, doi: 10.1080/15472450.2018.1501273.

[14] S. Darmoul, S. Elkosantini, A. Louati, and L. Ben Said, “Multi-agent 
immune networks to control interrupted flow at signalized intersections,” 
Transportation Research Part C: Emerging Technologies, vol. 82, pp. 290–
313, 2017, doi: 10.1016/j.trc.2017.07.003.

[15] I. H. Tchappi et al., “A critical review of the use of holonic paradigm in 
traffic and transportation systems,” Engineering Applications of Artificial 
Intelligence, vol. 90, no. March 2019, p. 103503, 2020, doi: 10.1016/j.
engappai.2020.103503.

[16] Y. Wang, X. Yang, H. Liang, and Y. Liu, “A review of the self-adaptive 
traffic signal control system based on future traffic environment,” Journal 
of Advanced Transportation, vol. 2018, 2018, doi: 10.1155/2018/1096123.

[17] M. Vasirani, F. Klügl, E. Camponogara, and H. Hattori, “Special issue 
on intelligent agents in traffic and transportation,” Journal of Intelligent 
Transportation Systems: Technology, Planning, and Operations, vol. 19, no. 
1, pp. 1–2, 2015, doi: 10.1080/15472450.2013.856719.

[18] P. Mannion, J. Duggan, and E. Howley, “An Experimental Review 
of Reinforcement Learning Algorithms for Adaptive Traffic Signal 
Control,” Autonomic Road Transport Support Systems, pp. 47–66, 2016, doi: 
10.1007/978-3-319-25808-9.

[19] A. Daeichian and A. Haghani, “Fuzzy Q-Learning-Based Multi-agent 
System for Intelligent Traffic Control by a Game Theory Approach,” 
Arabian Journal for Science and Engineering, vol. 43, no. 6, pp. 3241–3247, 
2018, doi: 10.1007/s13369-017-3018-9.

[20] S. El-Tantawy, B. Abdulhai, and H. Abdelgawad, “Multiagent reinforcement 
learning for integrated network of adaptive traffic signal controllers 
(marlin-atsc): Methodology and large-scale application on downtown 
toronto,” IEEE Transactions on Intelligent Transportation Systems, vol. 14, 
no. 3, pp. 1140–1150, 2013, doi: 10.1109/TITS.2013.2255286.

[21] M. Collotta, L. Lo Bello, and G. Pau, “A novel approach for dynamic traffic 
lights management based on Wireless Sensor Networks and multiple 
fuzzy logic controllers,” Expert Systems with Applications, vol. 42, no. 13, 
pp. 5403–5415, 2015, doi: 10.1016/j.eswa.2015.02.011.

[22] A. Latif and P. Megantoro, “Traffic Light Regulatory System Based on 
Fuzzy Algorithm Using Microcontroller,” Journal of Physics: Conference 
Series, vol. 1464, no. 1, 2020, doi: 10.1088/1742-6596/1464/1/012034.

[23] Y. Bi, D. Srinivasan, X. Lu, Z. Sun, and W. Zeng, “Type-2 fuzzy multi-
intersection traffic signal control with differential evolution optimization,” 
Expert Systems with Applications, vol. 41, no. 16, pp. 7338–7349, 2014, doi: 
10.1016/j.eswa.2014.06.022.

[24] “World Population Projections - Worldometer.” [Online]. Available: 
https://www.worldometers.info/world-population/world-population-
projections/. [Accessed: 05-Feb-2021].

[25] M. Xu, Z. Ye, H. Sun, and W. Wang, “Optimization model for transit signal 
priority under conflicting priority requests,” Transportation Research 
Record, vol. 2539, pp. 140–148, 2016, doi: 10.3141/2539-16.

[26] X. Li and J. Q. Sun, “Signal Multiobjective Optimization for Urban Traffic 
Network,” IEEE Transactions on Intelligent Transportation Systems, vol. 19, 
no. 11, pp. 3529–3537, 2018, doi: 10.1109/TITS.2017.2787103.

[27] A. C. Olivera, J. M. García-Nieto, and E. Alba, “Reducing vehicle emissions 
and fuel consumption in the city by using particle swarm optimization,” 
Applied Intelligence, vol. 42, no. 3, pp. 389–405, 2015, doi: 10.1007/s10489-
014-0604-3.

[28] M. Kempa and Z. A. Mann, “Model Driven Architecture,” Informatik-
Spektrum, vol. 28, no. 4, pp. 298–302, Aug. 2005, doi: 10.1007/s00287-005-
0505-2.

[29] J. Ferber and O. Gutknecht, “A meta-model for the analysis and design 
of organizations in multi-agent systems,” Proceedings - International 
Conference on Multi Agent Systems, ICMAS 1998, pp. 128–135, 1998, doi: 
10.1109/ICMAS.1998.699041.

[30] P. Cingolani and J. Alcalá-Fdez, “jFuzzyLogic: A Java Library to Design 
Fuzzy Logic Controllers According to the Standard for Fuzzy Control 
Programming,” International Journal of Computational Intelligence Systems, 
vol. 6, no. SUPPL1, pp. 61–75, 2013, doi: 10.1080/18756891.2013.818190.

[31] “AnyLogic: Simulation Modeling Software Tools & Solutions for 
Business.” [Online]. Available: https://www.anylogic.com/. [Accessed: 
28-Mar-2021].

[32] M. Abdoos, N. Mozayani, and A. L. C. Bazzan, “Holonic multi-agent 
system for traffic signals control,” Engineering Applications of Artificial 
Intelligence, vol. 26, no. 5–6, pp. 1575–1587, 2013, doi: 10.1016/j.
engappai.2013.01.007.

Abdelouafi Ikidid

He is a PhD candidate at the Computer Science Department 
of Cadi Ayyad University in Marrakesh, Morocco. He 
received his Master’s degree in Information Systems 
Engineering from the same university in 2016. His research 
interests are in software engineering, focusing on multi-
agent systems and artificial Intelligence.

Abdelaziz El Fazziki

He received the M.S. degree from the University of Nancy, 
France, in 1985, and the Ph.D. degree in computer science 
from the Cadi Ayyad University in 2002. He is a Professor 
of computer science at Cadi Ayyad University, where he 
has been since 1985. He is the author of over 50 papers on 
software engineering. His research interests are in software 
engineering and focusing on information system development

Mohammed Sadgal

He received the Ph.D. degree in computer science from the 
University of Lyon in 1989, and the Ph.D. degree in computer 
science from Cadi Ayyad University in 2005. From 1985 to 
1987, he was an Associate Researcher with Lyon I, France. 
He is currently a Professor with Cadi Ayyad University, 
Marrakesh, Morocco. His research interests include computer 
vision, artificial intelligence, and multi-agent systems.


