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Abstract

Technological advancement of smart devices has opened up a new trend: Internet of Everything (IoE), 
where all devices are connected to the web. Large scale networking benefits the community by increasing 
connectivity and giving control of physical devices. On the other hand, there exists an increased ‘Threat’ of an 
‘Attack’. Attackers are targeting these devices, as it may provide an easier ‘backdoor entry to the users’ network’. 
MALicious softWARE (MalWare) is a major threat to user security. Fast and accurate detection of malware 
attacks are the sine qua non of IoE, where large scale networking is involved. The paper proposes use of a 
visualization technique where the disassembled malware code is converted into gray images, as well as use 
of Image Similarity based Statistical Parameters (ISSP) such as Normalized Cross correlation (NCC), Average 
difference (AD), Maximum difference (MaxD), Singular Structural Similarity Index Module (SSIM), Laplacian 
Mean Square Error (LMSE), MSE and PSNR. A vector consisting of gray image with statistical parameters is 
trained using a Faster Region proposals Convolution Neural Network (F-RCNN) classifier. The experiment 
results are promising as the proposed method includes ISSP with F-RCNN training.  Overall training time of 
learning the semantics of higher-level malicious behaviors is less. Identification of malware (testing phase) is 
also performed in less time. The fusion of image and statistical parameter enhances system performance with 
greater accuracy. The benchmark database from Microsoft Malware Classification challenge has been used 
to analyze system performance, which is available on the Kaggle website. An overall average classification 
accuracy of 98.12% is achieved by the proposed method.
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I. Introduction

MALWARE is a major menace to Internet security today. There 
are various distinctive sorts of cyber assaults in the current day 

digital world. A few of these are very renowned like, phishing sites, 
botnets, denial of service (DoS), malware assaults and so on. Lately 
malware attacks are being increasingly propagated because of the 
huge development of internet and web-based products like IoE. A 
report from Symantec in 2019 announced a new malware technique 
i.e., FormJacking (FJ). Cyber attackers inject malware code in web 
page forms (specifically, payment page forms handled by Payment 
Processors) to steal sensitive information about the payment cards, 
names, addresses, phone numbers, etc. These types of attacks are called 
‘Supply Chain Attacks’ (SCA), and are written in JAVA. According to 
the Symantec report, an average of approximately 4800 sites have been 
compromised by the FJ code and there is a 78% hike in SCA. ‘Jacking’ 
is popular amongst cyber attackers. There are varieties of jackings 
viz. cyber, crypto, form, page, Brand, I, Wi, page, thread, mouse, paste, 
Data, side, Bio, Juice, etc. 

Big data Analytics can be defined as the process of lookup, 
processing, storing enormous data so as to separate important 
information out of it. With growth in big data analytics, security and 
protection concerns are additionally amplified.

Big data servers are effectively open to a more extensive population 
base; consequently, they increase the possibility of malware attacks. 
To shield users from the hazards of malware, security companies offer 
a diverse set of antivirus tools. Usually, these tools follow signature-
based methodologies. Signature based recognition is inclined to a few 
difficulties. For example, there has to be a database with patterns of 
known sets of threats. Also, frequent refresh is required for these 
signatures in the repositories which requires the intervention of 
experienced staff in the signature creation process. Thus, antivirus 
organizations are not able to define, analyze and develop effective 
signature patterns. 

Due to the escalating growth of online transactions, the level and 
number of cyber-crimes are increasing. In the present situation, where 
malware assault is massively expanding, it is very troublesome for 
pattern matching scanners to recognize new variations of existing 
malicious programs. Therefore, there is a high demand to formulate 
other strategies to recognize malware.
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This requirement asks for a Malware Detection System (MDS) 
which can detect malware accurately and act fast enough to 
quarantine the same. MDS is traditionally feature vector based in 
which crucial characteristics of the malware are extracted and used 
to identify the same in real time systems. Behavioral based malware 
detection can broadly be divided into three categories namely, static, 
dynamic and hybrid. According to Gandotra [1] in the Static Analysis 
(SA), malware software is analyzed without being executed. SA 
typically extracts features like operational code (OPCODE) frequency 
distribution, control flow graph, syntactic library call, byte-sequence 
n-grams, string signature etc., after unpacking executable in advance. 
SA protects the Operating System (OS) from malicious damage but it is 
vulnerable to code obfuscation techniques. In Dynamic Analysis (DA) 
malware is executed by making use of a controlled environment viz. 
sandbox, emulator, simulator, virtual machine and then it is analyzed 
by monitoring tools like Capture Bat, Process monitor (.pmon), poison 
IVY, etc. Sandbox generates a detailed and extensive report which 
requires human interpretation and analysis. The analysis process can 
be automated to a greater extent but with an addition of extensive 
computational complexities. Thus, it is time consuming [3]. However, 
both static and dynamic analyses have some limitations and it is 
difficult to use either static or dynamic analysis for malware detection. 
The next approach is the combination of both which is called the 
hybrid approach. It analyzes the signature of malware in the first 
phase and combines it with behavioral specifications for a complete 
analysis.

Malware database is huge. Such systems are largely dependent on 
Machine Learning (ML) algorithms. To figure out malware patterns 
in the code successfully, effective solution is - Visual Analytic 
Technique (VAT), where malware patterns are presented as an image. 
VAT provides summarized pictures of attacks. These images can be 
trained using ML for analyzing malware patterns. Malware Detection 
Developer (MDD) focuses on image patterns due to two reasons. 
The first reason is, even though the malware developers work in the 
direction of hiding the code, at the same time, while coming up with 
variants of the malware, they use the same old code. Therefore, the 
deviation δ between two images of a single malware family is very 
small. MDD can take advantage of this mind set and use the similarity 
mining machine learning method to identify the family of malware. 
The second reason is an image classification technique which is more 
mature and faster [4] [5].

This paper presents  literature survey in Section III and the Key 
extract is malware can be packed using different packing methods and 
with different resolutions. Therefore, for VTA (image) based analysis, 
research options are still open for providing an improved solution to 
classify malware. Keeping this as a base, this paper proposes extracting 
ISSP features for all the malware families taking into consideration 
all the variants in the binary file. Finally, ISSP features and malware 
images are trained using fast and robust F-RCNN classifier. 

The rest of the paper is organized as follows: related work is 
presented in Section II. The proposed work model is presented in 
Section IV. Feature vector formation using perceptual features and the 
mathematical model of the F-RCNN classifier is described in sections 
V and VI. Computation of the statistical parameters is described 
in Section VII. Description of the database is given in Section VIII. 
Experimental setup and related results are presented in Section IX. 
Section X discusses the performance analysis of the proposed method. 
Section XI concludes the paper.

II. Related Work 

This section focuses on varieties of features and classification 
techniques explored by researchers. Related work can be bifurcated in 

two categories i.e. the work based on image representation and methods 
other than image representation. As paper proposes image representation 
of malware, work related to this method is explained first. 

A. Image Based Methods
Image is a 2D representation. Key points of 2D representations are 

as follows

1. Data dimension does not affect processing once similarity space 
is formed.

2. Equally important clusters are formed.

3. Similar clusters are displayed adjacent for clear visualization [27]
[28][29]. 

Malware analysis using Visualization Technique (VT) was proposed 
by Yoo [16]. He classified images using Self-Organizing Map. VT is 
mostly used for document and image analysis where files are huge 
and data is massive. Therefore, it has wide applications in computer 
security, as malware attacks are in the thousands at a time. Shiravi [35] 
and N. Diakopoulos [34] identified Brute Force attack on Secure Shell 
(SSH) by representing details of Internet Protocol (IP) address, UserIDs 
and various anomalies using varieties of colors. VT was used to display 
large network packets and helped security analysts to find similarities 
by checking minute details using a zoom option. S.Foresti [39] and 
M. Wagner [40] demonstrated usage of VT to represent information 
like time (‘when’), IP address (‘Where’), Data (‘what’) and estimated 
distances to other hosts. 

Quist [17] proposed the use of an Ether hypervisor framework 
to track and visually represent execution of malware programs. 
The dynamic analysis framework was named as VERA. Trinius [18] 
introduced a new concept i.e., Malware Instruction SeT (MIST) for 
monitoring malwares. They used a CW Sandbox to collect information 
regarding API calls and performed action. They visually represented 
distance matrices of features for five malwares. 

To improve malware detection, different sections of the binary 
executable are now represented as gray scale images. These images 
provide detailed structure of malware, to the extent that they show 
even small changes in the code, without altering the remaining code 
structure. Gray scale texture helps in identifying similar patterns of 
the binary code [41].  L. Nataraj [42] proposed GIST descriptors to 
classify obfuscated malware. 

The Function Length Frequency (FLF) algorithm proposed by Tian 
[9] was used to detect Trojan after surveying varieties of techniques. 
Zolkipli [10] suggested the use of Variable Length Instruction Sequences 
(VLIS) with machine learning algorithms. Shankarapani [11] proposed 
two models, namely, Malware Examiner using Disassembled Code 
(MEDiC) and Static Analyzer for Vicious Executables (SAVE). Results 
were promising as the model had better detection even if malware 
is obfuscated. Nataraj [19] presented malware binaries as gray scale 
images. Using a KNN classifier they achieved good average accuracy 
along with increased speed of malware detection. On a similar line 
Kancherla [20] used byte plot (image of executables) and achieved 95% 
accuracy using the SVM classifier.

Kong and Yan [12] used hex dump n-gram, disassembly code, PE 
header and selected features using the L1 regularized method. They 
applied different classifiers viz. NB, SVM, K means Neural Network 
(KNN), decision tree and analyzed the performance of all the features. 
They concluded that the PE header feature is more prominent in 
malware detection. Santos et al., 2013b [13] tried to figure out the 
relevance of each OPCODE and calculated the frequency of OPCODE 
sequences. They verified the performance using the same four 
classifiers used by previous researchers. They stated empirically that 
the model can detect unknown malware as well. 
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Similarity is calculated based on the distance between each and every 
pair of points. Minimum distance represents maximum similarity [30] 
[31]. Projection and semantic orientation are 2D VTs, normally used 
to check similarity patterns [26] [32] [33].Frequency domain-based 
feature extraction i.e., Wavelet transforms, was proposed by Gu [14]. 
Li and Li [15] proposed static features viz. API, classes, functions and 
packages detecting malware for android APKs. They used different 
layers of ‘Characteristic Tree’ containing information of API calls. The 
method can classify unknown APKs. Han [21] converted a Windows 
PE binary file into a gray scale image. After that, using an Entropy 
Graph Generator (EGG), they calculated the entropy of each and every 
line of an image. Malware detections were done based on similarities 
of the original binary file.

Arefkhaniet [22] introduced a Local Sensitive Hashing technique 
specific to image processing, to classify similar input (malware) with 
high probability. Wu [23] converted disassembled binary executable 
into opcode sequences into an image. They used PCA to reduce the 
dimensionality and KNN classifier. Rezaei [24] proposed a similarity 
measurement algorithm for malware detection which compares 
the opcode strings of malicious files to improve the detection rate 
and speed. Venkatraman [36], Zhang [37] and Wylie Shanks [38] 
explored usage of VT for analyzing malware attack chronology and 
demonstrated successful system connections with the help of colors.

B. Other Methods
Santos et al., 2013b [13] introduced an OPCODE Executable trace 

Malware (OPEM) framework. It is a hybrid of statistically obtained 
frequency of occurrence of OPCODE and dynamically obtained 
executable traces. Performance was evaluated using Baysine, Decision 
Tree, SVM and KNN classifiers. Kolosnjaji [25] proposed feature fusion 
of headers of PE files and convolution of n-grams of an instruction. 
They achieved a 93% recall rate and accuracy using SVM and ANN 
(Feed forward) classifier. Ripper Cohen [6] proposed the Repeated 
Incremental Pruning to Produce Error Reduction (RIPPERk) algorithm 
that supersedes the learning algorithm, Incremental Reduced Error 
Pruning (IREP). In RIPPERk, k represents the number of multiple 
optimization iterations. Schultz [7] made use of three static features 
(byte sequence, strings and Portable Executable (PE)) and for the first-
time used the data mining concept. Kolter [8] proposed a combination 
of n-gram (instead of non-overlapping byte sequence) features with 
classifiers viz. Naive-Bayes (NB), Support Vector Machine (SVM), 
Decision Tree and their boosted versions. They found that the boosted 
decision tree provides better results. 

The following section illustrates an extensive and organized 
literature summary of innovative techniques proposed by researchers 
and challenges from state of the art.

III. Literature SURVEY – FORMULATING Problem 
Statement

A research problem should represent the core subject matter and 
it should be a discovery of new knowledge. This objective not only 
asks for rigorous literature survey, but also demands interpretation of 
the surveyed information to achieve a proper research path. Graphical 
presentation is given by the author which makes it more suitable to 
extract the required information.

Fig. 1 provides information about three basic analysis techniques 
like SA, DA and hybrid, explored by researchers. The SA technique is 
still preferred by most of the researchers [50]. The hybrid approach is 
not still popular amongst researchers. 

Static analysis
[50], [57], [62], [63], [59], 
[60], [61], [55], [56], [51], 
[52], [53], [54], [49], [58], 
[48], [46], [47], [45], [44],
[43]

Dynamic analysis
[84], [79], [82], [80], [81], 
[83], [77], [76], [72], [73], 
[74], [75], [78], [69], [71], 
[70], [67], [68], [66], [65],
[64]

Hybrid analysis
[92], [90], [91], [89], 
[87], [88], [13], [86], 
[85]

Malware Detection - Literature Survey Summary

Malware Analysis Techniques

Fig. 1. Survey depicts the type of analysis technique explored by researchers.

Feature extractions and classification techniques are the two 
pillars of MDS. Fig. 2 is devoted to different feature vectors used by 
researchers. API calls, system calls, n-gram and OPCODE are still 
features that are mostly used in MDS. Researchers typically have 
two paths: the first one is to optimize the feature vector and get a 
significant limited feature set, and the second one is the selection of 
a prominent limited set of features manually. Work implemented by 
researchers in either way is unique itself and uses varieties of byte   
and hex related features.

API and System Calls
A view on the interaction of the PE
with the operating system

[93], [95], [94], [89], [77], 
[73], [75], [13], [78], [86], 
[71], [68], [66], [64]
Data extracted by observing

[57], [89], [55], [88], [52], 
[96]

Control flow graphs
[83], [91], [90], [86], [87]

CPU, Registers, Flags
[57], [79], [89], [52]

N-grams
[97], [57], [59], [81], [126], 
[77], [73], [86], [69], [85], 
[44], [63]

Trigrams
[126], [81], [57], [69], [86], 
[63], [73], [88], [88]

Files: are read/modified
[96], [65], [98], [52], [90], 
[81], [95], [82]

Byte Sequences
[43], [126], [97]

Opcodes
[57], [60], [63], [126], 
[51], [52], [53], [86], 
[69], [99], [45]

Strings
[57], [102], [88], [43]

Network Activity 
(Dynamic Analysis)
[84], [90], [101], [82],  
[74], [100], [96], [66]
Network: Tra�ic analysis

[76], [72]
Network: Monitor download pa�ern

[54]

Malware Detection - Literature Survey Summary

Malware Feature Vector

Fig. 2. Survey depicts varieties of feature used by researchers.

A feature vector extracted from malware code should be trained 
with the help of neural networks. After training, system performance 
is tested by applying real time malware data. Researchers developed 
different techniques to extract the feature set. A breakthrough from 
the survey reveals that researchers using available crawlers, filters etc., 
end up with a plethora of feature vector space which may be redundant. 
Many times, some features may worsen the accuracy of the system. 
Thus, feature selection to improve system performance is mandatory 
but the same should be done without compromising accuracy.

The role of a classifier is important as it defines accuracy and 
precision. Fig. 3 presents three basic learning process categories i.e., 
supervised, unsupervised and semi-supervised. Supervised learning is 
the first choice of researchers where malware annotations are given 
for training the network.

Fig. 4 presents the wide usage of deep learning techniques like 
CNN, Deep Neural Network (DNN), Recurrent Neural network (RNN), 
auto encoders etc. in malware detection. These techniques are well 
established and provide high performance. CNN and its extensions 
are preferred for image-based analysis therefore, it is mostly used 
by researchers. CNN variants viz. Region based CNN (R-CNN), Fast 
R-CNN, Faster R-CNN are mostly used in image analysis for detecting 
objects [182].
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Supervised learning
Decision Tree

[82], [126], [77],
[88], [74], [53], 
[67], [96], [44]
Random Forest

[57], [101], [95], 
[83], [77], [72], 
[88], [47]
Logistic Model Tree

[90], [63], [73], [75]
SVM

[57], [59], [101], 
[81], [82], [63], 
[83], [77], [72], 
[88], [52], [49], 
[69], [67], [44]

Supervised learning
Rule-based

[84], [59], [79],
[88], [100], [9], [43]
Multiple Kernel Learning

[86]
Bayes classifier

[83], [53]
ANN

[102], [73]
KNN

[97], [82], [88],
[52], [67], [96], [64]
Multilayer Perceptron 
Neural Network

[52]
Naive Bayes

[63], [83], [77],
[67], [44], [43]
Bayesian Network

[87], [50]
Prototype-based 
Classification

[71]
Gradient Boosting
Decision Tree

[63], [49]

Unsupervised 
learning
Clustering with locality
sensitive hashing

[166], [56], [66]
Clustering with Distance
and Similarity Metrics 
Euclidean

[82], [71]
Hamming/cosine distances

[82], [91]
Jaccard similarities

[91]
K-means Clustering

[103]
k-Medoids

[99]
Density-based Spatial
Clustering of Applications
with Noise

[54]
Hierarchical Clustering

[82], [85], [71]
Self-Organizing Maps

[46]

Semi-Supervised 
learning
Learning with Local and
Global Consistency is 
used in

[48]
While Belief Propagation

[97], [98], [56]

Malware Detection - Literature Survey Summary

Classification of Malware Data

Fig.3. Survey depicts different classifiers explored by researchers.

Auto encoder
[120], [108], [109], [119], 
[115], [116], [106], [117], 
[118], [121], [122], [113], 
[110], [104], [105], [107], 
[111], [112], [114], [123]

DNN
[128], [132], [125], [127], 
[131], [124], [73], [130]

DNN RNN
[133]

CNN (dilated) Auto 
encoder [134]

CNN
[136], [137], [138], [139], 
[140], [141], [135]

CNN (Dynamic) [142]

CNN-RNN
[145], [146], [143], [144]

GAN [147]

RBM Autoencoder [148]

RBM RNN [149]

RBM
[162], [157], [164], [156], 
[165], [160], [161], [152], 
[153], [154], [150], [159], 
[151], [155], [158], [163]

RNN
[176], [179], [171], [167], 
[170], [168], [169], [172],
[173], [175], [177], [178], 
[180], [174], [181]

Malware Detection - Literature Survey Summary

Deep Learning based Classifier

Fig. 4. Literature survey based on Deep Learning Classifier.

These techniques are specific to image analysis and provide less 
training and testing times, which is the need of a malware detection 
technique, as it has to run in real time and detect malware as fast as 
possible. This motivates the author to select FR-CNN. It is a technique 
with a significantly low computational cost and the same has not been 
investigated for malware detection. This technique achieves more 
precision and a faster response.

IV. Proposed Model of MDS

The paper proposes MDS architecture comprising of deep learning 
network to accurately detect and classify malware families using an 
image-based technique which is described in Fig. 1. The Benchmark 
database from Kaggle is used to evaluate the performance of a system. 
The features vector of malware families is presented as gray scale 
images.  These images will be trained using deep learning and facilitate 
adaptive learning in real time environment to achieve high accuracy.

The Main contribution of this research work is as follows:

1. Consideration of prominent static features e.g., string signature, 
byte-sequence, N-grams, OPCODE

2. Represent feature vector as a gray scale image reflecting the malware 
family behavior

3. Arrange feature vector sub parts as varieties of ‘Regions’ of an image
4. NOTE: ‘Region’ is a generic term. Rectangular regions are considered 

in this paper, as it is common.
5. Minimize the training set
6. Compute statistical parameters of the image generated in point-2
7. Apply the F-RCNN classifier to a matrix having statistical parameters 

as well as an image.
To the best of our knowledge, the above combination i.e., a matrix 

of static features and an image with F-RCNN classifier has not been 
evaluated by researchers.

Malware file - Input

Read Malware data

Classifier Output

Training data set
(Learning)

Trained
Library

AD PSNR MSE NCC NAE LMSE

Im
ages

Feature Extraction

HEX
features

Disassembled
file features

Feature Integration - Fine tune dimension

F-RCNN classifier

Image Similarity based Statistical Feature Extraction

DP MD Entropy Image Symbol MISC SEC

SSIM MaxD

Fig. 5.  System Architecture of the proposed MDF-RCNN.

Fig. 5 depicts the system architecture of the proposed MDS. Feature 
extraction and classification of the malware input file are two major 
modules of MDS. Each one is described as follows.

V. Feature Extraction Module

A. Features Based on HEX and Disassembled Files
There are basically two major types of features extracted for MDS. 

These are HEX dump-based features (n-gram, MD1, entropy, image 
1(haralick) and Image 2 (lbpfeatures)) and disassembled file features 
(meta-data, SYM, OPC, MISC, DP and SEC.)
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1. Hex Based Features

a) N-gram
An N-gram is a contiguous sequence of n items from a given 

sequence. The technique is used intensively for characterizing 
sequences. The sequences may be from a speech or text. Malware 
samples may be viewed as sequences of HEX value. An N-gram 
analysis of these HEX values may provide valuable information. The 
malware sample consists of special symbols viz.??, indicating that the 
data of that location is not initialized. It also contains byte sequence 
whose value may range from 0 to 255.

b) Entropy
Entropy (ENT) is basically a measure of randomness or uncertainty 

or maybe the O amount of disorder. Obfuscation presence can be 
detected by entropy [183] [184]. In MDS, entropy is calculated based 
on byte representation. It measures the disarray of the distribution of 
the bytes in malware code by setting ‘order’ and ‘randomness factor’. 
A sliding window is applied on the malware code and entropy is 
calculated for each windowed segment. It is represented by:

 (1)

The Shannon’s formula,

 (2)

2. Features Extracted From Disassembled Files
Malware executables must first be disassembled to extract features. 

The PE format is used by Windows OS (WOS). It’s basically a data 
structure encapsulating important information which will be utilized 
by the WOS loader to manage the wrapped executable code shown 
in Fig. 6. The PE file contains Headers viz. DOS header, Section table, 
optional header, PE header, and Sections viz. code, imports, data. The 
Dynamic linker uses this information to map the file into memory. The 
PE information is important as its basic structure manages memory 
protection based on the code or data region. 

Header

DOS Header

PE Header

Optional Header

Sections Table

Code

Imports

Data

PE File

Sections

Fig. 6. PE File Structure.

a) Section (SEC)
The ‘sections’ consist of code, data and import sections. Further 

classification includes .data, .idata, .edata, .rdata, .text, .bss, .rsrc, 
.relocand, .tls. A malware code uses packing techniques where it 
modifies default sections and may create new sections, to evade 
Metadata (MD) shown in Fig. 6. An MD program can generate a 
feature vector by detecting different characteristics of SEC.

b) Metadata
After disassembling, two features viz. the number of lines in the file 

and file size, are computed and included within the Metadata category 
(MD2).

c) Symbol:
In malware sample code a set of symbols like [, -, +,], @, ?etc. 

may be present. Actually, these may correspond to indirect calls or 
Dynamic Library Loading (DLL), in malware code. In an indirect 
call, the address of the subroutine is loaded from memory or register. 
According to [188], the function call depends upon the architecture as 
well as the optimal decision of a compiler; therefore, such indirect calls 
may reveal information about data obfuscation. DLL is loaded during 
runtime by the executable code and executes library functions based 
on their address. Static analyzers cannot capture such run time events. 
Therefore, these garbled characters are used specifically by malware 
developers to evade MD.

d) Operation Code (OPCODE)
OPCODE or mnemonic is a digit and denotes assembly code. The 

micro-processor executes the OPCODE; therefore, it plays a very 
important role as it describes the behavioral characteristics of malware 
as shown in Fig. 7. Machines are x86 based. The instruction set list is 
complex and large, therefore [189], selected 93 OPCODEs based on 
frequent use in the malicious application and its commonness. The 
OPCODE frequency is calculated from the malware code. According 
to [190], use of Instruction Replacement Technique (IRT) may evade 
detection. Santos [53] used only OPCODE based features to generate 
the feature vector and detected malware just by one single class with 
reasonable amount of accuracy. Thus, it proves that OPCODE based 
features can contribute more for MD. Researchers also suggested an 
OPCODE, n-gram based method for MD. The detection is based on the 
OPCODE frequency feature, calculated by Term Frequency–Inverse 
Document Frequency (TF-IDF) statistical technique. The OPCODE 
sequence given vector was used to train the SVM classifier.

00401000 56 8D 44 24 08 50 8B F1 E8 94 B7 01 00 C7 C6 74
00401010 BE 54 00 8B C6 5E C2 04 00 CC CC CC CC CC CC CC
00401020 C7 01 74 BE 54 00 E9 9E B8 01 00 CC CC CC CC CC

push esi
lea eax, [esp+8]
push eax
mov esi, ccx
call ??0exception@std@@QAE@ABQBD@Z
mov dword ptr [esi], o�set o�_54BE74
mov eax, esi
pop esi
retn 4
align 10h
mov dword ptr [ecx],  o�set o�_54BE74
jmp sub_41C8C9
align 10h
sub_401030 proc near
arg_0 =byte ptr 4

push, lea, push, mov, call, mov, mov, pop, retn, align, mov, jmp

Fig. 7. Disassembly File Structure.

e) Register (REG)
The microprocessor has an internal register set which may be used 

for a specific task. According to [191], in some situations, registers are 
renamed to make the MD process more complicated and confusing. 
This asks for keeping track of REG used and frequency of usage of 
those registers. This feature is useful and helps in detecting a family 
of malware.
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f) Data Define (DP)
Few malware programs use a packing technique and therefore do 

not use API calls. Instead they contain a few OPCODEs. Typically, 
they use data related assembler directives like Define Byte (db), Define 
Word (dw) and Define Double Word (dd). This feature is key for 
classifying varieties of malware families. 

g) Miscellaneous (MISC)
This feature should be selected manually by identifying keywords 

from the disassembled code. The Interactive Disassembler (IDA) tool 
may be used for the same. Features extracted will be like the number 
of imported DLLs, identifying strings viz. hkey_local_machine(it 
specifies access to specific paths of the Windows registry), number of 
blocks in the PE etc. Thus, it depends upon the experience of the MD 
software developer engineer. 

After extracting these features gray scale image is prepared with 
the help of feature coefficients. Refer Fig. 8 for the same. Typically, 
these images of a single family should show similarity as the changes 
in the malware code is not drastic. Consider this point as a base author 
motivated to compute image similarity based statistical parameters. 
The next section describes the same. 

B. Features - Image Similarity Based Statistical Parameters
This feature set focuses on similarity between two images. A 

similarity parameter matrix will be computed based on malware 
images from the ‘x’ family compared with itself as well as the 
remaining families. Reference image (RI) and Input image (II) are 
two input images. Suppose RI is from the ‘x’ family then II will be 
the remaining images from the ‘x’ family and images from the other 
families. RI will be constant throughout the process of computing the 
similarity parameters. As the number of images per family are in the 
thousands their mean value will be calculated. 

The NCC method is used for template matching which is a process 
used for finding incidences of a pattern or object within an image. Eq.  
(1), is used to calculate NCC.

 (3)

AD provides the average of change concerning the input image and 
the reference image. AD can be expressed as follows:

 (4)

MaxD provides the maximum of the error signal (i.e., the difference 
between the processed and reference image). MD is defined as follows:

 (5)

SSIM is based on three factors i.e.,  luminance, contrast, and 
structure to better suit the workings of the human visual system. It 
is a perceptual metric that quantifies image quality degradation. This 
parameter is selected as the malware developer makes changes in the 
old code and comes up with the modified code. The modified code can 
be thought of as the ‘Noise’ element in an image. SSIM is defined as 
follows:

 (6)
where l = luminance, c = contrast, s = structure 

The Laplacian error map shows spatial error distribution across an 
image. The overall image quality is given by LMSE as follows:

  (7)
where L( (m,n)) is the Laplacian operator

NAE measures the numerical variance between the RI and II . 
Moreover, the results that are near to zero means that the image has a 
high similarity to the original one and the results near the value one 
indicate that the image has a very poor quality. NAE is calculated as 
follows: 

 (8)

MSE and PSNR are used to compare the quality of the image 
compression. MSE represents the cumulative squared error between 
the  RI and II , whereas the PSNR represents a measure of the peak error. 
The lower the value of the MSE, the lower the error. 

 (9) 

After computing ISSP one more feature vector is produced which 
will be used to train classifier.

VI. Classifier – F-RCNN

This section describes the reason for selecting the classifier 
i.e., F-RCNN. In computer vision (CV) object or region detection 
is a major task.  Ross [182] proposed a selective search method to 
extract N number of limited regions from an image. These regions 
are referred to as Region Proposals.  Associated training network is 
referred as Region Proposal Network (RPN). The algorithm overrides 
the problem of selecting a huge number of regions. Region based CNN 
(R-CNN) is thus a fusion of the Region Proposals algorithm with CNN. 
As the first step, this algorithm selects some proposed regions from 
the image, puts Bounding Boxes (BB) and labels their categories. The 
Deep learning algorithm (CNN) extracts varieties of features using 
forward computation from these proposed regions and then trains the 
network to classify the categories and BB. Following section describes 
methodology to represent feature coefficients as an image.

A. Image Representation
Malware samples are represented as an image, where each byte of 

the malware code corresponds to one pixel of gray scale image [185].  
The author proposes use of all the features extracted viz. n-gram, 
MD1, MD2 etc., to construct an image as shown in Fig. 8. The image is 
formed in such a way that there are ‘regions’ of feature vectors. Each 
feature vector (N-gram, MD1, entropy, MD2 etc.) may be viewed as 
a region of an image. Thus, fundamentally the R-CNN algorithm 
is more suitable for MDS. R-CNN will be more effective and efficient 
for classifying malware. 

Represents feature coe�icients

Disassembled
file features

HEX features
N-gram Region

Entropy Region

Symbol Region

OPCODE Region

Register Region

DP Region

.text Region

.rdata Region

.data Region

Fig. 8. Gray scale image of malicious code with feature coefficient Regions.
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Fig. 11 represents a sample of nine malware categories. The image 
has very fine and typical texture patterns and the same may be used to 
visualize the malware family. It has been observed that malware of the 
same family has similar signatures or fingerprints in some area of an 
image [187]. This information may be used as knowledge to identify 
the malware family. Zhang [186] represented information gains and 
the probability of the OPCODE to construct an image. M. Ahmadi [57] 
used Local Binary Pattern features and Haralick features to construct 
an image.

As R-CNN extracts features from each block, features from the 
same block will be repeatedly extracted, leading to a greater number 
of repetitive computations as shown in Fig. 9. Therefore, the author 
proposes F-R-CNN, which is an improved version of R-CNN 
where CNN performs forward computation on the whole image.

The entire image with a set of proposed regions (K object) with 
similarity based statistical parameters is input for an F-RCNN 
network. The network performs several convolution operations 
(conv) and maximum pooling layers on the entire input feature vector, 
and produces conv feature map. Next step it performs is to generate 
a feature map, by extracting a fixed length feature vector generated 
from the Region of Interest (RoI) pooling layer operation on the 
proposed objects. Each and every generated feature vector is input to 
a sequence of fully connected (fc) layers. fc layer provides two outputs. 
The first output is Softmax Probability Estimation (SPE) over K object 
classes plus a catch-all “background” class. The second output is 4 real 
valued numbers for every K object class. One of the K object classes has 
a set of four values which provides updated bounding box positions, 
calculated to reduce overlaps shown in Fig. 10.

Faster R-CNN consists of two major modules. The first module i.e., 
Region Proposal Network (RPN) is a deep fully convolutional network 
which proposes regions. The second module uses F-RCNN detector 
which uses the regions proposed by first module and learns about 
region positions from the same module due to attention-based CNN. 

The first module is presented in Table I. Table II presents the algorithm 
for generating the unified network for the overall system.

classifier

proposals

conv layers

Image

Region Proposal Network

RoI pooling

feature maps

Fig. 10. F-RCNN Architecture. 

VII.  Statistical Parameters

To compute different statistical parameters, initially all the malware 
families are segregated in different folders. Nine folders are created as 
there are nine malware families. Malware files are processed and gray 
images are produced. These images are used to compute parameters.  
Table III presents the algorithmic steps.

SSIM

Image Similarity based
Statistical feature
parameters (ISSP)

Represents feature coe�icients

F-RCNN classifier

Disassembled
file features

HEX features

AD
MaxD
NAE
NCC
PSNR
MSE

LMSE

N-gram Region

Entropy Region

Symbol Region

OPCODE Region

Register Region

DP Region

.text Region

.rdata Region

.data Region

Fig. 9. F-RCNN Architecture for MDS.
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VIII. Database Description

This section describes the publicly available datasets for malware. 
System performance is analyzed on the benchmark database from 
Kaggle (https://www.kaggle.com/c/malware-classification/data).It was 
a Microsoft malware classification challenge. The database contained 
known malware files representing a mix of 9 different families viz. 
Gatak, Obfuscator.ACY, Kelihos_ver1, Tracur, Simda, Vundo, Kelihos_
ver3, Lollipop and Ramnit. The file structure of the database is shown 
in Table IV and Table V.

TABLE I. Region Proposal Generation Algorithm

Region Proposal Network
Input: Image of any size
Output: 1. Set of rectangular object proposals
              2. Each object with abjectness score 
Convolutional model used: Zeiler and Fergus(ZF) (five sharable 
convolutional layers)
1 Generate convolutional feature map.
2 n * n Sliding spatial window generated for small network. Sliding 

window is mapped to feature map of low dimension (256d f or ZF).  

3 Anchors
a.  Each sliding window predicts multiple region proposals,  
     simultaneously. 
b.  k = Maximum region proposals for each location (k anchor boxes)
c.  Feature map size =  W * H 
d.  In the sliding window the question and an anchor, both are centered.  
     Aspect ratio and scale is associated. Aspect ratio = 3 and scale = 3,  
     provides k = 9 anchors [204].
e.  ‘cls’ layer is a two class Softmax layer. It estimates the probability of  
     the object or non-object for each region proposal. Logistic regression  
     will be used to produce of 2 * k scores.
f.  Regression (reg) layer has coordinates of k boxes. It will generate 4 *  
     k outputs. 
g.  The total number of anchors will be W * H * k
h.  Anchors are translation-invariant which reduces the model size. 
As per the case of Fully Convolutional Network (FCN) [204]

4 Multi-Scale Anchors 
a.  Compute multi-scale anchors by selecting multiple scale sliding window.
b.  Apply multi-scale sliding window to image and feature map of single 
scale.
c.  Generated structure may be viewed as ‘pyramid of filters’

5 Loss Function
a.  Apply binary label to each and every bounding box.
b.  If  (Intersection over Union (IoU) ∩ Ground Truth(GT)  box) ≥ 0.7) 
            then assign positive label
c.  If 
                then assign negative label
                else discard anchor
d.  Multiple anchors may be marked as positive by a single GT box.
e.  Compute Loss function

    (10) 
where, i = anchor index in mini batch 
Pi = Predicted probability of anchor being an object 
Pi

* = Binary GTlabel 
ti = four parameteroised co-ordinates of Bounding Box (BB) 
ti

* = four parameteroised co-ordinates of GT Box of positive anchor 
Lcls = log loss over object versus non-object classes 
Lreg = regression Loss calculated only when Pi

* = 1 cls layer has {Pi }   
            and reg layer has {ti }

f.  Compute Robust Loss

                                                       (11)

g.  Normalize Lcls  and Lreg
     Ncls = Normalisation of Lres  by mini batchsize
     Nreg = Normalisation of Lreg by the number of anchor locations
h.  Apply weight factor λ
i.  BB regression from an anchor box to GT box

     (12) 
where, 
x, y = centre co-ordinates of box 
w and h = width and height of box 
x, y, w and hare variables for predicted box 
xa, ya, wa and ha are variablesfor anchor box 
x*, y*,w* and h* are variables for GTbox

6 RoI pooling layer algorithm
1.  Input RoI window of size h * w with  r (row) and c (column) 
     information.
2.  Divide ROI window into sub windows of size H * W 

3.  Generate output grid cell by maximum pooling values from each sub 
     window
4.  Apply independent pooling to each feature map channel, on a similar  
     line to the standard maximum pooling.

7 Optimization of Loss function
1.  From a single image mini-batch of many +/- anchors are identified. 
2.  Sample size of 256 anchors from an image is randomly selected to  
     compute loss function of a mini batch.
3.  Equal number of positive and negative anchors are selected i.e., 128  
     each, if sample size is 256.
4.  In case of a low number of either of the anchors (≤ 128), then the mini  
     batch will be padded in such a way to get equal numbers of both the  
     anchors.
5.  All new layers are randomly initialized by computing weights from  
     zero mean Gaussian distribution with 0.01 standard deviation.
6.  Shared convolutional layers are initialized by standard practice i.e.  
     pre-training model a model for ImageNet classification.

8 Training RPN
RPN is trained by back propagation (BP) and stochastic gradient descent 
(SGD) using ‘image centric’ sampling strategy.

TABLE II.  Approach to Unified Network of RPN and F-RCNN

Problem: Independently trained F-RCNN and RPN networks will modify 
their convolutional layer differently. The algorithm is required so that 
both can ‘share’ the convolutional layer

Generating Unified system Network
Input: RPN generated regions
Output: Trained model of overall system

1 Train RPN network as per algorithm described in Table I
2 a.  Initialized the ImageNet-pre-trained model

b.  Input region proposals generated by step -1
c.  Train detection network by Fast R-CNN using.
Note: convolutional layer is yet not shared by both the training model

3 Shared convolutional layers are finalized.
4 Layers unique to RPN will be fine-tuned.
5 RPN training network is initialized by detector network and the 

system is trained.
5 Fine tune layers from Shared convolutional layers unique to F-RCNN.
6 F-RCNN network is trained.

https://www.kaggle.com/c/malware-classification/data
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TABLE IV. Kaggle Dataset Basic Information

Header Description
ID Twenty-character hash value for unique identification of file
Class Integer representing family of malware
RAW data HEX representation of the file’s binary content
Metadata 
manifest

Log of various metadata information e.g. Function calls, Strings 
etc. extracted from the binary using IDA disassembler tool. 

Size 0.5 Tera byte uncompressed

TABLE V.  DATASET Description

Malware Family Malware category Sample Size
Gatak Backdoor 1013
Obfuscator. ACY obfuscated malware 1228
Kelihos_ver1 Backdoor 398
Tracur Trojan Downloader 751
Simda Backdoor 42
Vundo Trojan 475
Kelihos_ver3 Backdoor 2942
Lollipop Adware 2478
RAmnit Worm 1541

IX. Experimental Results and Discussion

The gray scale images of the feature vector for the malware family 
listed in Table V are shown in Fig. 11. It can be clearly observed that 
the image for each family is unique in itself. Identification becomes 
simpler. Feature vector ‘Regions’ are also clearly visible.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 11. Malware images of different malware families.
(a) Ramnit  (b) Lollipop (c) Kelihos_ver3 (d) Vundo (e) Simda (f) Tracur 
(g) Kelihos_ver1 (h) Obfuscator. ACY (i) Gatak

As seen, initially one image from the first malware family is taken 
as a ‘reference image’. The remaining images from the first malware 
family and all the images of all eight malware families are used as 
‘Input image’. Reference image and Input images are used to compute 
all the parameters. All the parameters per ‘Input image’ are stored in 
the respective arrays (e.g.SSIM_array, MSE_array and so on). After 
iterating through all the images of one family, the mean value of an 
array is calculated. Thus, per family there is a single mean value. The 
mean value matrix is plotted. The same is depicted in Fig. 12.

Fig. 12(a) shows the SSIM value. It is 0.56 for the Ramint malware. 
For the remaining families the value ranges between 0 to 0.02. Thus, 
there is high structural similarity with self-family, but with other 
families less SSIM value reflects very little similarity. On a similar line, 
the NAE parameter for the same family is 0.4 and for other families it 
is more than 0.7. Refer Fig. 12 (b) – (h). It depicts plots for PSNR, MD, 
MSE, LMSE, NK. It has been observed that, there is clear bifurcation in 

TABLE III. Statistical Parameter Computation

Input Folder structure is as follows
Main folder – contains sub folders equal to number of malware 
families (i = 9 for this case)
     - Sub-folders (9 malware families)
     - Each sub-folder has different number of images j 

RI = Reference image
II = Input image

i = Number of malware families in main directory (folder)
j = Number of malware variants (images) of specific malware 
family in a subfolder
// Initialize empty array
Parameter Array = {∅}
for (β = 0 ; β < i ; β ++)
// Load reference image – first image of malware family
RI = β[0]
for// select malware families one by one
     (k = 0 ; k < i ; k ++)
// Get number of images present of a specific malware 
family
     j = size (ksub-folder)
for (localcnt = 0; localcnt < j ; localcnt ++) 
// Load Input image from malware family
     Ii = (k)[localcnt] 
// calculate SSIM
SSIM(Ri , Ii ) = [l(Ri , Ii )

α . c(Ri , Ii )
β . s(Ri , Ii )

γ ]
where l = luminance, c = contrast, s = structure
// Calculate MSE

     
// calculate PSNR

     
// calculate Normalized Cross-Correlation (NK)

     
// calculate Normalized Absolute-error (NAE)

     
// calculate Maximum difference
     MD(RI , II ) =  max{[RI (m, n) − II (m, n)]}
// calculate Laplacian Mean Square Error (LMSE)

whereL(m, n) is Laplacian operator 
// Store all the values in an array
end
// Take average of an array an obtain single value
Parameter_array(k)=[ mean(SSIM); mean(MSE); mean(PSNR); 
mean(NCC); mean(NAE); mean(MaxD); mean(LMSE)]
end
end
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the statistical parameter values to the same family class and a different 
family class. But in case of AD for the same class of family the value 
is approximately -1, but for the remaining families the value is either 
positive or negative with appropriate value difference. One can define 
a threshold range (0.95 to 1.1) for the AD. All these parameters can be 
used to train the F-RCNN classifier.

In Fig. 13 When the SC values were plotted for the same scenario 
then the results were not so promising. Range or proper threshold was 
difficult; therefore, this parameter was not taken into consideration 
by the author.
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Fig. 13. SC plot.

Generated images are used to train the F-RCNN network. 
Annotations about regions are marked. In the experiment, the malware 
image set is randomly divided into a training set (60%) and a testing set 
(40%). This ratio of 60:40 has been selected to check the robustness of 
the model. The training data is less as compared to standard training 
data, i.e., 70:30. A trained library or network is created after the 
training process. After the training model is completed, the error and 
loss function of the model is used for judgment and evaluation. While 
training the system 30,000 epochs are selected. But while plotting the 
graph it is represented in percentage of the total value. Fig. 14 and 
Fig. 15 represent the error and loss plots in the training process. As 
the training iteration increases, the total error as well as loss value 
decreases and gradually stabilizes.

When the iterations reach 100%, the total loss value becomes flat 
and achieves the possible minimum value. The result shows that the 
training model based on F-RCNN with ISSP fusion with gray scale 
image is successful.
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Fig. 16. Training model accuracy plot.

The network keeps a history of the trained data with error, loss 
and accuracy achieved while training the model. Fig. 16 represents 
the overall accuracy of the model with validation accuracy which 
approximates to 98.12%. In the testing phase, the remaining 30% of 
the malware files will be used. For each file a feature vector will be 
presented as a gray scale image will be generated and ISSP will be 
computed. The total matrix will be input to the trained network. The 
output generated from the trained network will be analyzed with 
the help of the statistical method where different parameters like 
True Positive (TP), True Negative (TN), False Positive (FP) and False 
Negative (FN) will be computed.

X. Performance Analysis

A. Performance Metrics
This section compares results obtained from the proposed work 

and state-of-the art methods. The proposed method opted the Kaggle 
benchmark dataset therefore results are compared with those research 
techniques that opted for the same dataset. Similarly, a comparison of 
the proposed algorithm for various performance metrics is stated in 
Table VI and Table VII respectively. Graphical plots for all comparisons 
are illustrated in Fig. 17.

Accuracy is the major performance parameter for the MD system, 
which specifies how accurately malwares are classified. Accuracy is 
calculated based on the following equation:

Table VI depicts the confusion matrix of the proposed scheme for 
the MDS using Kaggle database. 
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As the FRCNN classifier is not used by other researchers, the 
author compared the results with learning algorithms presented by 
researchers, as shown in Table VII.

TABLE VII. Comparative Performance of the Proposed System

Author/ Year Dataset 
Used Classifier Accuracy 

(%)

Rao  et al., 2017  [192] NSL-KDD IPDS-KNN 99.6

Shapoorifard et al., 2017  [193] NSL-KDD KFN-KNN 99

Vishwakarma et al., 2017  [194] KDD cup 99 ACO-KNN 94.7

Dada et al., 2017  [195] KDD cup 99 MIX-KNN 98.55

Ingre et al., 2017  [196] NSL-KDD CFS-DT 90.3

Malik et al., 2017  [197] KDD cup 99 MULTI-DTs 91.94

Moon et al., 2017  [198] Netflow DT 84.7

Zhao et al., 2017  [199] KDD cup 99 DBN-PNN 99.14

Tan et al., 2017  [200] NETFLOW DBN 97.6

Le  et al., 2017  [201] KDD cup 99 LSTM 97.54

Agarap et al., 2017  [202] NETFLOW GRU 84.15

Saxe et al., 2017  [203] NETFLOW CNN 92

Ding et al., 2016  [165] Netflow DBN 96.1

Nadeem et al., 2016  [120] KDD cup 99 DBN 99.18

Alom et al., 2016  [159] NSL-KDD DBN 97.5

Krishnan et al., 2016  [180] KDD cup 99 RNN 77.55

Kim et al., 2016  [173] KDD cup 99 LSTM 96.93

MDFRCNN Kaggle 
dataset F-RCNN 98.12

XI. Conclusion

The paper proposes a state-of-the-art technique at feature extraction 
as well at classification level. The paper analyses different features viz. 
n-gram, MD1, MD2, entropy, OPCODE, Register, symbols, data define 
and sections of malware file for generating the feature vector. The 
feature vector is converted to a gray level image for visual analysis, 
where typical behavioral patterns can be observed for a particular 
malware family. Gray-scale image conversion widely opens up the 
scope for using state of the art image processing techniques, which 
have been more mature and proven. 

Feature vectors have been presented in an image as different 
‘Regions’ which allows the use of Region Proposed Network (RPN). 
Exhaustive work done in the region-based analysis in an image, 
motivated the author to opt for the proposed methodology.  

Malware codes are normally 75% to 80% identical. The image 
constructed from this code after extracting features should show 
similarity. Considering this point the author is motivated to introduce 
different image similarity based statistical parameters (ISSP) such 
as NCC, AD, MD, SSIM, LMSE, MMSE and PSNR as a feature set 
to improve system performance. The feature plot shown in Fig. 14, 
concludes that the features are distinctive. Thus, fusion of gray scale 
image with similarity parameters is used to train the classifier.

The development of region-based analysis with CNN as a base 
classifier offers R-CNN. The next modified versions of the basic R-CNN 
are Fast RCNN and Faster R-CNN (F-RCNN) techniques which have 
been proven for less training and testing time as shown in Fig. 5. This 
type of deep learning technique is more suitable for MDS where not 
only real time learning can be implemented with less time, but testing 
or producing output in the form of malware detection is desideratum. 
The system performance is analyzed using the benchmark database 
from Kaggle. This dataset is publicly available and results can be 
compared with the baseline. The database consists of nine malware 
families listed in Table V with details of malware families, malware 
categories and the number of sample files.

F-RCNN classifier with image-based visualization of the feature 
vector and ISSP as an additional feature resulted in better performance 
for classifying nine classes of malware. The proposed model offered an 
overall accuracy of 98.12% with improved rate of MD.
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