
- 1 -Please cite this article in press as:
M.Deore, U. Kulkarni. MDFRCNN: Malware Detection using Faster Region Proposals Convolution Neural Network, International Journal of Interactive
Multimedia and Artificial Intelligence, (2021), http://dx.doi.org/10.9781/ijimai.2021.09.005

* Corresponding author.

E-mail address: mdeore83@gmail.com

Keywords

Malware, CNN, Faster
RCNN (F-RCNN),
Classification, Malware
Static, Dynamic
Analysis.

Abstract

Technological advancement of smart devices has opened up a new trend: Internet of Everything (IoE),
where all devices are connected to the web. Large scale networking benefits the community by increasing
connectivity and giving control of physical devices. On the other hand, there exists an increased ‘Threat’ of an
‘Attack’. Attackers are targeting these devices, as it may provide an easier ‘backdoor entry to the users’ network’.
MALicious softWARE (MalWare) is a major threat to user security. Fast and accurate detection of malware
attacks are the sine qua non of IoE, where large scale networking is involved. The paper proposes use of a
visualization technique where the disassembled malware code is converted into gray images, as well as use
of Image Similarity based Statistical Parameters (ISSP) such as Normalized Cross correlation (NCC), Average
difference (AD), Maximum difference (MaxD), Singular Structural Similarity Index Module (SSIM), Laplacian
Mean Square Error (LMSE), MSE and PSNR. A vector consisting of gray image with statistical parameters is
trained using a Faster Region proposals Convolution Neural Network (F-RCNN) classifier. The experiment
results are promising as the proposed method includes ISSP with F-RCNN training. Overall training time of
learning the semantics of higher-level malicious behaviors is less. Identification of malware (testing phase) is
also performed in less time. The fusion of image and statistical parameter enhances system performance with
greater accuracy. The benchmark database from Microsoft Malware Classification challenge has been used
to analyze system performance, which is available on the Kaggle website. An overall average classification
accuracy of 98.12% is achieved by the proposed method.

DOI: 10.9781/ijimai.2021.09.005

MDFRCNN: Malware Detection using Faster Region
Proposals Convolution Neural Network
Mahendra Deore1*, Uday Kulkarni2

1 Department of Computer Engineering, MKSSS’s Cummins College of Engineering for Women, Pune-
411052 (India)
2 Department of Computer Science & Engineering, SGGS Institute of Engineering and Technology,
Nanded-431606 (India)

Received 31 August 2020 | Accepted 14 June 2021 | Early Access 30 September 2021

I. Introduction

MALWARE is a major menace to Internet security today. There
are various distinctive sorts of cyber assaults in the current day

digital world. A few of these are very renowned like, phishing sites,
botnets, denial of service (DoS), malware assaults and so on. Lately
malware attacks are being increasingly propagated because of the
huge development of internet and web-based products like IoE. A
report from Symantec in 2019 announced a new malware technique
i.e., FormJacking (FJ). Cyber attackers inject malware code in web
page forms (specifically, payment page forms handled by Payment
Processors) to steal sensitive information about the payment cards,
names, addresses, phone numbers, etc. These types of attacks are called
‘Supply Chain Attacks’ (SCA), and are written in JAVA. According to
the Symantec report, an average of approximately 4800 sites have been
compromised by the FJ code and there is a 78% hike in SCA. ‘Jacking’
is popular amongst cyber attackers. There are varieties of jackings
viz. cyber, crypto, form, page, Brand, I, Wi, page, thread, mouse, paste,
Data, side, Bio, Juice, etc.

Big data Analytics can be defined as the process of lookup,
processing, storing enormous data so as to separate important
information out of it. With growth in big data analytics, security and
protection concerns are additionally amplified.

Big data servers are effectively open to a more extensive population
base; consequently, they increase the possibility of malware attacks.
To shield users from the hazards of malware, security companies offer
a diverse set of antivirus tools. Usually, these tools follow signature-
based methodologies. Signature based recognition is inclined to a few
difficulties. For example, there has to be a database with patterns of
known sets of threats. Also, frequent refresh is required for these
signatures in the repositories which requires the intervention of
experienced staff in the signature creation process. Thus, antivirus
organizations are not able to define, analyze and develop effective
signature patterns.

Due to the escalating growth of online transactions, the level and
number of cyber-crimes are increasing. In the present situation, where
malware assault is massively expanding, it is very troublesome for
pattern matching scanners to recognize new variations of existing
malicious programs. Therefore, there is a high demand to formulate
other strategies to recognize malware.

- 2 -

International Journal of Interactive Multimedia and Artificial Intelligence

This requirement asks for a Malware Detection System (MDS)
which can detect malware accurately and act fast enough to
quarantine the same. MDS is traditionally feature vector based in
which crucial characteristics of the malware are extracted and used
to identify the same in real time systems. Behavioral based malware
detection can broadly be divided into three categories namely, static,
dynamic and hybrid. According to Gandotra [1] in the Static Analysis
(SA), malware software is analyzed without being executed. SA
typically extracts features like operational code (OPCODE) frequency
distribution, control flow graph, syntactic library call, byte-sequence
n-grams, string signature etc., after unpacking executable in advance.
SA protects the Operating System (OS) from malicious damage but it is
vulnerable to code obfuscation techniques. In Dynamic Analysis (DA)
malware is executed by making use of a controlled environment viz.
sandbox, emulator, simulator, virtual machine and then it is analyzed
by monitoring tools like Capture Bat, Process monitor (.pmon), poison
IVY, etc. Sandbox generates a detailed and extensive report which
requires human interpretation and analysis. The analysis process can
be automated to a greater extent but with an addition of extensive
computational complexities. Thus, it is time consuming [3]. However,
both static and dynamic analyses have some limitations and it is
difficult to use either static or dynamic analysis for malware detection.
The next approach is the combination of both which is called the
hybrid approach. It analyzes the signature of malware in the first
phase and combines it with behavioral specifications for a complete
analysis.

Malware database is huge. Such systems are largely dependent on
Machine Learning (ML) algorithms. To figure out malware patterns
in the code successfully, effective solution is - Visual Analytic
Technique (VAT), where malware patterns are presented as an image.
VAT provides summarized pictures of attacks. These images can be
trained using ML for analyzing malware patterns. Malware Detection
Developer (MDD) focuses on image patterns due to two reasons.
The first reason is, even though the malware developers work in the
direction of hiding the code, at the same time, while coming up with
variants of the malware, they use the same old code. Therefore, the
deviation δ between two images of a single malware family is very
small. MDD can take advantage of this mind set and use the similarity
mining machine learning method to identify the family of malware.
The second reason is an image classification technique which is more
mature and faster [4] [5].

This paper presents literature survey in Section III and the Key
extract is malware can be packed using different packing methods and
with different resolutions. Therefore, for VTA (image) based analysis,
research options are still open for providing an improved solution to
classify malware. Keeping this as a base, this paper proposes extracting
ISSP features for all the malware families taking into consideration
all the variants in the binary file. Finally, ISSP features and malware
images are trained using fast and robust F-RCNN classifier.

The rest of the paper is organized as follows: related work is
presented in Section II. The proposed work model is presented in
Section IV. Feature vector formation using perceptual features and the
mathematical model of the F-RCNN classifier is described in sections
V and VI. Computation of the statistical parameters is described
in Section VII. Description of the database is given in Section VIII.
Experimental setup and related results are presented in Section IX.
Section X discusses the performance analysis of the proposed method.
Section XI concludes the paper.

II. Related Work

This section focuses on varieties of features and classification
techniques explored by researchers. Related work can be bifurcated in

two categories i.e. the work based on image representation and methods
other than image representation. As paper proposes image representation
of malware, work related to this method is explained first.

A. Image Based Methods
Image is a 2D representation. Key points of 2D representations are

as follows

1. Data dimension does not affect processing once similarity space
is formed.

2. Equally important clusters are formed.

3. Similar clusters are displayed adjacent for clear visualization [27]
[28][29].

Malware analysis using Visualization Technique (VT) was proposed
by Yoo [16]. He classified images using Self-Organizing Map. VT is
mostly used for document and image analysis where files are huge
and data is massive. Therefore, it has wide applications in computer
security, as malware attacks are in the thousands at a time. Shiravi [35]
and N. Diakopoulos [34] identified Brute Force attack on Secure Shell
(SSH) by representing details of Internet Protocol (IP) address, UserIDs
and various anomalies using varieties of colors. VT was used to display
large network packets and helped security analysts to find similarities
by checking minute details using a zoom option. S.Foresti [39] and
M. Wagner [40] demonstrated usage of VT to represent information
like time (‘when’), IP address (‘Where’), Data (‘what’) and estimated
distances to other hosts.

Quist [17] proposed the use of an Ether hypervisor framework
to track and visually represent execution of malware programs.
The dynamic analysis framework was named as VERA. Trinius [18]
introduced a new concept i.e., Malware Instruction SeT (MIST) for
monitoring malwares. They used a CW Sandbox to collect information
regarding API calls and performed action. They visually represented
distance matrices of features for five malwares.

To improve malware detection, different sections of the binary
executable are now represented as gray scale images. These images
provide detailed structure of malware, to the extent that they show
even small changes in the code, without altering the remaining code
structure. Gray scale texture helps in identifying similar patterns of
the binary code [41]. L. Nataraj [42] proposed GIST descriptors to
classify obfuscated malware.

The Function Length Frequency (FLF) algorithm proposed by Tian
[9] was used to detect Trojan after surveying varieties of techniques.
Zolkipli [10] suggested the use of Variable Length Instruction Sequences
(VLIS) with machine learning algorithms. Shankarapani [11] proposed
two models, namely, Malware Examiner using Disassembled Code
(MEDiC) and Static Analyzer for Vicious Executables (SAVE). Results
were promising as the model had better detection even if malware
is obfuscated. Nataraj [19] presented malware binaries as gray scale
images. Using a KNN classifier they achieved good average accuracy
along with increased speed of malware detection. On a similar line
Kancherla [20] used byte plot (image of executables) and achieved 95%
accuracy using the SVM classifier.

Kong and Yan [12] used hex dump n-gram, disassembly code, PE
header and selected features using the L1 regularized method. They
applied different classifiers viz. NB, SVM, K means Neural Network
(KNN), decision tree and analyzed the performance of all the features.
They concluded that the PE header feature is more prominent in
malware detection. Santos et al., 2013b [13] tried to figure out the
relevance of each OPCODE and calculated the frequency of OPCODE
sequences. They verified the performance using the same four
classifiers used by previous researchers. They stated empirically that
the model can detect unknown malware as well.

- 3 -

Article in Press

Similarity is calculated based on the distance between each and every
pair of points. Minimum distance represents maximum similarity [30]
[31]. Projection and semantic orientation are 2D VTs, normally used
to check similarity patterns [26] [32] [33].Frequency domain-based
feature extraction i.e., Wavelet transforms, was proposed by Gu [14].
Li and Li [15] proposed static features viz. API, classes, functions and
packages detecting malware for android APKs. They used different
layers of ‘Characteristic Tree’ containing information of API calls. The
method can classify unknown APKs. Han [21] converted a Windows
PE binary file into a gray scale image. After that, using an Entropy
Graph Generator (EGG), they calculated the entropy of each and every
line of an image. Malware detections were done based on similarities
of the original binary file.

Arefkhaniet [22] introduced a Local Sensitive Hashing technique
specific to image processing, to classify similar input (malware) with
high probability. Wu [23] converted disassembled binary executable
into opcode sequences into an image. They used PCA to reduce the
dimensionality and KNN classifier. Rezaei [24] proposed a similarity
measurement algorithm for malware detection which compares
the opcode strings of malicious files to improve the detection rate
and speed. Venkatraman [36], Zhang [37] and Wylie Shanks [38]
explored usage of VT for analyzing malware attack chronology and
demonstrated successful system connections with the help of colors.

B. Other Methods
Santos et al., 2013b [13] introduced an OPCODE Executable trace

Malware (OPEM) framework. It is a hybrid of statistically obtained
frequency of occurrence of OPCODE and dynamically obtained
executable traces. Performance was evaluated using Baysine, Decision
Tree, SVM and KNN classifiers. Kolosnjaji [25] proposed feature fusion
of headers of PE files and convolution of n-grams of an instruction.
They achieved a 93% recall rate and accuracy using SVM and ANN
(Feed forward) classifier. Ripper Cohen [6] proposed the Repeated
Incremental Pruning to Produce Error Reduction (RIPPERk) algorithm
that supersedes the learning algorithm, Incremental Reduced Error
Pruning (IREP). In RIPPERk, k represents the number of multiple
optimization iterations. Schultz [7] made use of three static features
(byte sequence, strings and Portable Executable (PE)) and for the first-
time used the data mining concept. Kolter [8] proposed a combination
of n-gram (instead of non-overlapping byte sequence) features with
classifiers viz. Naive-Bayes (NB), Support Vector Machine (SVM),
Decision Tree and their boosted versions. They found that the boosted
decision tree provides better results.

The following section illustrates an extensive and organized
literature summary of innovative techniques proposed by researchers
and challenges from state of the art.

III. Literature SURVEY – FORMULATING Problem
Statement

A research problem should represent the core subject matter and
it should be a discovery of new knowledge. This objective not only
asks for rigorous literature survey, but also demands interpretation of
the surveyed information to achieve a proper research path. Graphical
presentation is given by the author which makes it more suitable to
extract the required information.

Fig. 1 provides information about three basic analysis techniques
like SA, DA and hybrid, explored by researchers. The SA technique is
still preferred by most of the researchers [50]. The hybrid approach is
not still popular amongst researchers.

Static analysis
[50], [57], [62], [63], [59],
[60], [61], [55], [56], [51],
[52], [53], [54], [49], [58],
[48], [46], [47], [45], [44],
[43]

Dynamic analysis
[84], [79], [82], [80], [81],
[83], [77], [76], [72], [73],
[74], [75], [78], [69], [71],
[70], [67], [68], [66], [65],
[64]

Hybrid analysis
[92], [90], [91], [89],
[87], [88], [13], [86],
[85]

Malware Detection - Literature Survey Summary

Malware Analysis Techniques

Fig. 1. Survey depicts the type of analysis technique explored by researchers.

Feature extractions and classification techniques are the two
pillars of MDS. Fig. 2 is devoted to different feature vectors used by
researchers. API calls, system calls, n-gram and OPCODE are still
features that are mostly used in MDS. Researchers typically have
two paths: the first one is to optimize the feature vector and get a
significant limited feature set, and the second one is the selection of
a prominent limited set of features manually. Work implemented by
researchers in either way is unique itself and uses varieties of byte
and hex related features.

API and System Calls
A view on the interaction of the PE
with the operating system

[93], [95], [94], [89], [77],
[73], [75], [13], [78], [86],
[71], [68], [66], [64]
Data extracted by observing

[57], [89], [55], [88], [52],
[96]

Control flow graphs
[83], [91], [90], [86], [87]

CPU, Registers, Flags
[57], [79], [89], [52]

N-grams
[97], [57], [59], [81], [126],
[77], [73], [86], [69], [85],
[44], [63]

Trigrams
[126], [81], [57], [69], [86],
[63], [73], [88], [88]

Files: are read/modified
[96], [65], [98], [52], [90],
[81], [95], [82]

Byte Sequences
[43], [126], [97]

Opcodes
[57], [60], [63], [126],
[51], [52], [53], [86],
[69], [99], [45]

Strings
[57], [102], [88], [43]

Network Activity
(Dynamic Analysis)
[84], [90], [101], [82],
[74], [100], [96], [66]
Network: Tra�ic analysis

[76], [72]
Network: Monitor download pa�ern

[54]

Malware Detection - Literature Survey Summary

Malware Feature Vector

Fig. 2. Survey depicts varieties of feature used by researchers.

A feature vector extracted from malware code should be trained
with the help of neural networks. After training, system performance
is tested by applying real time malware data. Researchers developed
different techniques to extract the feature set. A breakthrough from
the survey reveals that researchers using available crawlers, filters etc.,
end up with a plethora of feature vector space which may be redundant.
Many times, some features may worsen the accuracy of the system.
Thus, feature selection to improve system performance is mandatory
but the same should be done without compromising accuracy.

The role of a classifier is important as it defines accuracy and
precision. Fig. 3 presents three basic learning process categories i.e.,
supervised, unsupervised and semi-supervised. Supervised learning is
the first choice of researchers where malware annotations are given
for training the network.

Fig. 4 presents the wide usage of deep learning techniques like
CNN, Deep Neural Network (DNN), Recurrent Neural network (RNN),
auto encoders etc. in malware detection. These techniques are well
established and provide high performance. CNN and its extensions
are preferred for image-based analysis therefore, it is mostly used
by researchers. CNN variants viz. Region based CNN (R-CNN), Fast
R-CNN, Faster R-CNN are mostly used in image analysis for detecting
objects [182].

- 4 -

International Journal of Interactive Multimedia and Artificial Intelligence

Supervised learning
Decision Tree

[82], [126], [77],
[88], [74], [53],
[67], [96], [44]
Random Forest

[57], [101], [95],
[83], [77], [72],
[88], [47]
Logistic Model Tree

[90], [63], [73], [75]
SVM

[57], [59], [101],
[81], [82], [63],
[83], [77], [72],
[88], [52], [49],
[69], [67], [44]

Supervised learning
Rule-based

[84], [59], [79],
[88], [100], [9], [43]
Multiple Kernel Learning

[86]
Bayes classifier

[83], [53]
ANN

[102], [73]
KNN

[97], [82], [88],
[52], [67], [96], [64]
Multilayer Perceptron
Neural Network

[52]
Naive Bayes

[63], [83], [77],
[67], [44], [43]
Bayesian Network

[87], [50]
Prototype-based
Classification

[71]
Gradient Boosting
Decision Tree

[63], [49]

Unsupervised
learning
Clustering with locality
sensitive hashing

[166], [56], [66]
Clustering with Distance
and Similarity Metrics
Euclidean

[82], [71]
Hamming/cosine distances

[82], [91]
Jaccard similarities

[91]
K-means Clustering

[103]
k-Medoids

[99]
Density-based Spatial
Clustering of Applications
with Noise

[54]
Hierarchical Clustering

[82], [85], [71]
Self-Organizing Maps

[46]

Semi-Supervised
learning
Learning with Local and
Global Consistency is
used in

[48]
While Belief Propagation

[97], [98], [56]

Malware Detection - Literature Survey Summary

Classification of Malware Data

Fig.3. Survey depicts different classifiers explored by researchers.

Auto encoder
[120], [108], [109], [119],
[115], [116], [106], [117],
[118], [121], [122], [113],
[110], [104], [105], [107],
[111], [112], [114], [123]

DNN
[128], [132], [125], [127],
[131], [124], [73], [130]

DNN RNN
[133]

CNN (dilated) Auto
encoder [134]

CNN
[136], [137], [138], [139],
[140], [141], [135]

CNN (Dynamic) [142]

CNN-RNN
[145], [146], [143], [144]

GAN [147]

RBM Autoencoder [148]

RBM RNN [149]

RBM
[162], [157], [164], [156],
[165], [160], [161], [152],
[153], [154], [150], [159],
[151], [155], [158], [163]

RNN
[176], [179], [171], [167],
[170], [168], [169], [172],
[173], [175], [177], [178],
[180], [174], [181]

Malware Detection - Literature Survey Summary

Deep Learning based Classifier

Fig. 4. Literature survey based on Deep Learning Classifier.

These techniques are specific to image analysis and provide less
training and testing times, which is the need of a malware detection
technique, as it has to run in real time and detect malware as fast as
possible. This motivates the author to select FR-CNN. It is a technique
with a significantly low computational cost and the same has not been
investigated for malware detection. This technique achieves more
precision and a faster response.

IV. Proposed Model of MDS

The paper proposes MDS architecture comprising of deep learning
network to accurately detect and classify malware families using an
image-based technique which is described in Fig. 1. The Benchmark
database from Kaggle is used to evaluate the performance of a system.
The features vector of malware families is presented as gray scale
images. These images will be trained using deep learning and facilitate
adaptive learning in real time environment to achieve high accuracy.

The Main contribution of this research work is as follows:

1. Consideration of prominent static features e.g., string signature,
byte-sequence, N-grams, OPCODE

2. Represent feature vector as a gray scale image reflecting the malware
family behavior

3. Arrange feature vector sub parts as varieties of ‘Regions’ of an image
4. NOTE: ‘Region’ is a generic term. Rectangular regions are considered

in this paper, as it is common.
5. Minimize the training set
6. Compute statistical parameters of the image generated in point-2
7. Apply the F-RCNN classifier to a matrix having statistical parameters

as well as an image.
To the best of our knowledge, the above combination i.e., a matrix

of static features and an image with F-RCNN classifier has not been
evaluated by researchers.

Malware file - Input

Read Malware data

Classifier Output

Training data set
(Learning)

Trained
Library

AD PSNR MSE NCC NAE LMSE

Im
ages

Feature Extraction

HEX
features

Disassembled
file features

Feature Integration - Fine tune dimension

F-RCNN classifier

Image Similarity based Statistical Feature Extraction

DP MD Entropy Image Symbol MISC SEC

SSIM MaxD

Fig. 5. System Architecture of the proposed MDF-RCNN.

Fig. 5 depicts the system architecture of the proposed MDS. Feature
extraction and classification of the malware input file are two major
modules of MDS. Each one is described as follows.

V. Feature Extraction Module

A. Features Based on HEX and Disassembled Files
There are basically two major types of features extracted for MDS.

These are HEX dump-based features (n-gram, MD1, entropy, image
1(haralick) and Image 2 (lbpfeatures)) and disassembled file features
(meta-data, SYM, OPC, MISC, DP and SEC.)

- 5 -

Article in Press

1. Hex Based Features

a) N-gram
An N-gram is a contiguous sequence of n items from a given

sequence. The technique is used intensively for characterizing
sequences. The sequences may be from a speech or text. Malware
samples may be viewed as sequences of HEX value. An N-gram
analysis of these HEX values may provide valuable information. The
malware sample consists of special symbols viz.??, indicating that the
data of that location is not initialized. It also contains byte sequence
whose value may range from 0 to 255.

b) Entropy
Entropy (ENT) is basically a measure of randomness or uncertainty

or maybe the O amount of disorder. Obfuscation presence can be
detected by entropy [183] [184]. In MDS, entropy is calculated based
on byte representation. It measures the disarray of the distribution of
the bytes in malware code by setting ‘order’ and ‘randomness factor’.
A sliding window is applied on the malware code and entropy is
calculated for each windowed segment. It is represented by:

 (1)

The Shannon’s formula,

 (2)

2. Features Extracted From Disassembled Files
Malware executables must first be disassembled to extract features.

The PE format is used by Windows OS (WOS). It’s basically a data
structure encapsulating important information which will be utilized
by the WOS loader to manage the wrapped executable code shown
in Fig. 6. The PE file contains Headers viz. DOS header, Section table,
optional header, PE header, and Sections viz. code, imports, data. The
Dynamic linker uses this information to map the file into memory. The
PE information is important as its basic structure manages memory
protection based on the code or data region.

Header

DOS Header

PE Header

Optional Header

Sections Table

Code

Imports

Data

PE File

Sections

Fig. 6. PE File Structure.

a) Section (SEC)
The ‘sections’ consist of code, data and import sections. Further

classification includes .data, .idata, .edata, .rdata, .text, .bss, .rsrc,
.relocand, .tls. A malware code uses packing techniques where it
modifies default sections and may create new sections, to evade
Metadata (MD) shown in Fig. 6. An MD program can generate a
feature vector by detecting different characteristics of SEC.

b) Metadata
After disassembling, two features viz. the number of lines in the file

and file size, are computed and included within the Metadata category
(MD2).

c) Symbol:
In malware sample code a set of symbols like [, -, +,], @, ?etc.

may be present. Actually, these may correspond to indirect calls or
Dynamic Library Loading (DLL), in malware code. In an indirect
call, the address of the subroutine is loaded from memory or register.
According to [188], the function call depends upon the architecture as
well as the optimal decision of a compiler; therefore, such indirect calls
may reveal information about data obfuscation. DLL is loaded during
runtime by the executable code and executes library functions based
on their address. Static analyzers cannot capture such run time events.
Therefore, these garbled characters are used specifically by malware
developers to evade MD.

d) Operation Code (OPCODE)
OPCODE or mnemonic is a digit and denotes assembly code. The

micro-processor executes the OPCODE; therefore, it plays a very
important role as it describes the behavioral characteristics of malware
as shown in Fig. 7. Machines are x86 based. The instruction set list is
complex and large, therefore [189], selected 93 OPCODEs based on
frequent use in the malicious application and its commonness. The
OPCODE frequency is calculated from the malware code. According
to [190], use of Instruction Replacement Technique (IRT) may evade
detection. Santos [53] used only OPCODE based features to generate
the feature vector and detected malware just by one single class with
reasonable amount of accuracy. Thus, it proves that OPCODE based
features can contribute more for MD. Researchers also suggested an
OPCODE, n-gram based method for MD. The detection is based on the
OPCODE frequency feature, calculated by Term Frequency–Inverse
Document Frequency (TF-IDF) statistical technique. The OPCODE
sequence given vector was used to train the SVM classifier.

00401000 56 8D 44 24 08 50 8B F1 E8 94 B7 01 00 C7 C6 74
00401010 BE 54 00 8B C6 5E C2 04 00 CC CC CC CC CC CC CC
00401020 C7 01 74 BE 54 00 E9 9E B8 01 00 CC CC CC CC CC

push esi
lea eax, [esp+8]
push eax
mov esi, ccx
call ??0exception@std@@QAE@ABQBD@Z
mov dword ptr [esi], o�set o�_54BE74
mov eax, esi
pop esi
retn 4
align 10h
mov dword ptr [ecx], o�set o�_54BE74
jmp sub_41C8C9
align 10h
sub_401030 proc near
arg_0 =byte ptr 4

push, lea, push, mov, call, mov, mov, pop, retn, align, mov, jmp

Fig. 7. Disassembly File Structure.

e) Register (REG)
The microprocessor has an internal register set which may be used

for a specific task. According to [191], in some situations, registers are
renamed to make the MD process more complicated and confusing.
This asks for keeping track of REG used and frequency of usage of
those registers. This feature is useful and helps in detecting a family
of malware.

- 6 -

International Journal of Interactive Multimedia and Artificial Intelligence

f) Data Define (DP)
Few malware programs use a packing technique and therefore do

not use API calls. Instead they contain a few OPCODEs. Typically,
they use data related assembler directives like Define Byte (db), Define
Word (dw) and Define Double Word (dd). This feature is key for
classifying varieties of malware families.

g) Miscellaneous (MISC)
This feature should be selected manually by identifying keywords

from the disassembled code. The Interactive Disassembler (IDA) tool
may be used for the same. Features extracted will be like the number
of imported DLLs, identifying strings viz. hkey_local_machine(it
specifies access to specific paths of the Windows registry), number of
blocks in the PE etc. Thus, it depends upon the experience of the MD
software developer engineer.

After extracting these features gray scale image is prepared with
the help of feature coefficients. Refer Fig. 8 for the same. Typically,
these images of a single family should show similarity as the changes
in the malware code is not drastic. Consider this point as a base author
motivated to compute image similarity based statistical parameters.
The next section describes the same.

B. Features - Image Similarity Based Statistical Parameters
This feature set focuses on similarity between two images. A

similarity parameter matrix will be computed based on malware
images from the ‘x’ family compared with itself as well as the
remaining families. Reference image (RI) and Input image (II) are
two input images. Suppose RI is from the ‘x’ family then II will be
the remaining images from the ‘x’ family and images from the other
families. RI will be constant throughout the process of computing the
similarity parameters. As the number of images per family are in the
thousands their mean value will be calculated.

The NCC method is used for template matching which is a process
used for finding incidences of a pattern or object within an image. Eq.
(1), is used to calculate NCC.

 (3)

AD provides the average of change concerning the input image and
the reference image. AD can be expressed as follows:

 (4)

MaxD provides the maximum of the error signal (i.e., the difference
between the processed and reference image). MD is defined as follows:

 (5)

SSIM is based on three factors i.e., luminance, contrast, and
structure to better suit the workings of the human visual system. It
is a perceptual metric that quantifies image quality degradation. This
parameter is selected as the malware developer makes changes in the
old code and comes up with the modified code. The modified code can
be thought of as the ‘Noise’ element in an image. SSIM is defined as
follows:

 (6)
where l = luminance, c = contrast, s = structure

The Laplacian error map shows spatial error distribution across an
image. The overall image quality is given by LMSE as follows:

 (7)
where L((m,n)) is the Laplacian operator

NAE measures the numerical variance between the RI and II .
Moreover, the results that are near to zero means that the image has a
high similarity to the original one and the results near the value one
indicate that the image has a very poor quality. NAE is calculated as
follows:

 (8)

MSE and PSNR are used to compare the quality of the image
compression. MSE represents the cumulative squared error between
the RI and II , whereas the PSNR represents a measure of the peak error.
The lower the value of the MSE, the lower the error.

 (9)

After computing ISSP one more feature vector is produced which
will be used to train classifier.

VI. Classifier – F-RCNN

This section describes the reason for selecting the classifier
i.e., F-RCNN. In computer vision (CV) object or region detection
is a major task. Ross [182] proposed a selective search method to
extract N number of limited regions from an image. These regions
are referred to as Region Proposals. Associated training network is
referred as Region Proposal Network (RPN). The algorithm overrides
the problem of selecting a huge number of regions. Region based CNN
(R-CNN) is thus a fusion of the Region Proposals algorithm with CNN.
As the first step, this algorithm selects some proposed regions from
the image, puts Bounding Boxes (BB) and labels their categories. The
Deep learning algorithm (CNN) extracts varieties of features using
forward computation from these proposed regions and then trains the
network to classify the categories and BB. Following section describes
methodology to represent feature coefficients as an image.

A. Image Representation
Malware samples are represented as an image, where each byte of

the malware code corresponds to one pixel of gray scale image [185].
The author proposes use of all the features extracted viz. n-gram,
MD1, MD2 etc., to construct an image as shown in Fig. 8. The image is
formed in such a way that there are ‘regions’ of feature vectors. Each
feature vector (N-gram, MD1, entropy, MD2 etc.) may be viewed as
a region of an image. Thus, fundamentally the R-CNN algorithm
is more suitable for MDS. R-CNN will be more effective and efficient
for classifying malware.

Represents feature coe�icients

Disassembled
file features

HEX features
N-gram Region

Entropy Region

Symbol Region

OPCODE Region

Register Region

DP Region

.text Region

.rdata Region

.data Region

Fig. 8. Gray scale image of malicious code with feature coefficient Regions.

- 7 -

Article in Press

Fig. 11 represents a sample of nine malware categories. The image
has very fine and typical texture patterns and the same may be used to
visualize the malware family. It has been observed that malware of the
same family has similar signatures or fingerprints in some area of an
image [187]. This information may be used as knowledge to identify
the malware family. Zhang [186] represented information gains and
the probability of the OPCODE to construct an image. M. Ahmadi [57]
used Local Binary Pattern features and Haralick features to construct
an image.

As R-CNN extracts features from each block, features from the
same block will be repeatedly extracted, leading to a greater number
of repetitive computations as shown in Fig. 9. Therefore, the author
proposes F-R-CNN, which is an improved version of R-CNN
where CNN performs forward computation on the whole image.

The entire image with a set of proposed regions (K object) with
similarity based statistical parameters is input for an F-RCNN
network. The network performs several convolution operations
(conv) and maximum pooling layers on the entire input feature vector,
and produces conv feature map. Next step it performs is to generate
a feature map, by extracting a fixed length feature vector generated
from the Region of Interest (RoI) pooling layer operation on the
proposed objects. Each and every generated feature vector is input to
a sequence of fully connected (fc) layers. fc layer provides two outputs.
The first output is Softmax Probability Estimation (SPE) over K object
classes plus a catch-all “background” class. The second output is 4 real
valued numbers for every K object class. One of the K object classes has
a set of four values which provides updated bounding box positions,
calculated to reduce overlaps shown in Fig. 10.

Faster R-CNN consists of two major modules. The first module i.e.,
Region Proposal Network (RPN) is a deep fully convolutional network
which proposes regions. The second module uses F-RCNN detector
which uses the regions proposed by first module and learns about
region positions from the same module due to attention-based CNN.

The first module is presented in Table I. Table II presents the algorithm
for generating the unified network for the overall system.

classifier

proposals

conv layers

Image

Region Proposal Network

RoI pooling

feature maps

Fig. 10. F-RCNN Architecture.

VII. Statistical Parameters

To compute different statistical parameters, initially all the malware
families are segregated in different folders. Nine folders are created as
there are nine malware families. Malware files are processed and gray
images are produced. These images are used to compute parameters.
Table III presents the algorithmic steps.

SSIM

Image Similarity based
Statistical feature
parameters (ISSP)

Represents feature coe�icients

F-RCNN classifier

Disassembled
file features

HEX features

AD
MaxD
NAE
NCC
PSNR
MSE

LMSE

N-gram Region

Entropy Region

Symbol Region

OPCODE Region

Register Region

DP Region

.text Region

.rdata Region

.data Region

Fig. 9. F-RCNN Architecture for MDS.

- 8 -

International Journal of Interactive Multimedia and Artificial Intelligence

VIII. Database Description

This section describes the publicly available datasets for malware.
System performance is analyzed on the benchmark database from
Kaggle (https://www.kaggle.com/c/malware-classification/data).It was
a Microsoft malware classification challenge. The database contained
known malware files representing a mix of 9 different families viz.
Gatak, Obfuscator.ACY, Kelihos_ver1, Tracur, Simda, Vundo, Kelihos_
ver3, Lollipop and Ramnit. The file structure of the database is shown
in Table IV and Table V.

TABLE I. Region Proposal Generation Algorithm

Region Proposal Network
Input: Image of any size
Output: 1. Set of rectangular object proposals
 2. Each object with abjectness score
Convolutional model used: Zeiler and Fergus(ZF) (five sharable
convolutional layers)
1 Generate convolutional feature map.
2 n * n Sliding spatial window generated for small network. Sliding

window is mapped to feature map of low dimension (256d f or ZF).

3 Anchors
a. Each sliding window predicts multiple region proposals,
 simultaneously.
b. k = Maximum region proposals for each location (k anchor boxes)
c. Feature map size = W * H
d. In the sliding window the question and an anchor, both are centered.
 Aspect ratio and scale is associated. Aspect ratio = 3 and scale = 3,
 provides k = 9 anchors [204].
e. ‘cls’ layer is a two class Softmax layer. It estimates the probability of
 the object or non-object for each region proposal. Logistic regression
 will be used to produce of 2 * k scores.
f. Regression (reg) layer has coordinates of k boxes. It will generate 4 *
 k outputs.
g. The total number of anchors will be W * H * k
h. Anchors are translation-invariant which reduces the model size.
As per the case of Fully Convolutional Network (FCN) [204]

4 Multi-Scale Anchors
a. Compute multi-scale anchors by selecting multiple scale sliding window.
b. Apply multi-scale sliding window to image and feature map of single
scale.
c. Generated structure may be viewed as ‘pyramid of filters’

5 Loss Function
a. Apply binary label to each and every bounding box.
b. If (Intersection over Union (IoU) ∩ Ground Truth(GT) box) ≥ 0.7)
 then assign positive label
c. If
 then assign negative label
 else discard anchor
d. Multiple anchors may be marked as positive by a single GT box.
e. Compute Loss function

 (10)
where, i = anchor index in mini batch
Pi = Predicted probability of anchor being an object
Pi

* = Binary GTlabel
ti = four parameteroised co-ordinates of Bounding Box (BB)
ti

* = four parameteroised co-ordinates of GT Box of positive anchor
Lcls = log loss over object versus non-object classes
Lreg = regression Loss calculated only when Pi

* = 1 cls layer has {Pi }
 and reg layer has {ti }

f. Compute Robust Loss

 (11)

g. Normalize Lcls and Lreg
 Ncls = Normalisation of Lres by mini batchsize
 Nreg = Normalisation of Lreg by the number of anchor locations
h. Apply weight factor λ
i. BB regression from an anchor box to GT box

 (12)
where,
x, y = centre co-ordinates of box
w and h = width and height of box
x, y, w and hare variables for predicted box
xa, ya, wa and ha are variablesfor anchor box
x*, y*,w* and h* are variables for GTbox

6 RoI pooling layer algorithm
1. Input RoI window of size h * w with r (row) and c (column)
 information.
2. Divide ROI window into sub windows of size H * W

3. Generate output grid cell by maximum pooling values from each sub
 window
4. Apply independent pooling to each feature map channel, on a similar
 line to the standard maximum pooling.

7 Optimization of Loss function
1. From a single image mini-batch of many +/- anchors are identified.
2. Sample size of 256 anchors from an image is randomly selected to
 compute loss function of a mini batch.
3. Equal number of positive and negative anchors are selected i.e., 128
 each, if sample size is 256.
4. In case of a low number of either of the anchors (≤ 128), then the mini
 batch will be padded in such a way to get equal numbers of both the
 anchors.
5. All new layers are randomly initialized by computing weights from
 zero mean Gaussian distribution with 0.01 standard deviation.
6. Shared convolutional layers are initialized by standard practice i.e.
 pre-training model a model for ImageNet classification.

8 Training RPN
RPN is trained by back propagation (BP) and stochastic gradient descent
(SGD) using ‘image centric’ sampling strategy.

TABLE II. Approach to Unified Network of RPN and F-RCNN

Problem: Independently trained F-RCNN and RPN networks will modify
their convolutional layer differently. The algorithm is required so that
both can ‘share’ the convolutional layer

Generating Unified system Network
Input: RPN generated regions
Output: Trained model of overall system

1 Train RPN network as per algorithm described in Table I
2 a. Initialized the ImageNet-pre-trained model

b. Input region proposals generated by step -1
c. Train detection network by Fast R-CNN using.
Note: convolutional layer is yet not shared by both the training model

3 Shared convolutional layers are finalized.
4 Layers unique to RPN will be fine-tuned.
5 RPN training network is initialized by detector network and the

system is trained.
5 Fine tune layers from Shared convolutional layers unique to F-RCNN.
6 F-RCNN network is trained.

https://www.kaggle.com/c/malware-classification/data

- 9 -

Article in Press

TABLE IV. Kaggle Dataset Basic Information

Header Description
ID Twenty-character hash value for unique identification of file
Class Integer representing family of malware
RAW data HEX representation of the file’s binary content
Metadata
manifest

Log of various metadata information e.g. Function calls, Strings
etc. extracted from the binary using IDA disassembler tool.

Size 0.5 Tera byte uncompressed

TABLE V. DATASET Description

Malware Family Malware category Sample Size
Gatak Backdoor 1013
Obfuscator. ACY obfuscated malware 1228
Kelihos_ver1 Backdoor 398
Tracur Trojan Downloader 751
Simda Backdoor 42
Vundo Trojan 475
Kelihos_ver3 Backdoor 2942
Lollipop Adware 2478
RAmnit Worm 1541

IX. Experimental Results and Discussion

The gray scale images of the feature vector for the malware family
listed in Table V are shown in Fig. 11. It can be clearly observed that
the image for each family is unique in itself. Identification becomes
simpler. Feature vector ‘Regions’ are also clearly visible.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 11. Malware images of different malware families.
(a) Ramnit (b) Lollipop (c) Kelihos_ver3 (d) Vundo (e) Simda (f) Tracur
(g) Kelihos_ver1 (h) Obfuscator. ACY (i) Gatak

As seen, initially one image from the first malware family is taken
as a ‘reference image’. The remaining images from the first malware
family and all the images of all eight malware families are used as
‘Input image’. Reference image and Input images are used to compute
all the parameters. All the parameters per ‘Input image’ are stored in
the respective arrays (e.g.SSIM_array, MSE_array and so on). After
iterating through all the images of one family, the mean value of an
array is calculated. Thus, per family there is a single mean value. The
mean value matrix is plotted. The same is depicted in Fig. 12.

Fig. 12(a) shows the SSIM value. It is 0.56 for the Ramint malware.
For the remaining families the value ranges between 0 to 0.02. Thus,
there is high structural similarity with self-family, but with other
families less SSIM value reflects very little similarity. On a similar line,
the NAE parameter for the same family is 0.4 and for other families it
is more than 0.7. Refer Fig. 12 (b) – (h). It depicts plots for PSNR, MD,
MSE, LMSE, NK. It has been observed that, there is clear bifurcation in

TABLE III. Statistical Parameter Computation

Input Folder structure is as follows
Main folder – contains sub folders equal to number of malware
families (i = 9 for this case)
 - Sub-folders (9 malware families)
 - Each sub-folder has different number of images j

RI = Reference image
II = Input image

i = Number of malware families in main directory (folder)
j = Number of malware variants (images) of specific malware
family in a subfolder
// Initialize empty array
Parameter Array = {∅}
for (β = 0 ; β < i ; β ++)
// Load reference image – first image of malware family
RI = β[0]
for// select malware families one by one
 (k = 0 ; k < i ; k ++)
// Get number of images present of a specific malware
family
 j = size (ksub-folder)
for (localcnt = 0; localcnt < j ; localcnt ++)
// Load Input image from malware family
 Ii = (k)[localcnt]
// calculate SSIM
SSIM(Ri , Ii) = [l(Ri , Ii)

α . c(Ri , Ii)
β . s(Ri , Ii)

γ]
where l = luminance, c = contrast, s = structure
// Calculate MSE

// calculate PSNR

// calculate Normalized Cross-Correlation (NK)

// calculate Normalized Absolute-error (NAE)

// calculate Maximum difference
 MD(RI , II) = max{[RI (m, n) − II (m, n)]}
// calculate Laplacian Mean Square Error (LMSE)

whereL(m, n) is Laplacian operator
// Store all the values in an array
end
// Take average of an array an obtain single value
Parameter_array(k)=[mean(SSIM); mean(MSE); mean(PSNR);
mean(NCC); mean(NAE); mean(MaxD); mean(LMSE)]
end
end

- 10 -

International Journal of Interactive Multimedia and Artificial Intelligence

Number of malware classes

Number of malware classes

Number of malware classes

Number of malware classes

Ramnit
Lollip

op

Kelihos-v
er3

Kelihos-v
er1

Obfusca
tor-A

CY
Gatak

Vundo
Simda

Tracur

Number of malware classes

Ramnit
Lollip

op

Kelihos-v
er3

Kelihos-v
er1

Obfusca
tor-A

CY
Gatak

Vundo
Simda

Tracur

Ramnit
Lollip

op

Kelihos-v
er3

Kelihos-v
er1

Obfusca
tor-A

CY
Gatak

Vundo
Simda

Tracur

Number of malware classes

Ramnit
Lollip

op

Kelihos-v
er3

Kelihos-v
er1

Obfusca
tor-A

CY
Gatak

Vundo
Simda

Tracur

Ramnit
Lollip

op

Kelihos-v
er3

Kelihos-v
er1

Obfusca
tor-A

CY
Gatak

Vundo
Simda

Tracur

Number of malware classes

Ramnit
Lollip

op

Kelihos-v
er3

Kelihos-v
er1

Obfusca
tor-A

CY
Gatak

Vundo
Simda

Tracur

Ramnit
Lollip

op

Kelihos-v
er3

Kelihos-v
er1

Obfusca
tor-A

CY
Gatak

Vundo
Simda

Tracur

Number of malware classes

Ramnit
Lollip

op

Kelihos-v
er3

Kelihos-v
er1

Obfusca
tor-A

CY
Gatak

Vundo
Simda

Tracur

SS
IM

 V
al

ue
PS

N
R

 V
al

ue
N

A
E

Va
lu

e

M
SE

 V
al

ue
LM

SE
 V

al
ue

M
D

 V
al

ue

A
D

 V
al

ue

0

6

0.2

225 1

1.5

2

2.5

3

230

235

240

245

250

255

0.4

0.6

0.8

1

1.2

1.4

1.6

0.4

0.6

0.8

1

1.2

1.4

1.6 x 104

8

10

12

14

16

18

20

22

-40

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

-30

-20

-10

0

10

20

30

0.1

0.2

0.3

0.4

0.5

0.6

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 12. Parameter plots - (a)SSIM (b) AD (c) PSNR (d) NK (NCC) (e) NAE (f) MSE (g) MD (h) LMSE.

- 11 -

Article in Press

the statistical parameter values to the same family class and a different
family class. But in case of AD for the same class of family the value
is approximately -1, but for the remaining families the value is either
positive or negative with appropriate value difference. One can define
a threshold range (0.95 to 1.1) for the AD. All these parameters can be
used to train the F-RCNN classifier.

In Fig. 13 When the SC values were plotted for the same scenario
then the results were not so promising. Range or proper threshold was
difficult; therefore, this parameter was not taken into consideration
by the author.

Number of malware classes

Ramnit
Lollip

op

Kelihos-v
er3

Kelihos-v
er1

Obfusca
tor-A

CY
Gatak

Vundo
Simda

Tracur

St
ru

ct
ur

al
 C

on
te

nt
 V

al
ue

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Fig. 13. SC plot.

Generated images are used to train the F-RCNN network.
Annotations about regions are marked. In the experiment, the malware
image set is randomly divided into a training set (60%) and a testing set
(40%). This ratio of 60:40 has been selected to check the robustness of
the model. The training data is less as compared to standard training
data, i.e., 70:30. A trained library or network is created after the
training process. After the training model is completed, the error and
loss function of the model is used for judgment and evaluation. While
training the system 30,000 epochs are selected. But while plotting the
graph it is represented in percentage of the total value. Fig. 14 and
Fig. 15 represent the error and loss plots in the training process. As
the training iteration increases, the total error as well as loss value
decreases and gradually stabilizes.

When the iterations reach 100%, the total loss value becomes flat
and achieves the possible minimum value. The result shows that the
training model based on F-RCNN with ISSP fusion with gray scale
image is successful.

Epochs

Error Plot

Er
ro

r

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 20 40

MSE
MAE

60 80 100

Fig. 14. MSE and MAE plot.

Epochs

Model Loss Plot

Lo
ss

0

0.5

1

1.5

2

2.5

0 20 40

Train Loss
Test Loss

60 80 100

Fig. 15. Loss plot.

Epochs

Accuracy Plot

A
cc

ur
ac

y

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 4030 50

Accuracy
Validation accuracy

60 70 9080 100

Fig. 16. Training model accuracy plot.

The network keeps a history of the trained data with error, loss
and accuracy achieved while training the model. Fig. 16 represents
the overall accuracy of the model with validation accuracy which
approximates to 98.12%. In the testing phase, the remaining 30% of
the malware files will be used. For each file a feature vector will be
presented as a gray scale image will be generated and ISSP will be
computed. The total matrix will be input to the trained network. The
output generated from the trained network will be analyzed with
the help of the statistical method where different parameters like
True Positive (TP), True Negative (TN), False Positive (FP) and False
Negative (FN) will be computed.

X. Performance Analysis

A. Performance Metrics
This section compares results obtained from the proposed work

and state-of-the art methods. The proposed method opted the Kaggle
benchmark dataset therefore results are compared with those research
techniques that opted for the same dataset. Similarly, a comparison of
the proposed algorithm for various performance metrics is stated in
Table VI and Table VII respectively. Graphical plots for all comparisons
are illustrated in Fig. 17.

Accuracy is the major performance parameter for the MD system,
which specifies how accurately malwares are classified. Accuracy is
calculated based on the following equation:

Table VI depicts the confusion matrix of the proposed scheme for
the MDS using Kaggle database.

- 12 -

International Journal of Interactive Multimedia and Artificial Intelligence

Ram
nit

Lo
llip

op

Keli
hos

-ve
r3

Keli
hos

-ve
r1

Obfu
sc

ato
r-A

CY

Gata
k

Vundo
Sim

da

Tr
ac

ur
Ramnit

Lollipop
Kelihos-ver3

Kelihos-ver1
Obfuscator-ACY

Gatak

Confusion Matrix

Vundo
Simda

Tracur

Ramnit

0

10

20

30

40

50

60

70

80

90

100

Lollipop Kelihos-ver3 Kelihos-ver1 Obfuscator-ACY GatakVundo Simda Tracur

Fig. 17. Confusion Matrix Plot.

As the FRCNN classifier is not used by other researchers, the
author compared the results with learning algorithms presented by
researchers, as shown in Table VII.

TABLE VII. Comparative Performance of the Proposed System

Author/ Year Dataset
Used Classifier Accuracy

(%)

Rao et al., 2017 [192] NSL-KDD IPDS-KNN 99.6

Shapoorifard et al., 2017 [193] NSL-KDD KFN-KNN 99

Vishwakarma et al., 2017 [194] KDD cup 99 ACO-KNN 94.7

Dada et al., 2017 [195] KDD cup 99 MIX-KNN 98.55

Ingre et al., 2017 [196] NSL-KDD CFS-DT 90.3

Malik et al., 2017 [197] KDD cup 99 MULTI-DTs 91.94

Moon et al., 2017 [198] Netflow DT 84.7

Zhao et al., 2017 [199] KDD cup 99 DBN-PNN 99.14

Tan et al., 2017 [200] NETFLOW DBN 97.6

Le et al., 2017 [201] KDD cup 99 LSTM 97.54

Agarap et al., 2017 [202] NETFLOW GRU 84.15

Saxe et al., 2017 [203] NETFLOW CNN 92

Ding et al., 2016 [165] Netflow DBN 96.1

Nadeem et al., 2016 [120] KDD cup 99 DBN 99.18

Alom et al., 2016 [159] NSL-KDD DBN 97.5

Krishnan et al., 2016 [180] KDD cup 99 RNN 77.55

Kim et al., 2016 [173] KDD cup 99 LSTM 96.93

MDFRCNN Kaggle
dataset F-RCNN 98.12

XI. Conclusion

The paper proposes a state-of-the-art technique at feature extraction
as well at classification level. The paper analyses different features viz.
n-gram, MD1, MD2, entropy, OPCODE, Register, symbols, data define
and sections of malware file for generating the feature vector. The
feature vector is converted to a gray level image for visual analysis,
where typical behavioral patterns can be observed for a particular
malware family. Gray-scale image conversion widely opens up the
scope for using state of the art image processing techniques, which
have been more mature and proven.

Feature vectors have been presented in an image as different
‘Regions’ which allows the use of Region Proposed Network (RPN).
Exhaustive work done in the region-based analysis in an image,
motivated the author to opt for the proposed methodology.

Malware codes are normally 75% to 80% identical. The image
constructed from this code after extracting features should show
similarity. Considering this point the author is motivated to introduce
different image similarity based statistical parameters (ISSP) such
as NCC, AD, MD, SSIM, LMSE, MMSE and PSNR as a feature set
to improve system performance. The feature plot shown in Fig. 14,
concludes that the features are distinctive. Thus, fusion of gray scale
image with similarity parameters is used to train the classifier.

The development of region-based analysis with CNN as a base
classifier offers R-CNN. The next modified versions of the basic R-CNN
are Fast RCNN and Faster R-CNN (F-RCNN) techniques which have
been proven for less training and testing time as shown in Fig. 5. This
type of deep learning technique is more suitable for MDS where not
only real time learning can be implemented with less time, but testing
or producing output in the form of malware detection is desideratum.
The system performance is analyzed using the benchmark database
from Kaggle. This dataset is publicly available and results can be
compared with the baseline. The database consists of nine malware
families listed in Table V with details of malware families, malware
categories and the number of sample files.

F-RCNN classifier with image-based visualization of the feature
vector and ISSP as an additional feature resulted in better performance
for classifying nine classes of malware. The proposed model offered an
overall accuracy of 98.12% with improved rate of MD.

References

[1] E. Gandotra, D. Bansal, and S. Sofat, “Malware analysis and classification:
A survey,” Journal of Information Security, vol. 5, no. 02, pp. 56, 2014.

[2] Sahs, Justin & Khan, Latifur, “A Machine Learning Approach to Android
Malware Detection” Proceedings - European Intelligence and Security
Informatics Conference, EISIC 2012, pp.141-147, 2012.

[3] M. P. Deore and U.V. Kulkarni, “Malware Detection Techniques and its
Classification: A Survey”, International Journal of Research in Electronics

TABLE VI. Confusion Matrix

Malware
Malware Detection %

Ramnit Lollipop Kelihos_ver3 Vundo Simda Tracur Kelihos_ver1 Obfuscator.ACY Gatak
RAmnit 98.57 0.19 0.19 0 0 0.06 0.45 0.45 0.06
Lollipop 0.36 98.82 0 0.40 0 0 0 0.40 0

Kelihos_ver3 0.03 0 99.66 0 0 0 0 0.30 0
Vundo 0 0 0 96.42 0.21 0.84 0 2.52 0
Simda 0 0 0 0 95.12 2.43 2.43 2.43 0
Tracur 0 0 0 0 0 99.73 0.13 0.13 0

Kelihos_ver1 0 0 0 0 0 0 100 0 0
Obfuscator.ACY 0.97 0.40 0.40 0.40 0.65 1.30 3.50 91.36 0.97

Gatak 0 0 0 0 0 0.09 0 0.19 99.70

- 13 -

Article in Press

AND Computer Engineering (IJRECE), vol.6, no 4, pp.63-71, 2018.
[4] E. Bou-Harb, M. Debbabi and C. Assi, “Cyber Scanning: A Comprehensive

Survey,” in IEEE Communications Surveys & Tutorials, vol. 16, no. 3, pp.
1496-1519, 2014.

[5] M. P. Deore, U.V. Kulkarni and B.M. Patre, “Malware Classification
Using Machine Learning: A Survey”, Journal of Advanced Research in
Dynamical and Control Systems (JARDCS), vol.10, Issue no.10, pp.181-
190, 2018.

[6] Cohen, W. W, “Learning to classify English text with ILP methods”, In
Advances in Inductive Logic Programming, L. De Raedt, ed. IOS Press,
Amsterdam, The Netherlands, pp.124-143, 2002.

[7] M. G. Schultz, E. Eskin, F. Zadok, S. J. Stolfo, “Data mining methods
for detection of new malicious executable”, Security and Privacy,
Proceedings. 2001 IEEE Symposium, pp. 38-49, 2001.

[8] J. Z. Kolter, M. A. Maloof, “Learning to detect and classify malicious
executables in the wild”, Journal Machine Learning Research. 7, pp. 21-
44, 2006.

[9] R. Tian, L. M. Batten, S. C. Versteeg, “Function length as a tool for malware
classification”, in: Malicious and Unwanted Software, MALWARE 2008.
3rd International Conference on, pp. 69-76, 2008.

[10] Zolkipli Mohamad Fadli, Aman Jantan, “An approach for malware
behavior identification and classification”, Computer Research and
Development (ICCRD) 2011 3rd International Conference on, vol. 1, 2011.

[11] Shankarapani, M., Ramamoorthy, S., Movva, R., Mukkamala, S., “Malware
detection using assembly and api call sequences”. J. Comput. Virol. pp.
1–13, 2010.

[12] D. Kong, G. Yan, “Discriminant malware distance learning on structural
information for automated malware classification”, in: ACM SIGKDD
‘13,nKDD ‘13, ACM, New York, NY, USA, pp. 1357-1365,2013.

[13] Santos I., Devesa J., Brezo F., Nieves J., Bringas P.G, “OPEM: A Static-
Dynamic Approach for Machine-Learning-Based Malware Detection”,
International Joint Conference CISIS’12-ICEUTE´12-SOCO´12 Special
Sesstelligent Systems and Computing. Springer, Berlin, Heidelberg, vol
189 2013b.

[14] B. Gu, Y. Fang, P. Jia, L. Liu, L. Zhang and M. Wang, “A New Static
Detection Method of Malicious Document Based on Wavelet Package
Analysis,” 2015 International Conference on Intelligent Information Hiding
and Multimedia Signal Processing (IIH-MSP), 2015, pp. 333-336,2015.

[15] Q. Li and X. Li, “Android Malware Detection Based on Static Analysis
of Characteristic Tree,” 2015 International Conference on Cyber-Enabled
Distributed Computing and Knowledge Discovery, Xi’an, pp. 84-91, 2015.

[16] Yoo, In Seon, “Visualizing windows executable viruses using self-
organizing maps”, pp. 82-89, 2004.

[17] D. A. Quist and L. M. Liebrock, “Visualizing compiled executables for
malware analysis”, 6th International Workshop on Visualization for Cyber
Security, Atlantic City, NJ, pp. 27-32, 2009.

[18] P. Trinius, T. Holz, J. Göbel and F. C. Freiling, “Visual analysis of malware
behavior using tree maps and thread graphs”, 6th International Workshop
on Visualization for Cyber Security, Atlantic City, NJ, pp. 33-38, 2009.

[19] Nataraj, L., Karthikeyan, S., Jacob, G. and Manjunath B, “Malware
Images: Visualization and Automatic Classification”, Proceedings of the
8th International Symposium on Visualization for Cyber Security, Article
No. 4, 2011.

[20] K. Kancherla and S. Mukkamala, “Image visualization based malware
detection”, IEEE Symposium on Computational Intelligence in Cyber
Security (CICS), Singapore, pp. 40-44, 2013.

[21] S. Han, H. Mao, and W. J. Dally, “Deep compression: Com-pressing
deep neural network with pruning, trained quantization and Huffman
coding”, CoRR, abs/1510.00149, 2, 2015.

[22] M. Arefkhani and M. Soryani, “Malware clustering using image
processing hashes”, 9th Iranian Conference on Machine Vision and Image
Processing (MVIP), Tehran, pp. 214-218,2015.

[23] Wu Q., Qin Z., Zhang J., Yin H., Yang G., Hu K, “Android Malware
Detection Using Local Binary Pattern and Principal Component
Analysis”, In: Zou B., Li M., Wang H., Song X., Xie W., Lu Z. (eds) Data
Science. ICPCSEE 2017. Communications in Computer and Information
Science, vol 727. Springer, Singapore, 2017.

[24] S. Rezaei, A. Afraz, F. Rezaei, M. R. Shamani, “Malware detection using
opcodes statistical features”, in: 2016 8th International Symposium on
Telecommunications (IST), pp. 151–155, 2016.

[25] B. Kolosnjaji, G. Eraisha, G. Webster, A. Zarras and C. Eckert,
“Empowering convolutional networks for malware classification and
analysis,” 2017 International Joint Conference on Neural Networks (IJCNN),
Anchorage, AK, pp. 3838-3845, 2017.

[26] S. Dübel, M. Röhlig, H. Schumann and M. Trapp, “2D and 3D presentation of
spatial data: A systematic review,” 2014 IEEE VIS International Workshop
on 3DVis (3DVis), 2014, pp. 11-18, doi: 10.1109/3DVis.2014.7160094.

[27] N. Cao and W. Cui, “Introduction to Text Visualization”, Atlantis Press,
Paris, 2016.

[28] D. Keim, “Information visualization and visual data mining”, IEEE
Transactions on Visualization and Computer Graphics, vol. 8, no. 1, pp.
1–8, 2002.

[29] S. Few, “Information Dashboard Design - The Effective Visual
Communication of Data”, Sebastopol, CA: O’Reilly, 2006.

[30] J. Jacobs and B. Rudis, “Data-driven security analysis, visualization, and
dashboards”, in Indianapolis, John Wiley & Sons, 2014.

[31] N. Cao, L. Lu, Y.-R. Lin, F. Wang, and Z. Wen, “Social Helix: visual analysis
of sentiment divergence in social media”, Journal of Visualization, vol.18,
no. 2, pp. 221–235, 2015.

[32] T. Songqing, “Imbalanced Malware Images Classification: a CNN based
Approach”, arXiv:1708.08042, 2017.

[33] W. B. Balakrishnan, “Security Data Visualisation”, SANS Institute Inc,
2014.

[34] N. Diakopoulos, D. Elgesem, A. Salway, A. Zhang, and K. Hofland,
“Compare clouds: visualizing text corpora to compare media frames”, in
Proceedings of IUI Workshop on Visual Text Analytics, 2015.

[35] H. Shiravi, A. Shiravi, and A. A. Ghorbani, “A survey of visualization
systems for network security”, IEEE Transactions on Visualization and
Computer Graphics, vol.18, no.8, pp.1313–1329, 2012.

[36] Venkatraman, Sitalakshmi and Mamoun Alazab, “Use of Data Visualisation
for Zero-Day Malware Detection”, Security and Communication Networks,
1728303:1-1728303:13.,2018.

[37] T.Y.Zhang, X.M.WangLi, Z.Z.Li, F.Guo,Y.Ma, and W.Chen, “Survey of
network anomaly visualization”, Scince China Information Sciences, vol.
60, no. 12, 2017.

[38] W. Shanks, “Enhancing Intrusion Analysis through Data Visualization”,
SANS Institute, Inc, 2015.

[39] S.Foresti, J.Agutter, Y.Livnat, S.Moon, and R.Erbacher, “Visual correlation
of network alerts”, IEEE Computer Graphics and Applications, vol.26,
no.2, pp.48–59,2006.

[40] M. Wagner, D. Sacha, A. Rind et al.,”Visual Analytics: Foundations and
Experiences in Malware Analysis,” in book: Empirical Research for
Software Security: Foundations and Experience, L.benOthmane, M.
GiljeJaatun, and E. Weippl, Eds., CRC/Taylor and Francis, pp. 139–171,
2017.

[41] K. Han, J. H. Lim, and E. G. Im, “Malware analysis method using
visualization of binary files,” in Proceedings of the the2013 Research
in Adaptive and Convergent Systems, Montreal, Quebec, Canada, pp.
317–321, 2013.

[42] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath, “Malware
images: Visualization and automatic classification”, in Proceedings of
the 8th International Symposium on Visualization for Cyber Security,
(VizSec ’11), USA, 2011.

[43] N. Nissim, R. Moskovitch, L. Rokach, Y. Elovici, “Novel active learning
methods for enhanced pc malware detection in windows OS”, Expert
Systems with Applications, vol. 41, no. 13, pp. 5843 – 5857, 2014.

[44] S. M. Tabish, M. Z. Shafiq, M. Farooq, Malware detection using statistical
analysis of byte-level file content, in: Proceedings of the ACM SIGKDD
Workshop on Cyber Security and Intelligence Informatics, CSI-KDD ’09,
pp. 23–31, 2009.

[45] W. Wong, M. Stamp, “Hunting for metamorphic engines”, Journal in
Computer Virology, vol. 2, no. 3, pp. 211-229, 2006.

[46] S. Attaluri, S. McGhee, M. Stamp, “Profile hidden Markova models and
metamorphic virus detection”, Journal in Computer Virology, pp.151-169,
2009.

[47] M. Siddiqui, M. C. Wang, J. Lee, “Detecting internet worms using data
mining techniques”, Journal of Systemic, Cybernetics and Informaticsm,
pp.48-53, 2009.

[48] I. Santos, J. Nieves, P. G. Bringas, “Semi-supervised Learning for
Unknown Malware Detection”, International, Symposium on Distributed

- 14 -

International Journal of Interactive Multimedia and Artificial Intelligence

Computing and Artificial Intelligence, Springer Berlin Heidelberg Berlin,
Heidelberg, pp. 415-422, 2011.

[49] Z. Chen, M. Roussopoulos, Z. Liang, Y. Zhang, Z. Chen, A. Delis,
“Malware characteristics and threats on the internet ecosystem”, Journal
of Systems and Software, pp.1650-1672, 2012.

[50] J. Yonts, “Attributes of malicious files”, Tech. rep., The SANS Institute,
2012.

[51] X. Hu, K. G. Shin, S. Bhatkar, K. Gri_n, Mutantx-s, “ Scalable malware
clustering based on static features”, in: USENIX Annual Technical
Conference, pp. 187-198, 2013.

[52] D. Kong, G. Yan, “Discriminant malware distance learning on structural
information for automated malware classification”, in: ACM SIGKDD ‘13,
nKDD ‘13, ACM, New York, NY, USA, pp. 1357-1365, 2013.

[53] I. Santos, F. Brezo, X. Ugarte-Pedrero, P. G. Bringas, “Opcode sequences as
representation of executables for data-mining-based unknown malware
detection”, Information Sciences 231 pp.64-82, 2013.

[54] P. Vadrevu, B. Rahbarinia, R. Perdisci, K. Li, M. Antonakakis, “Measuring
and detecting malware downloads in live network traffic”, in: Computer
Security ESORICS 2013: 18th European Symposium on Research in
Computer Security, Egham, UK, September 9-13, 2013. Proceedings,
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 556-573, 2013.

[55] J. Bai, J. Wang, G. Zou, “A malware detection scheme based on mining
format information”, The Scientific World Journal, 2014.

[56] A. Tamersoy, K. Roundy, D. H. Chau, “Guilt by association: large scale
malware detection by mining file-relation graphs”, in: Proceedings of the
20th ACM SIGKDD, ACM, pp. 1524-1533, 2014.

[57] M. Ahmadi, G. Giacinto, D. Ulyanov, S. Semenov, M. Tromov, “Novel
feature extraction, selection and fusion for effective malware family
classification”, arXiv:1511.04317, 2016.

[58] M. Egele, T. Scholte, E. Kirda, C. Kruegel, “A survey on automated
dynamic malware-analysis techniques and tools”, ACM computing
surveys (CSUR), 2012.

[59] Z. Feng, S. Xiong, D. Cao, X. Deng, X. Wang, Y. Yang, X. Zhou,Y. Huang,
G. Wu, “Hrs: A hybrid framework for malware detection”, In Proceedings
of the 2015 ACM International Workshop on Security and Privacy
Analytics, ACM, pp. 19-26, 2015.

[60] M. Gharacheh, V. Derhami, S. Hashemi, S. M. H. Fard, “Proposing an
hmm-based approach to detect metamorphic malware”, Fuzzy and
Intelligent Systems (CFIS), pp. 1-5, 2015.

[61] P. Khodamoradi, M. Fazlali, F. Mardukhi, M. Nosrati, “Heuristic
metamorphic malware detection based on statistics of assembly
instructions using classification algorithms”, in: Computer Architecture
and Digital Systems (CADS), 2015 18th CSI International Symposium on,
IEEE, pp.1-6, 2015.

[62] Pai, S., Troia, F.D., Visaggio, C.A.. “Clustering for malware classification”,
Journal Computer Virology, Hack Tech13, pp. 95–107, 2017.

[63] J. Sexton, C. Storlie, B. Anderson, “Subroutine based detection of APT
malware”, Journal of Computer Virology and Hacking Techniques, pp.
1-9, 2015.

[64] T. Lee, J. J. Mody, “Behavioral classification”, In EICAR Conference, pp.
1-17, 2006.

[65] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian, J. Nazario,
“Automated classification and analysis of internet malware”, In Recent
advances in intrusion detection, Springer, ,pp. 178-197, 2007.

[66] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, E. Kirda, Scalable,
“Behavior-based malware clustering”, In NDSS, vol. 9, pp. 8-11, 2009.

[67] I. Firdausi, C. Lim, A. Erwin, A. S. Nugroho, “Analysis of machine
learning techniques used in behavior-based malware detection”, in: ACT
‘10, IEEE, pp. 201-203, 2010.

[68] Y. Park, D. Reeves, V. Mulukutla, B. Sundaravel, “Fast malware
classification by automated behavioral graph matching”, in: Workshop
on Cyber Security and Information Intelligence Research, ACM, pp. 45,
2010.

[69] B. Anderson, D. Quist, J. Neil, C. Storlie, T. Lane, “Graph-based malware
detection using dynamic analysis”, Journal in Computer Virology, vol. 7,
no. 4, pp. 247-258, 2011.

[70] M. Lindorfer, C. Kolbitsch, P. M. Comparetti, “Detecting environment
sensitive malware”, in: Recent Advances in Intrusion Detection, Springer,
pp. 338-357, 2011.

[71] K. Rieck, P. Trinius, C. Willems, T. Holz, “Automatic analysis of malware

behavior using machine learning”, Journal of Computer Security, vol. 19,
no. 4, pp. 639-668, 2011.

[72] P. M. Comar, L. Liu, S. Saha, P. N. Tan, A. Nucci, “Combining supervised
and unsupervised learning for zero-day malware detection”, in:
INFOCOM, 2013 Proceedings IEEE, pp. 2022-2030, 2013.

[73] G. E. Dahl, J. W. Stokes, L. Deng, D. Yu, “ Large-scale malware classification
using random projections and neural networks”, in: Acoustics, Speech
and Signal Processing (ICASSP), IEEE, pp. 3422-3426, 2013.

[74] S. Nari, A. A. Ghorbani, “Automated malware classification based on
network behavior”, in: Computing, Networking and Communications
(ICNC), 2013 International Conference on, IEEE, pp. 642-647, 2013.

[75] S. Palahan, D. Babi_c, S. Chaudhuri, D. Kifer, “Extraction of statistically
significant malware behaviors”, in: Computer Security Applications
Conference, ACM, pp. 69-78, 2013.

[76] M. Kruczkowski, E. N. Szynkiewicz, “Support vector machine for malware
analysis and classification”, in: Web Intelligence (WI) and Intelligent
Agent Technologies (IAT), IEEE Computer Society, pp. 415-420, 2014.

[77] D. Uppal, R. Sinha, V. Mehra, V. Jain, “Malware detection and classification
based on extraction of api sequences”, in: ICACCI, IEEE, pp. 2337-2342,
2014.

[78] A. Elhadi, M.A. Maarof, B. Barry, “Improving the Detection of Malware
Behaviour Using Simplified Data Dependent API Call Graph”,
International Journal of Security and Its Applications, vol. 7, no. 5, pp.
29-42, 2013.

[79] M. Ghiasi, A. Sami, Z. Salehi, “Dynamic VSA: a framework for malware
detection based on register contents”, Engineering Applications of
Artificial Intelligence, pp.111- 122, 2015.

[80] N. Kawaguchi, K. Omote, “Malware function classification using apis in
initial behavior”, in: Information Security (AsiaJCIS), 2015 10th Asia Joint
Conference on, IEEE, pp. 138-144, 2015.

[81] C.-T. Lin, N.-J. Wang, H. Xiao, C. Eckert, “Feature selection and
extraction for malware classification”, Journal of Information Science
and Engineering, vol. 31, no. 3, pp. 965-992, 2015.

[82] A. Mohaisen, O. Alrawi, M. Mohaisen, “Amal: High-fidelity, behavior
based automated malware analysis and classification”, Computers &
security, vol. 52, pp. 251-266, 2015.

[83] T. Wuchner, M. Ochoa, A. Pretschner, “Robust and effective malware
detection through quantitative data flow graph metrics,” in: Detection
of Intrusions and Malware, and Vulnerability Assessment, Springer, pp.
98-118, 2015.

[84] G. Liang, J. Pang, C. Dai, “A behavior-based malware variant classification
technique”, International Journal of Information and Education
Technology, vol. 6, pp.291, 2016.

[85] J. Jang, D. Brumley, S. Venkataraman, “Bitshred: feature hashing
malware for scalable triage and semantic analysis”, in: Computer and
communications security, ACM, pp. 309-320, 2011.

[86] B. Anderson, C. Storlie, T. Lane, “Improving malware classification:
bridging the static/dynamic gap”, in: Proceedings of the 5th ACM
workshop on Security and artificial intelligence, ACM, pp. 3-14, 2012.

[87] M. Eskandari, Z. Khorshidpour, S. Hashemi, “Hdm-analyser: a hybrid
analysis approach based on data mining techniques for malware
detection”, Journal of Computer Virology and Hacking Techniques, vol.
9, pp. 77-93, 2013.

[88] R. Islam, R. Tian, L. M. Batten, S. Versteeg, “Classification of malware
based on integrated static and dynamic features”, Journal of Network and
Computer Applications, pp.646-656, 2013.

[89] M. Egele, M.Woo, P. Chapman, D. Brumley, “Blanket execution: Dynamic
similarity testing for program binaries and components”, in: USENIX
Security 14, USENIX Association, San Diego, CA, pp. 303-317, 2014.

[90] M. Graziano, D. Canali, L. Bilge, A. Lanzi, D. Balzarotti, “Needles in a
haystack: Mining information from public dynamic analysis sandboxes
for malware intelligence”, in: USENIX Security ‘15, pp. 1057-1072, 2015.

[91] M. Polino, A. Scorti, F. Maggi, S. Zanero, “Jackdaw: Towards Automatic
Reverse Engineering of Large Datasets of Binaries, in: Detection of
Intrusions and Malware”, and Vulnerability Assessment, Lecture Notes in
Computer Science, Springer International Publishing, pp. 121-143, 2015.

[92] P. Vadrevu, R. Perdisci, “MAXS: Scaling Malware Execution with
Sequential Multi-Hypothesis Testing”, in: ASIA CCS ‘16, ASIA CCS ‘16,
ACM, New York, NY, USA, pp. 771-782, 2016.

[93] M. P. Deore and U.V. Kulkarni, “Static Way of Effective Feature Extraction

- 15 -

Article in Press

and Malware Classification”, Online International Interdisciplinary
Research Journal, International Conference on Recent Multidisciplinary
Research (ICRMR-2018), Organized and Hosted by Foundation of
Innovative Research at conference center, AIT,Thailand ,vol.8 , no 2,
pp.81-93, 2018.

[94] M. Asquith, “Extremely scalable storage and clustering of malware
metadata”, Journal of Computer Virology and Hacking Techniques, pp.
1-10, 2015.

[95] W. Mao, Z. Cai, D. Towsley, X. Guan, “Probabilistic inference on integrity
for access behavior based malware detection”, in: International Workshop
on Recent Advances in Intrusion Detection, Springer, pp. 155-176, 2015.

[96] F. Ahmed, H. Hameed, M. Z. Shafiq, M. Farooq, “Using spatio-temporal
information in api calls with machine learning algorithms for malware
detection”, in: Proceedings of the 2nd ACM workshop on Security and
artificial intelligence, ACM, pp. 55-62, 2009.

[97] E. Raff, C. Nicholas, “An alternative to ncd for large sequences,
lempel-zivjaccard distance”, in: Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
ACM, pp. 1007-1015, 2017.

[98] D. H. Chau, C. Nachenberg, J. Wilhelm, A. Wright, C. Faloutsos,
“Polonium: Tera-scale graph mining for malware detection”, in: ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 131-
142, 2010.

[99] Y. Ye, T. Li, Y. Chen, Q. Jiang, “Automatic malware categorization using
cluster ensemble”, in: Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining, ACM, pp. 95- 104,
2010.

[100] M. Lindorfer, C. Kolbitsch, P. M. Comparetti, “Detecting environment
sensitive malware”, in: Recent Advances in Intrusion Detection, Springer,
pp. 338-357, 2011.

[101] B. J. Kwon, J. Mondal, J. Jang, L. Bilge, T. Dumitras, “The dropper effect:
Insights into malware distribution with downloader graph analytics”,
in: Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, ACM, pp. 1118-1129, 2015.

[102] J. Saxe, K. Berlin, “Deep neural network based malware detection using
two dimensional binary program features, in: Malicious and Unwanted
47Software (MALWARE)”, 2015 10th International Conference on, IEEE,
pp. 11-20, 2015.

[103] K. Huang, Y. Ye, Q. Jiang, Ismcs: an intelligent instruction sequence based
malware categorization system, in: Anti-counterfeiting, Security, and
Identification in Communication, 2009, IEEE, pp. 509-512, 2009.

[104] Hardy, W. Chen, L.Hou, S. Ye, Y. Li X, “A deep learning framework
for intelligent malware detection”, In Proceedings of the International
Conference Data Mining (ICDM), Barcelona, Spain, pp. 61, 2016.

[105] Wang X., Yiu S.M. “A multi-task learning model for malware
classification with useful file access pattern from API call sequence”,
arXiv, arXiv:1610.05945, 2016.

[106] Javaid, Salman., “Analysis and Detection of Heap-based Malwares Using
Introspection in a Virtualized Environment.”, University of New Orleans
Theses and Dissertations. 1875. 2014.

[107] Ma, T.; Wang, F.; Cheng, J.; Yu, Y.; Chen, X., “A Hybrid Spectral Clustering
and Deep Neural Network Ensemble Algorithm for Intrusion Detection
in Sensor Networks.”, Sensors, 1701.,2016.

[108] Aminanto, M.E., Kim, K., “Deep Learning-Based Feature Selection for
Intrusion Detection System in Transport Layer”, Available online:https://
pdfs.semanticscholar.org/bf07/e753401b36662eee7b8cd6c65cb8cfe31562.
pdf (accessed on 23 February 2019).

[109] Diro, A.A. Chilamkurti, N., “Deep learning: The frontier for distributed
attack detection in Fog-to-Things computing”, IEEE Communication,
pp.169–175, 2018.

[110] Chawla, S., “eep Learning Based Intrusion Detection System for Internet
of Things”, University of Washington: Seattle, WA, USA, 2017.

[111] Cox, J.A. James, C.D. Aimone, J.B., “A signal processing approach for
cyber data classification with deep neural networks”, Procedia Comput.
Sci., pp.61, 349–354, 2015.

[112] Wang, Z. “The Applications of Deep Learning on Traffic Identification”,
Black Hat: Washington, DC, USA, 2015.

[113] Lotfollahi, M.; Shirali, R.; Siavoshani, M.J.; Saberian, M. ,“Deep Packet:
A Novel Approach for Encrypted Traffic Classification Using Deep
Learning”, arXiv:1709.02656, 2017.

[114] Mi, G.; Gao, Y.; Tan, Y., “Apply stacked auto-encoder to spam detection”,
In Proceedings of the International Conference in Swarm Intelligence,
Beijing, China, 26–29 ,pp. 3–15,2015.

[115] Loukas, G., Vuong, T., Heartfield, R., Sakellari, G., Yoon, Y., Gan, D.,
“Cloud-based cyber-physical intrusion detection for vehicles using Deep
Learning”, pp. 3491–3508, 2018.

[116] Diro, A.A.; Chilamkurti, N. Leveraging LSTM Networks for Attack
Detection in Fog-to-Things Communications”, IEEE Commun. Mag. 56,
pp. 124–130, 2018.

[117] Shi, C.; Liu, J.; Liu, H.; Chen, Y., “Smart user authentication through
actuation of daily activities leveraging WiFi-enabled IoT ” , In
Proceedings of the 18th ACM International Symposium on Mobile Ad
Hoc Networking and Computing, Chennai, India, ACM: New York, NY,
USA, pp. 10–14, 2017.

[118] Yousefi-Azar, M.; Varadharajan, V.; Hamey, L.; Tupakula, U. Auto
encoder-based feature learning for cyber security applications. In
Proceedings of the 2017 International Joint Conference Neural Networks
(IJCNN) Anchorage, AK, USA, 14–19, pp. 3854–3861,2017.

[119] Abdulhammed, R., Faezipour, M., Abuzneid, A., AbuMallouh, A., “Deep
and machine learning approaches for anomaly-based intrusion detection
of imbalanced network traffic”, IEEE Sens. Lett., 2018.

[120] Nadeem M., Marshall O., Singh, S., Fang, X., Yuan X., Semi-Supervised
Deep Neural Network for Network Intrusion Detection”, Available
online: https: //digitalcommons .kennesaw . edu/ccerp/2016/Practice/2/
(accessed on 23 February 2019).

[121] Alom, M.Z. Taha, T.M., “Network intrusion detection for cyber security
using unsupervised deep learning approaches”, In Proceedings of the
2017 IEEE National Aerospace and Electronics Conference (NAECON),
Dayton, OH, USA, 27–30 ,pp. 63–69, June 2017.

[122] Mirsky, Y.; Doitshman, T.; Elovici, Y.; Shabtai, A. Kitsune: “An ensemble of
auto encoders for online network intrusion detection”, arXiv:1802.09089.,
2018.

[123] David, O.E.; Netanyahu, N.S. “Deep sign: Deep learning for automatic
malware signature generation and classification”, In Proceedings of the
2015 International Joint Conference Neural Networks (IJCNN), Killarney,
Ireland, pp. 1–8., 2015.

[124] Saxe, J.; Berlin, K. “Deep neural network based malware detection
using two dimensional binary program features”, In Proceedings of
the 10th International Conference Malicious and Unwanted Software
(MALWARE),Washington, DC, USA, pp. 11–20, 2015.

[125] Mizuno, S.; Hatada, M.; Mori, T.; Goto, S. “Bot Detector: A robust and
scalable approach toward detecting malware-infected devices”, In
Proceedings of the 2017 IEEE International Conference Communications
(ICC), Paris, France; pp. 1–7, 2017.

[126] S. Srakaew, W. Piyanuntcharatsr, S. Adulkasem, On the comparison of
malware detection methods using data mining with two feature sets”,
Journal of Security and Its Applications , pp. 293-318, 2015.

[127] Grosse, K.; Papernot, N.; Manoharan, P.; Backes, M.; McDaniel, P.,
“Adversarial perturbations against deep neural networks for malware
classification”, arXiv:1606.04435, 2016.

[128] Cordonsky, I.; Rosenberg, I.; Sicard, G.; David, E.O., “Deep Origin: End-to-
end deep learning for detection of new malware families”, In Proceedings
of the 2018 International Joint Conference on Neural Networks (IJCNN),
Rio de Janeiro, Brazil; pp. 1–7,2018.

[129] Huang, W.; Stokes, J.W., “MtNet: A multi-task neural network for dynamic
malware classification. In Proceedings of the International Conference
Detection of Intrusions and Malware, and Vulnerability Assessment”,
Donostia-San Sebastián, Spain, pp. 399–418, 2016.

[130] Roy, S.S.; Mallik, A.; Gulati, R.; Obaidat, M.S.; Krishna, P.V. “A Deep
Learning Based Artificial Neural Network Approach for Intrusion
Detection”, In Proceedings of the International Conference Mathematics
and Computing, Haldia, India, pp. 44–53, 2017.

[131] Tang, T.A. Mhamdi, L. McLernon, D. Zaidi, S.A.R. Ghogho, M., “Deep
learning approach for network intrusion detection in software defined
networking”, In Proceedings of the 2016 International Conference
Wireless Networks and Mobile Communication (WINCOM), Fez,
Morocco, pp. 258–263, 2016.

[132] Diro, A.A. Chilamkurti, N. Distributed attack detection scheme using
deep learning approach for internet of things”, Future Gener. Comput.
Syst., 82, 761–768, 2018.

https://pdfs.semanticscholar.org/bf07/e753401b36662eee7b8cd6c65cb8cfe31562
https://pdfs.semanticscholar.org/bf07/e753401b36662eee7b8cd6c65cb8cfe31562
https://digitalcommons.kennesaw.edu/ccerp/2016/Practice/2/

- 16 -

International Journal of Interactive Multimedia and Artificial Intelligence

[133] Mi, G.; Gao, Y.; Tan, Y. “Apply stacked auto-encoder to spam detection”,
In Proceedings of the International Conference in Swarm Intelligence,
Beijing, China; pp. 3–15, 2015.

[134] Yu, Y.; Long, J.; Cai, Z., “Network intrusion detection through stacking
dilated convolutional auto encoders”, Secur. Commun. Netw. , 2017.

[135] Gibert, D., “Convolutional Neural Networks for Malware Classification”,
Universit at Politècnica de Catalunya: Barcelona, Spain, 2016.

[136] Zeng, F.; Chang, S.;Wan, X., “Classification for DGA-Based Malicious
Domain Names with Deep Learning Architectures”, Int. J. Intell. Inf.
Syst., 6, pp. 67–71, 2017.

[137] Yamanishi, K., “Detecting Drive-By Download Attacks from Proxy Log
Information Using Convolutional Neural Network”, Osaka University:
Osaka, Japan, 2017.

[138] McLaughlin, N. del Rincon, J.M. Kang, B. Yerima, S. Miller, P. Sezer,
S. Safaei, Y. Trickel, E. Zhao, Z. Doupe, A., “ Deep android malware
detection”, In Proceedings of the 7th ACM on Conference on Data and
Application Security and Privacy, Scottsdale, AZ, USA, pp. 301–308,
2017.

[139] Wang, W. Zhu, M. Zeng, X. Ye, X. Sheng, Y., “Malware traffic classification
using convolutional neural network for representation learning. In
Proceedings of the IEEE 2017 International Conference on Information
Networking (ICOIN), Da Nang, Vietnam pp. 712–717, 2017.

[140] Wang, W. Zhu, M. Wang, J. Zeng, X. Yang, Z., “End-to-end encrypted
traffic classification with one-dimensional convolution neural networks”,
In Proceedings of the 2017 IEEE International Conference Intelligence
and Security Informatics (ISI), Beijing, China, pp. 43–48., 2017.

[141] Shibahara, T. Yamanishi, K. Takata, Y. Chiba, D.Akiyama, M. Yagi, T.
Ohsita, Y. Murata, M., “Malicious URL sequence detection using event
de-noising convolutional neural network”, In Proceedings of the 2017
IEEE International Conference Communications (ICC), Paris, France, pp.
1–7,2017.

[142] Hill, G.D. Bellekens, X.J.A., “Deep learning based cryptographic primitive
classification”, arXiv2017, arXiv: 1709.08385.

[143] Kolosnjaji, B. Zarras, A.Webster, G. Eckert, C., “Deep learning for
classification of malware system call sequences”, In Proceedings of the
Australasian Joint Conf. on Artificial Intelligence, Hobart, Australia, pp.
137–149,2016.

[144] Tobiyama, S., Yamaguchi, Y. Shimada, H. Ikuse, T., Yagi, T., “Malware
detection with deep neural network using process behavior”, In
Proceedings of the IEEE 40th Annual Computer Software and
Applications Conference (COMPSAC), Atlanta, GA, USA, Volume 2, pp.
577–5822016.

[145] Mac, H. Tran, D. Tong, V. Nguyen, L.G. Tran, H.A., “DGA Botnet
Detection Using Supervised Learning Methods”, In Proceedings of the
8th International Symposium on Information and Communication
Technology, Nhatrang, Vietnam, pp. 211–218, 2017.

[146] Yu, B. Gray, D.L. Pan, J. de Cock, M. Nascimento, “A.C.A. Inline
DGA detection with deep networks”, In Proceedings of the 2017 IEEE
International Conference Data Mining Workshops (ICDMW), New
Orleans, LA, USA, pp. 683–692.

[147] Anderson, H.S. Woodbridge, J. Filar, B., “DeepDGA: Adversarially-tuned
domain generation and detection. In Proceedings of the 2016 ACM
Workshop on Artificial Intelligence and Security, Vienna, Austria, pp.
13–21, 2016.

[148] Li, Y. Ma, R. Jiao, R., “A hybrid malicious code detection method based on
deep learning. Methods 2015, 9, 205–216.

[149] Maimó, L.F. Gómez, A.L.P. Clemente, F.J.G. Pérez, M.G., “A self-adaptive
deep learning-based system for anomaly detection in 5G networks”, IEEE
Access, 6, pp. 7700–7712, 2018.

[150] Alrawashdeh, K. Purdy C., “Toward an online anomaly intrusion
detection system based on deep learning”, In Proceedings of the 15th
IEEE International Conference Machine Learning and Applications
(ICMLA), Miami, FL, USA, pp. 195–200, 2015.

[151] Yuan, Z. Lu, Y. Wang, Z. Xue, Y., “Droid-sec: Deep learning in android
malware detection”, ACM SIGCOMM Comput. Commun. Rev. pp. 44,
371–372, 2014.

[152] Weber M., Schmid M., Schatz M., Geyer D., “A toolkit for detecting
and analyzing malicious software”, In Proceedings of the 18th Annual
Computer Security Applications Conference, Las Vegas, NV, USA, pp.
423–431, 2002.

[153] Hou, S. Saas, A. Ye, Y. Chen, L., “Droiddelver: An android malware
detection system using deep belief network based on API call blocks”,
In Proceedings of the International Conference Web-Age Information
Manage, Nanchang, China, pp. 54–66, 2016.

[154] Xu, L. Zhang, D. Jayasena, N. Cavazos, J. “HADM: Hybrid analysis for
detection of malware”, In Proceedings of the SAI Intelligent Systems
Conference, London, UK, pp. 702–724, 2016.

[155] Benchea, R. Gavrilu¸ t, “D.T. Combining restricted Boltzmann machine
and one side perceptron for malware detection”, In Proceedings of the
International Conference on Conceptual Structures, Iasi, Romania, pp.
93–103,2014.

[156] Zhu, D. Jin, H. Yang, Y. Wu, D. Chen, W., “Deep Flow: Deep learning-
based malware detection by mining Android application for abnormal
usage of sensitive data”, In Proceedings of the 2017 IEEE Symposium
Computers and Communications (ISCC), Herakli on, Greece, pp. 438–
443, 2017.

[157] Ye, Y. Chen, L. Hou, S. Hardy, W. Li, X., “DeepAM: A heterogeneous deep
learning framework for intelligent malware detection”, Knowl. Inf. Syst.,
pp.265–285, 2018.

[158] Gao, N.; Gao, L.; Gao, Q.; Wang, H., “An intrusion detection model based
on deep belief networks”, In Proceedings of the 2014 2nd International
Conference Advanced Cloud and Big Data (CBD), Huangshan, China, pp.
247–252,2014.

[159] Alom, M.Z. Bontupalli, V. Taha, T.M. Intrusion detection using deep
belief networks”, In Proceedings of the 2015 National Aerospace and
Electronics Conference (NAECON), Dayton, OH, USA, pp. 339–344, 2015.

[160] Dong, B.; Wang, X. “Comparison deep learning method to traditional
methods using for network intrusion detection”, In Proceedings of
the 8th IEEE International Conference Communication Software and
Networks (ICCSN), Beijing, China, pp. 581–585, 2016.

[161] Kang, M.J. Kang, J.W., “Intrusion detection system using deep neural
network for in-vehicle network security”, PLoS ONE, e0155781, 2016.

[162] Nguyen, K.K. Hoang, D.T. Niyato, D., “Wang, P.; Nguyen, P.; Dutkiewicz,
E. Cyberattack detection in mobile cloud computing”, A deep learning
approach. In Proceedings of the 2018 IEEE Wireless Communications
and Networking Conference (WCNC), Barcelona, Spain, pp. 1–6, 2018.

[163] Tzortzis, G.; Likas, A., “Deep Belief Networks for Spam Filtering. in
Tools with Artificial Intelligence”, In Proceedings of the 2007 19th IEEE
International Conference on ICTAI, Patras, Greece, Volume 2, pp. 306–
309, 2007.

[164] He, Y.; Mendis, G.J.; Wei, J., “Real-time detection of false data injection
attacks in smart grid A deep learning-based intelligent mechanism”, IEEE
Trans. Smart Grid, pp. 2505–2516, 2017.

[165] Ding, Y.; Chen, S.; Xu, J., “Application of Deep Belief Networks for opcode
based malware detection”, In Proceedings of the 2016 International Joint
Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, pp.
3901–3908, 2016.

[166] J. Upchurch, X. Zhou, “Variant: a malware similarity testing framework”,
in: 2015 10th International Conference on Malicious and Unwanted
Software (MALWARE), IEEE, pp. 31-39, 2015.

[167] Pascanu, R.; Stokes, J.W.; Sanossian, H.; Marinescu, M.; Thomas, “A.
Malware classification with recurrent networks”, In Proceedings of
the 2015 IEEE International Conference Acoustics, Speech and Signal
Process, (ICASSP), Brisbane, Australia, pp. 1916–1920,2015.

[168] Shibahara, T.; Yagi, T.; Akiyama, M.; Chiba, D.; Yada, T. “Efficient dynamic
malware analysis based on network behavior using deep learning”, In
Proceedings of the 2016 IEEE Global Communications Conference
(GLOBECOM),Washington, DC, USA, pp. 1–7, 2016.

[169] Woodbridge, J.; Anderson, H.S.; Ahuja, A.; Grant, D. ,“Predicting domain
generation algorithms with long short-term memory networks”,
arXiv2016, arXiv:1611.00791, 2016.

[170] Lison, P.; Mavroeidis, V., “Automatic Detection of Malware-Generated
Domains with Recurrent Neural Models”, arXiv2017, arXiv:1709.07102,
2017.

[171] Tran, D.; Mac, H.; Tong, V.; Tran, H.A.; Nguyen, L.G., “A LSTM based
framework for handling multiclass imbalance in DGA botnet detection”,
Neurocomputing, pp 2401–2413, 2018.

[172] Torres, P.; Catania, C.; Garcia, S.; Garino, C.G., “An Analysis of Recurrent
Neural Networks for Botnet Detection Behavior”, In Proceedings of the
2016 IEEE Biennial Congress of Argentina (ARGENCON), Buenos Aires,

- 17 -

Article in Press

Argentina, pp. 1–6, 2016.
[173] Kim, J. Kim, J.; Thu, H.L.T.; Kim, H. “Long Short Term Memory Recurrent

Neural Network Classifier for Intrusion Detection”, In Proceedings of
the 2016 International Conference Platform Technology and Service
(PlatCon), Jeju, Korea, pp. 1–5, 2016.

[174] Kim, J.; Kim, H. “Applying recurrent neural network to intrusion detection
with hessian free optimization”, In Proceedings of the International
Conference on Information Security Applications, Jeju Island, Korea, pp.
357–369,2015.

[175] Kim, G.; Yi, H.; Lee, J.; Paek, Y.; Yoon, S., “LSTM-Based System-Call
Language Modeling and Robust Ensemble Method for Designing Host-
Based Intrusion Detection Systems”, arXiv2016, arXiv:1611.01726, 2016.

[176] Loukas, G. Vuong, T. Heartfield, R.; Sakellari, G. Yoon, Y. Gan, D.
“Cloud-based cyber-physical intrusion detection for vehicles using Deep
Learning”, IEEE Access, vol. 6, pp. 3491–3508, 2018.

[177] Cheng, M. Xu, Q. Lv, J. Liu,W. Li, Q.Wang, J., “MS-LSTM: A multi-scale
LSTM model for BGP anomaly detection”, In Proceedings of the IEEE
24th International Conference Network Protocols (ICNP), Singapore, pp.
1–6,2016.

[178] Kobojek, P.; Saeed, K., “Application of recurrent neural networks for user
verification based on keystroke dynamic”, J. Telecommun. Inf. Technol.,
pp.80–90., 2016.

[179] McDermott, C.D. Majdani, F. Petrovski, A., “Botnet detection in the
internet of things using deep learning approaches”, In Proceedings of the
2018 International Joint Conference on Neural Networks (IJCNN), Rio de
Janeiro, Brazil, pp. 1–8,2018.

[180] Krishnan, R.B.; Raajan, N.R., “An intellectual intrusion detection system
model for attacks classification using RNN” Int. J. Pharm. Technol. Pp.
23157–23164, 2016.

[181] Staudemeyer, R.C., “Applying long short-term memory recurrent neural
networks to intrusion detection”, S. Afr. Comput. J., pp. 136–154, 2015.

[182] R. Girshick., “Fast R-CNN”, arXiv:1504.08083, 2015.
[183] D. Baysa, R. Low, and M. Stamp., “Structural entropy and metamorphic

malware”, Journal of Computer Virology and Hacking Techniques, vol. 9,
no. 4, pp. 179–192, 2013.

[184] R. Lyda and J. Hamrock., “Using entropy analysis to find encrypted and
packed malware”, IEEE Security and Privacy, vol. 5, no. 2, pp. 40–45,2007.

[185] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath. “Malware
images: Visualization and automatic classification”, In Proceedings of
the 8th International Symposium on Visualization for Cyber Security,
VizSec ’11, pages 4:1–4:7, New York, NY,USA, ACM, 2011.

[186] Zhang, Jixin & Qin, Zheng & Yin, Hui & Ou, Lu & Hu,
Yupeng., “IRMD: Malware Variant Detection Using Opcode
ImageRecognition”,pp.1175-1180, 2016.

[187] Mahotasfeatures,http://mahotas.readthedocs.org/en/latest/features.html,
2015.

[188] A. Moser, C. Kruegel, and E. Kirda., “Limits of static analysis for malware
detection”, In Computer Security Applications Conference, 2007. ACSAC
2007.Twenty-Third Annual, pp. 421–430, 2007.

[189] D. Bilar., “Statistical structures: Finger printing malware for classification
and analysis”, InBlackhat, 2006.

[190] B. Biggio, I. Corona, D. Maiorca, B. Nelson,N. A ărndi Ä Ğ, P. Laskov, G.
Giacinto, and F. Roli., “Evasion attacks against machine learning at test
time”, In H. Blockeel, K. Kersting, S. Nijssen, andF. A¡elezn A¡, editors,
Machine Learning and Knowledge Discovery in Databases, volume 8190
of Lecture Notes in Computer Science, pages 387–402, Springer Berlin
Heidelberg, 2013.

[191] M. Christodorescu, S. Jha, S. Seshia, D. Song, and R. Bryant. “Semantics-
aware malware detection”, In Security and Privacy, 2005 IEEE Symposium
on, pp. 32–46, 2005.

[192] B. B. Rao and K. Swathi, “Fast kNN classifiers for network intrusion
detection system”, Indian J. Sci. Technol., vol. 10, no. 14, pp. 1-10, 2017.

[193] H. Shapoorifard and P. Shamsinejad, “Intrusion detection using a novel
hybrid method incorporating an improved KNN”, Int. J. Comput. Appl.,
vol. 173, no. 1, pp. 5-9, 2017.

[194] S.Vishwakarma,V. Sharma, and A. Tiwari, “An intrusion detection system
using KNN-ACO algorithm”, Int. J. Comput. Appl., vol. 171, no. 10, pp.
18-23, 2017.

[195] E. G. Dada, “A hybridized SVM-kNN-pdAPSO approach to intrusion
detection system”, in Proc. Fac. Seminar Ser., pp. 14-21,2017.

[196] B. Ingre, A. Yadav, and A. K. Soni, ``Decision tree based intrusion
detection system for NSL-KDD dataset,’’ in Proc. Int. Conf. Inf. Commun.
Technol. Intell. Syst., pp. 207-218,2017.

[197] A. J. Malik and F. A. Khan, “A hybrid technique using binary particle
swarm optimization and decision tree pruning for network intrusion
detection”, Clust. Comput., vol. 2, no. 3, pp. 1-14, Jul. 2017.

[198] D. Moon, H. Im, I. Kim, and J. H. Park, “DTB-IDS: An intrusion detection
system based on decision tree using behavior analysis for preventing
APT attacks”, J. Supercomput., vol. 73, no. 7, pp. 2881-2895, 2017.

[199] G. Zhao, C. Zhang, and L. Zheng, “Intrusion detection using deep belief
network and probabilistic neural network”, in Proc. IEEE Int. Conf.
Comput. Sci. Eng., vol. 1, pp. 639-642,2017.

[200] Q. Tan, W. Huang, and Q. Li, “An intrusion detection method based
on DBN in ad hoc networks”, in Proc. Int. Conf. Wireless Commun.
SensorNetw., pp.477-485, 2016.

[201] T.T.H. Le, J. Kim, and H. Kim, “An effective intrusion detection classifier
using long short-term memory with gradient descent optimization”, pp.
1-6,2017.

[202] A. F. Agarap., “A neural network architecture combining gated
recurrent unit (GRU) and support vector machine (SVM) for intrusion
detection in network traffic data.’’ [Online], Available: https://arxiv.org/
abs/1709.03082, 2017.

[203] J. Saxe and K. Berlin., “eXpose: A character-level convolutional neural
network with embeddings for detecting malicious urls, file paths and
registry keys., [Online]. Available: https://arxiv.org/abs/1702.08568, 2017.

[204] Ren, Shaoqing, “Faster R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks”, IEEE Transactions on Pattern Analysis
and Machine Intelligence 39, pp.1137-114, 2015.

Mahendra Deore

 M. Deore is working as an Asst. Professor in Computer
Engineering Department at MKSSS’s Cummins College
of Engineering for Women, Pune 411051, India. He was
awarded his Master of Technology Degree from Bharati
Vidyapeeth Deemed University College of Engineering,
Dhankawadi, Pune. He is currently pursuing Ph.D. Degree
in Computer Science & Engineering from SGGS Institute

of Engineering and Technology, Nanded under Swami Ramanand Teertha
Marathwada University, Nanded, India. His areas of interest are big data,
Security, Computer Networks and Machine learning. He has Fourteen years’
experience in teaching.

Uday Kulkarni

U. Kulkarni is working as a Professor, Head in the
Department of Computer Science and Engineering at
SGGS Institute of Engineering and Technology, Nanded,
India. He received doctoral degree from Swami Ramanand
Teertha Marathwada University, Nanded, India in 2002. He
is a recipient of a national level gold medal in the Computer
Engineering Division for his research paper “Fuzzy Hyper

sphere Neural Network Classifier” published in the journal of Institution of
Engineers in 2004. He has published more than forty research papers in the field
of Neural Networks, Fuzzy Logic and hybrid computing systems in the reputed
journals and conferences.

https://arxiv.org/abs/1709.03082
https://arxiv.org/abs/1709.03082
https://arxiv.org/abs/1702.08568

