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Abstract

DASH is a popular technology for video streaming over the Internet. However, the quality of experience (QoE), a 
measure of humans’ perceived satisfaction of the quality of these streamed videos, is their subjective opinion, which 
is difficult to evaluate. Previous studies only considered network-based indices and focused on them to provide 
smooth video playback instead of improving the true QoE experienced by humans. In this study, we designed a 
series of click density experiments to verify whether different resolutions could affect the QoE for different video 
scenes. We observed that, in a single video segment, different scenes with the same resolution could affect the 
viewer’s QoE differently. It is true that the user’s satisfaction as a result of watching high-resolution video segments 
is always greater than that when watching low-resolution video segments of the same scenes. However, the most 
important observation is that low-resolution video segments yield higher viewing QoE gain in slow motion scenes 
than in fast motion scenes. Thus, the inclusion of more high-resolution segments in the fast motion scenes and more 
low-resolution segments in the slow motion scenes would be expected to maximize the user’s viewing QoE. In this 
study, to evaluate the user’s true experience, we convert the viewing QoE into a satisfaction quality score, termed 
the Q-score, for scenes with different resolutions in each video segment. Additionally, we developed an optimal 
segment assignment (OSA) algorithm for Q-score optimization in environments characterized by a constrained 
network bandwidth. Our experimental results show that application of the OSA algorithm to the playback schedule 
significantly improved users’ viewing satisfaction.
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I. Introduction

Recently, the rapid increase in network bandwidth has enabled 
Internet services to offer users more diverse choices with the 

result that Internet services have become inseparable from daily life. 
Owing to the changes in the habits and customs of users seeking 
entertainment, video streaming services have become part of life. For 
example, people can instantly receive the latest news, watch movies, 
or listen to music online. Although the increase in network bandwidth 
has brought additional Internet services, network congestion has 
become more problematic, especially for video streaming services. 
HTTP is a popular protocol for sending and receiving web pages. 
The reasons for adopting HTTP include its ability to easily penetrate 
client firewalls because network port 80 is always open for browsing 
webpages. Moreover, HTTP is compatible with content delivery 
networks (CDNs). Thus, it is helpful for deploying CDNs [1]. The 
well-known video streaming technology based on HTTP is dynamic 
adaptive streaming over HTTP (DASH), also known as MPEG-DASH 
[2], [3], [4]. DASH technology divides entire streaming videos into 

a series of small video segments and sequentially transmits each 
video segment to the users. The DASH client selects different video 
segments according to the network bandwidth conditions, and the 
length of each video segment is fixed. 

With the advent of the 5G era, network bandwidth has increased 
tremendously, and video streaming providers such as YouTube, 
Netflix, Hulu, and Tudo have not only provided users with faster and 
more convenient services, but also improved quality of service (QoS) 
[5]. Although DASH streaming can provide different video resolutions 
to users according to the network bandwidth, it cannot ensure user 
viewing satisfaction. Therefore, video streaming service providers 
can improve user satisfaction by reducing the influence of network 
congestion. Although a certain QoS can be maintained, user satisfaction 
is not ensured. Quality of experience (QoE) is another indicator that 
defines user satisfaction, which reflects the subjective feelings of the 
users and originates directly from the user. Thus, QoE can be used to 
provide services that meet user expectations. The factors influencing 
QoE can be divided into three types: human, system, and context [6]. 
Briefly, the service either satisfies or disappoints the user.

Traditional DASH video playback scheduling algorithms often 
focus on smooth playback of the entire video when the network 
bandwidth is constrained [7], [8], [9]. These algorithms cannot 
adjust the video playback scheduling according to the user’s true 
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viewing QoE indicators. In this paper, we discuss the influence of 
different video resolutions on user viewing satisfaction based on 
two evaluation methods. The first method involves a series of click 
density (CD) experiments that can be performed to collect factors 
with which users are dissatisfied and define a quality score, termed 
the Q-score, based on the unsatisfactory click counts. However, 
many different types of videos need to be quantized into Q-scores, 
and it is impractical to perform CD experiments for each video. 
Instead, we proposed a second method in which the Q-score can 
be automatically matched with the amounts of motion vector 
variations in different scenes with different resolutions, thereby 
improving the efficiency of Q-score quantification.

Finally, we propose an algorithm, the optimal segment assignment 
(OSA) algorithm, which uses integer programming to schedule DASH 
video streaming for QoE optimization [10]. The main objective of OSA 
in terms of video playback scheduling is that when a large Q-score 
difference exists between resolutions, the OSA algorithm assigns a 
high-resolution video segment, and vice versa. This design concept 
can enhance the overall satisfaction of users and effectively utilize 
network bandwidth. 

The remainder of this paper is organized as follows. Section II 
introduces related work. Section III presents the problem formulation 
and proposed algorithms, including the click density (CD) experimental 
environment and method, motion vector variation measurement using 
the block matching algorithm, distribution of unsatisfied click counts 
with different resolutions, the method for quantifying the Q-score, and 
the proposed OSA algorithm. Section IV presents the experimental 
results for user satisfaction obtained using our proposed method 
and the traditional popular algorithm. Finally, Section V presents our 
conclusions and topics for future work.

II. Related Work

A. User Feeling Measurement
Many factors affect the feelings of users, and it is not easy to collect 

and quantify these subjective feelings. Many previous researchers 
have focused on mapping network-related factors, such as the average 
playback bit rate, resolution switch count, buffer status, and download 
video quality, to judge users’ quality of experience. Sakamoto et al. 
[11] proposed a bitrate selection method for adaptive video streaming 
for MPEG-DASH to improve the QoE by minimizing the bit rate 
fluctuation. Cetinkaya et al. [12] constructed a software-defined 
network (SDN) to reroute DASH flows to provide a fairness streaming 
service among DASH clients. Gao et al. [13] provided a deep learning 
model to characterize personalized QoE with temporal, spatial, and 
periodic correlations. With this classification of characteristics, they 
claimed that they could improve the personalized QoE for each 
specific user. They claimed that the results were more effective for QoE 
evaluation. Bentaleb et al. [14] proposed a software-defined network, 
named SDNDASH, based on dynamic network resource allocation 
and management. This architecture can manage and allocate network 
resources dynamically to improve the QoE for each user. Li et al. [15] 
proposed a QoE-driven mobile edge caching placement mechanism 
for dynamic adaptive video streaming with different rate-distortion 
characteristics. Zhao et al. [16] provided a robust adaptive algorithm 
at the client side for smoothing the streaming experience. They 
claimed that this mechanism can work stably under different network 
conditions. Lee et al. [17] proposed a segment-adjusted scheme based 
on the playback buffer status and network characteristics of the 
content. Cao et al. [18] proposed a QoE-friendly resolution-adaptation 
method that switches resolution less frequently and achieves smooth 
changes in resolution. Muller et al. [7] proposed a buffer level (BL) 

algorithm, which sets a 30s buffer to compensate for large bandwidth 
variations. The BL algorithm determines the resolution of the next 
requested video segment according to the state of the buffer occupancy 
of the client. When the buffer occupancy is at a lower level, a higher-
resolution segment is retrieved during the next segment-retrieving 
cycle. On the other hand, when the buffer occupancy is at a higher 
level, a lower-resolution segment is retrieved. Alzahrani et al. [19] 
applied a machine-learning model to handle rate control to select the 
best network quality. Huang et al. [20] defined an integrated user QoE 
model and optimally controlled playback freezing, bitrate switch, and 
video playback quality by stabilizing the client buffer state. Yin et 
al. [21] used a theoretical approach for controlling video streaming 
over HTTP. Xin et al. [22] proposed a trunk-based request strategy to 
guarantee QoE in a P2P-VOD system.

Generally, if network traffic is sufficient to stream smooth video 
playback to each user, the user will have the best video viewing quality. 
However, these network-related factors may not truly reflect users’ 
QoE. Chen et al. [23] proposed the OneClick experiment to describe 
the influences of various network factors, such as bandwidth, loss rate, 
and delay, on users’ listening satisfaction. The original audio clip was 
divided into different clips according to various network factors, and 
each clip was cut into several audio segments. To provide the sound clip 
material to the user as a test, the first sound segment is the original sound 
segment, and the subsequent audio segments correspond to different 
situations and are randomly arranged to form a brand new testing 
sound clip, which does not overlap with the other segments. Because 
the experiment is intended to test sound satisfaction, the user must 
wear headphones to listen to the sounds to eliminate interference in 
the form of external sound, and the experiments are conducted through 
a keyboard and computer screen display. If the user is dissatisfied 
with the sound quality of the current segment, the blank key on the 
keyboard can be tapped, which is designated as an unsatisfactory click 
record. After the test, the database collected the satisfaction of different 
users for different audio segments. Because the user reacts by clicking 
after listening to the sound, there is a slight delay. Therefore, using a 
modified feedback delay time, it is possible to determine the actual time 
point of user dissatisfaction. The OneClick experiment is convenient 
because it can be performed on any computer at any time, as long as 
the computer system includes a keyboard, monitor, and headphones. 
In addition, the participants in the experiment did not need training 
beforehand; rather, they only needed to click on the appropriate key 
to indicate that the sound was unsatisfactory. Therefore, the OneClick 
experiment can reflect user listening satisfaction. 

Additionally, many previous researchers have studied users’ QoE 
based on the video content and users’ viewing characteristics. Yue et 
al. [24] proposed a hybrid neural network model that integrates a deep 
neural network (DNN) and a recurrent neural network model (RNN) to 
learn an attention mechanism for user behavior analysis. Dimopoulos 
et al. [25] proposed a mechanism for detecting users’ QoE degradations 
with three key influencing factors: stalling, average video quality, and 
quality variations. Zhao et al. [26] reviewed the QoE strategy for video 
transmission, including context and human factors. Engelke et al. [27] 
reviewed several psychophysiology-based QoE assessment methods. 
Hu et al. [28] proposed a semantic-aware adaption scheme termed 
SMA-PANDA to adapt video segments to DASH streaming. They 
used the k-means algorithm to classify motions into three types of 
video: slow moving, general walking, and rapid moving in a soccer 
sport movie. They mentioned that three types of video segments can 
be scheduled in a video playback to achieve a high QoE for users. 
However, except for the OneClick experiment, previous studies might 
not touch the users’ true feelings. In this paper, we propose a segment 
assignment algorithm and test real users’ viewing QoE using a series 
of sensory experiments.
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B. Motion Vector in Motion Estimation Algorithm
Barjatya et al. [29] compared seven different block-matching 

algorithms to predict the movement of macroblocks while compressing 
a video. Among the motion estimation methods, the exhaustive 
search approach is the most accurate; however, the processing time is 
relatively long, and the motion estimation search process is employed. 
Motion estimation involves calculation of the change in the position 
of an object between two successive frames and the background in 
a macroblock to corresponding positions, and the calculated amount 
and direction of movement are recorded in a matrix to form a motion 
vector. Considering that the time cost is limited, a macroblock cannot 
be searched in the range of an entire frame. Therefore, the search 
range must be fixed; generally, the search parameter extends 7 pixels 
out of a macroblock with a length and width of 16 pixels. The search 
range will be formed as a rectangle area with a length and width of 
25 pixels.

A larger number of search parameters increases the search cost. A 
macroblock is similar to another  macroblock and is calculated on the 
basis of the cost function. The cost is minimized when the macroblock 
most closely corresponds to the current  macroblock, that is, the most 
similar  macroblock. There are many measures of cost, the most widely 
known and inexpensive being the mean absolute difference and mean 
squared error. Hosur et al. [30] used a motion vector for fast-motion 
estimation. Tourapis et al. [31] proposed an enhanced block-based 
search algorithm for motion estimation. Arora et al. [32] identified the 
initial search center dismisses that will be applied in any fast block-
matching algorithm to find the motion vectors, rather than using a 
fixed search pattern. Kamble et al. [33] proposed a modified diamond 
search algorithm, which employed a small diamond-shaped search 
pattern in the initial step and a large diamond shape in further steps 
for handling fast motion estimation.

III. Problem Formulation and Proposed Algorithm

A. Problem Formulation
In this paper, we propose a measurement method for evaluating 

users’ QoE, namely the Q-score. In this section, we formulate the 
problem to maximize users’ QoE and propose an algorithm for 
determining a playback schedule that maximizes the Q-score. To 
define the problem clearly, we present some notations, as listed in 
Table I.

TABLE I. Notations for Problem Formulation and Model

Symbol Definition
L Startup latency.
N Number of video segments in a DASH video.
∆T Playback duration of each video segment.
K Number of different resolutions in a DASH video.
Si ith-resolution video segment, where 1 ≤ i ≤ K.

|Si|
Size of the ith-resolution video segment, where 1 ≤ i ≤ K 
and |s1| > |s2| > ⋯ > |sK|.

T A DASH playback schedule consisting of tj
T = [tj|1 ≤ j ≤ N], where tj ← si and 1 ≤ i ≤ K.

qi,j 
The specific Q-score gain while the ith-resolution video 
segment, si, is scheduled into tj of T.

Q(T) The accumulated Q-score gain in a playback schedule T.
, where 1 ≤ i ≤ K.

In this study, the measured network bandwidth R was first assumed 
to be limited and fixed. The time required to download a video was 
divided into three periods. The first is the startup latency L, which 
involves preloading a video to start playback. Second, we assume 

that the video has N segments for playback and that the duration 
of each video segment is ∆T. Therefore, the total download time is  
L + (N − 1)× ∆T. Note that the last video segment should be 
downloaded successfully before it plays back. 

In DASH video streaming technology, segments with the same video 
resolution are encoded with the same data size. We assume that there 
are K resolutions in total, and the video segments of each resolution 
are denoted as si and |si| indicates the size of the segment si, where  
1 ≤ i ≤ K. The K th resolution has the lowest resolution, thus  
|s1| > ⋯ > |sK|. A playback schedule, T, consists of arranging a video 
segment, si, into each time slot, tj, and formed as T = [tj|1 ≤ j ≤ N], 
where tj ← si, where 1 ≤ i ≤ K. Additionally, while each video segment, 
si, is scheduled into tj, the specific Q-score gain, qi,j, is accumulated in 
Q(T). Therefore, , where 1 ≤ i ≤ K. The major goal of 
this study is to find a DASH playback schedule, T, which maximizes 
Q(T).

To distinguish different user experience levels, we convert users’ 
QoE into a Q-score and use the proposed algorithm to determine a 
playback schedule that maximizes the Q-score gain. We observed that 
the Q-score of a high-resolution video segment is greater than that 
of a low-resolution video segment for the same scenes, as confirmed 
by our proposed Click Density (CD) experiment, presented in the 
following sections. 
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Fig. 1.  Video-playback schedule with accumulated Q-score.

Fig. 1 presents an example of the video-playback schedule, T, in 
which the proposed algorithm allocates a different Q-score gain to 
video segments with a different resolution in a distinct scene. With the 
measured network bandwidth, R, low-resolution or high-resolution 
video segments occur in each playback duration, ∆T, of the playback 
schedule. In Fig. 1, we assume that the difference in the Q-score gain 
between high-resolution and low-resolution video segments is small 
in the first half of the video and large in the second half of the video. 
Then, the proposed OSA algorithm assigns low-resolution video 
segments in the area in which the Q-score gain difference between 
resolutions is smaller. Conversely, high-resolution video segments 
are chosen when the Q-score gain difference between resolutions is 
larger. Thus, the proposed OSA algorithm is designed to maximize 
users’ Q-score gain.

Fig. 2 presents our framework for the designed CD experiment and 
the proposed OSA algorithm for calculating playback scheduling while 
maximizing the Q-score for video stream V. In our sensory experiments, 
we merged several different types of video into a test video (as shown 
in ①) and designed a click density (CD) experiment (as shown in ②) to 
obtain a Q-score model (as shown in ④) by a subjective test (as shown 
in ③). Then, we designed a motion vector estimation algorithm to 
calculate the average motion vector of this test video (as shown in ⑤). 
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Using regression analysis, we obtained a set of Q-score equations of 
different resolutions (as shown in ⑥), which transfers the Q-score of 
different resolutions obtained from the subject test results, QoE(CD), to 
that obtained by calculating the average motion vector, QoE(MV), (as 
shown in ⑦). Therefore, we obtain the Q-score of each segment with 
different resolutions, instead of performing subjective tests for each 
video stream. Furthermore, given a network condition R, we obtain 
the optimal playback scheduling with the maximum Q-score, Q(T), by 
the integer programming algorithm (as shown in ⑧). Hereafter, given 
a new video stream V (as shown in ⑨) and a network constraint R (as 
shown in ⑪), the playback schedule with maximum Q-score (as shown 
in ⑫) is arranged by calculating the average motion vectors (as shown 
in ⑩) instead of starting the subjective tests all over again.

OSA Algorithm

Test
Video

Subjetive
Test

(CD)
Click Density
Experiment

QoE(CD)
Q-score
Model
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Fig. 2.  Framework for the CD experiment and the OSA algorithm.

B. Test Video Sequence for Click Density (CD) Experiment
YouTube is currently one of the largest platforms for video 

streaming and includes a wide variety of video types [35]. For 
example, movies can be divided into science fiction films, action 
adventure films, literary and romantic films, and so on. In addition, 
YouTube uses a 16:9 aspect ratio player to match computer limitations, 
and the video resolution is proportional to the recommended aspect 
ratio. Because different video types correspond to different individual 
bitrates, different resolutions have different bitrates. To verify the user 
satisfaction based on the QoE in different video scenes, we chose three 
different categories—action adventure, sport, and family love films—as 
test materials. Action adventure films include fast-motion scenes, and 
the shots move quickly. Family films involve slow-motion scenes and 
fixed shots. Although sports and action adventure films both include 
fast-motion scenes, they differ in terms of shot distance. All of the 
videos were sourced from YouTube: the action adventure films were 
“Casino Royale” and “The Avengers,” the family love film was “Why 
Him,” and the sports film was “Lionel Messi - Skills & Goals.”

V1 V2
Black
scenes

Black
scenes

Black
scenes

Black
scenes

time

V3 V4 V5

28 secs 24 secs 25 secs 25 secs26 secs3 secs 3 secs 3 secs 3 secs

Fig. 3.  Test video sequence composed of different types of video.

We merged these different types of video into a test video (as 
presented in Fig. 3) and inserted fast motion scenes between the slow 
motion scenes. To prevent adverse effects as a result of watching 
a video clip from a fast motion scene followed by one from a slow 
motion scene or conversely, we inserted black scenes with a duration 
of 3 seconds between consecutive video clips. Because the impact of 

resolution on the QoE for different types of videos was the focus of our 
study, we excluded the two most important influencing factors: sound 
and subtitles. Sound is an important influencing factor in videos; for 
example, horror movies are often paired with thrilling sound effects, 
and sound effects can integrate users into the story. In addition, 
subtitles significantly influence the visuals at different resolutions. 
For example, the degree to which the edges of subtitles are blurred is 
more dramatic in low-resolution videos. Thus, the test video sequence 
was composed without sound or subtitles. We used FFmpeg open-
source tools to cut the video clips to produce the corresponding scenes 
and merge them into a test video sequence. The test video sequence 
consisted of five video clips that were presented at 30 fps. Details of 
the video clips are listed in Table II.

TABLE II. Test Video Sequence Information

Video 
Clip no. Video Source Type Duration

(secs)
Movement

Camera Object
v1 Why Him Family 28 Fixed Slow
v2 Casino Royale Adventure 24 Moving Fast
v3 Why Him Family 25 Fixed Slow

v4 Lionel Messi - 
Skills & Goals Sport 26 Moving Fast

v5 The Avengers Adventure 25 Moving Fast

Most videos on YouTube have a maximum resolution of 1080p, 
so we chose resolutions of 1080p, 720p, 480p, and 360p as the test 
resolutions, and the corresponding bitrates are provided in Table III. 
The bitrates were chosen to enable users to perceive the differences 
between the resolutions.

TABLE III. Resolutions and Corresponding Bitrates

Resolution Video size Bitrate (kbps)
1080p 1920×1080 3000
720p 1280×720 1500
480p 854×480 500
360p 640×360 200

C. Proposed Click Density (CD) Experiment
We followed the concept of the OneClick experiment and modified 

it as the click density experiment for the video quality of the user 
experience test. Our click density experiment was modified to include 
two improvements. First, we changed the response device from the 
keyboard to the mouse. The click sensitivity with the mouse is higher 
than the keyboard effect, thus the differences in user satisfaction 
during the video test could be measured more accurately. Second, to 
retain the ability to conduct the test on any computer and facilitate 
the process for the test subjects, we set up a video test website. 
The following steps were performed to instruct the test subjects on 
how to use the video test website. Initially, a silent test video with 
a length of 2 min 20 s was played twice. First, the test video was 
played exactly as obtained from the source, which means that the 
highest bitrate and resolution were employed. The second time, one 
of the four test resolutions was randomly selected. Then, if the subject 
was dissatisfied with the current video segment during the video 
playback, the subject could click on the “unsatisfied button.” If the 
unsatisfied button was clicked consecutively, it turned red to remind 
the subjects that they were highly dissatisfied with the current state 
and to facilitate user distinction of the level of dissatisfaction during 
the test. Finally, we reminded the subjects to use a monitor with at 
least 1024×768 resolution when performing the video test experiments 
and recommended not conducting the test on devices such as mobile 
phones or tablet PCs.

Considering that individuals have different levels of subjective 
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judgment, we used at least 30 test subjects to obtain data for each 
resolution. Then, we removed the black scenes between the video clips 
and modified the response delay times for the subjects. Finally, we 
aligned the unsatisfied click counts such that they corresponded with 
each video segment. The basic unit of the video was a video segment, 
each video segment lasted for 2 s, and the total length of the video was 
64 segments. 

Fig. 4 shows the average normalized click-count distributions 
corresponding to the four resolutions. There were 30 test subjects 
for 1080p, 30 for 720p, 37 for 480p, and 42 for 360p. Video segments 
1–14 and 27–39 were slow-motion scenes, whereas video segments 
15–26, 40–52, and 53–64 were fast motion scenes. As shown in Fig. 4, 
the average number of unsatisfied clicks for the high-resolution and 
low-resolution cases contrast each other. In other words, the lower 
the resolution, the higher the number of unsatisfied clicks. Moreover, 
with a low resolution, such as 360p or 480p, the average number of 
unsatisfied clicks was significantly higher for the fast motion scenes 
(video segments 15–26, 40–52, and 53–64) than in the slow motion 
scenes (video segments 1–14 and 27–39). With a high resolution of 
720p ps, the same phenomenon is evident. However, the difference 
at 1080p was insignificant. To summarize, different resolutions have 
different QoE ranges for different scenes.
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Fig. 4.  Normalized dissatisfied click counts distribution.

D. QoE Quantification Q-score
In this section, we present the method for converting the user’s QoE 

into a Q-score, which is defined in this paper. The absolute category 
rating (ACR) is a method for assessing differences in the QoE level in 
video or audio tests, and it consists of five levels: excellent, good, fair, 
poor, and bad. The number of unsatisfied clicks was converted into 
ACRs and 30 people were randomly selected from the test samples, 
thus the total number of samples from the four resolutions was 120. 
Because situations with zero clicks are equivalent to no dissatisfaction, 
they were evaluated as excellent. 

As shown in Fig. 5, in addition to the zero-click case, the other 
unsatisfied clicks were sorted from smallest to largest according to the 
satisfaction level, and in the sample used in our CD experiment, the 
minimum number of clicks was 1 and the maximum was 19. 

We then used the quartile method to match the rating quality. Zero 
unsatisfied clicks are equivalent to the highest Q-score of 5 points 
(as indicated in Table IV), and the remaining one to four points are 
allocated by different percentiles defined by the first quartile (Q1 = 2), 
second quartile (Q2 = 5), and third quartile (Q3 = 9).

Click counts

Ac
cu

m
ul

at
ed

 p
er

ce
nt

ag
e

Q1 Q2 Q3

1
0%

20%

40% 40%
46%

52%
57%

70%

79%

88%
93%

97% 99% 100%100%100%100%100%100%

63%

17%

32%

60%

80%

100%

3 4 6 8 10 12 14 16 182 5 7 9 11 13 15 17 19

Fig. 5.  Distribution of number of clicks excluding the zero click case.

TABLE IV. Correspondence Between Number of Clicks and ACR Rating

Q-score Number of clicks (x)
5 0
4 𝑥 < 2
3 2 ≤ 𝑥 < 5
2 5 ≤ 𝑥 < 9
1 𝑥 ≥ 9

Fig. 6 presents the average Q-score of each video segment with 
four resolutions. It is evident that in the slow motion scenes (video 
segments 1–14 and 27–39), the Q-scores corresponding to 1080p and 
720p resolution fall between 5 and 4.9 points, whereas in the fast 
motion scenes (video segments 15–26, 40–52, and 53–64), the Q-score 
corresponding to the 720p resolution is obviously lower. However, 
the Q-score corresponding to a 1080p resolution exhibits no obvious 
change. Conversely, the Q-scores corresponding to the 480p and 360p 
resolutions were significantly higher in the slow motion scenes than 
in the fast motion scenes. Additionally, the difference in the Q-scores 
in the fast motion scenes was greater than that in the slow motion 
scenes. In other words, the effect is the same as that in the click 
distribution from the CD experimental results.
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Fig. 6.  Average Q-score distribution applied in our study.

E. Q-score Prediction By Variation in the Motion Vector 
Conducting a CD experiment to obtain the user’s Q-score before 

scheduling the playback of each video is impractical. Therefore, we 
used the exhaustive search method in the block-matching algorithm 
to perform motion vector calculations for each macroblock in a video 
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frame. We performed calculations for different resolutions of the 
motion vectors. Each video segment was 2 s long and the video was 
played at 30 fps, thus a video segment generated 60 frames. The length 
of the video segments was 64, and there were 3840 frames in total. 
Because our objective was to calculate the motion vector variation 
between frames, we compared the current frame with the frame that 
was two frames away from the current frame. For example, the 1st 
frame was compared with the 3rd frame, the 2nd frame was compared 
with the 4th frame, and so on (as presented in Fig. 7).

Comparing 1st and 3rd frames

Macro
block i

Macro block i moves here 
in the 3rd frame

A two secs video segment time

Motion vector
mvi

1st frame 2nd frame 3rd frame 3840th frame

Fig. 7.  Calculation of the motion vector, mvi, between two frames.

After calculating all the motion vectors of the current frame, we 
averaged the vector length |mvi |, for the current frame. The average 
motion vector variation is calculated using (1): 

 (1)

where M indicates the number of macro blocks in a video frame.

By comparing the corresponding frames in sequence, we obtained 
an average motion vector length of 3838 frames at four different 
resolutions. Fig. 8 compares the average motion variations of frames 
with two different resolutions, and the former resolution (indicated 
by “r1”) and the latter resolution (indicated by “r2”). Taking the 
comparison of the 1080p and 720p resolutions as an example, the 
number of larger average motion vectors of frames at 1080p resolution 
is 3643 more than that at 720p resolution (represented as “r1 > r2”), 
which accounts for 95% of the total. Conversely, the number of smaller 
average motion vectors of the frames in the 1080p resolution video is 
195 less than that in the 720p resolution video (represented as “r1 < 
r2”), accounting for 5% of the total. In Fig. 8, we demonstrate that the 
average motion vector length in high-resolution video is always larger 
than that in low-resolution video. Thus, the average motion vector 
length of the video segments can be used to represent the video quality 
among videos with different  resolutions.
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Fig. 8.  Comparison of the average motion vector length of corresponding 
frames between two different resolutions.

Fig. 9 shows the average motion vectors of video segments with 
the four different resolutions. The frames were assigned to the video 
segments as follows: frames 1–60 constituted the first video segment, 

frames 61–120 were the second video segment, and the final frames 
(frames 3781–3838) formed the 64th video segment, which had only 
58 frames. Therefore, Fig. 9 also shows that the higher the resolution, 
the higher the average motion vector length regardless of whether the 
scene contained fast or slow motion actions. 
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Fig. 9. Average length of motion vectors of video segments with different 
resolutions.

Furthermore, to evaluate whether the average motion vector length 
of video segments with four different resolutions was significant for the 
Q-score prediction model, we performed multiple regression and the 
Q-score was quantified by conducting our proposed CD experiment. 
Tables V–VIII contain the results of the ANOVA analysis of the 
motion vector and Q-score. Because multiple regression equations are 
established with different influencing factors, they are either highly 
or poorly correlated. In addition to the Q-scores corresponding to 
1080p resolution, the others are significant for the Q-score prediction 
model. However, the p-values between groups indicate no significant 
difference, which means that the influencing factors may affect each 
other and cause the model to inaccurately predict the Q-score. Thus, 
we excluded the lowest relevant influencing factors and performed 
regression analysis of the other influencing factors until all of the 
influencing factors exhibited significant differences.

TABLE V. Results of ANOVA Analysis of Motion Vectors with Four 
Resolutions and Q-Score for 1080P Resolution

ANOVA 
analysis

Degree of 
freedom

(DF)

Sum of 
squares

(SS)

Mean 
of sum

(MS)
F Significance 

F

Regression 4 0.013 0.003

0.631 0.643Residual 59 0.294 0.005

Total 63 0.307 -

Coefficient Standard error t-statistic p-value

Intercept 4.964 0.052 94.883 3.3×10-66

1080p avg. mv -0.028 0.075 -0.369 0.714

720p avg. mv 0.063 0.131 0.48 0.633

480p avg. mv -0.038 0.111 -0.343 0.733

360p avg. mv -0.005 0.048 -0.103 0.919
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TABLE VI. Results of ANOVA Analysis of Motion Vectors with Four 
Resolutions and Q-Score for 720P Resolution

ANOVA 
analysis

Degree of 
freedom

(DF)

Sum of 
squares

(SS)

Mean 
of sum

(MS)
F Significance 

F

Regression 4 0.817 0.204

30.15 1.14×10−13Residual 59 0.4 0.007

Total 63 1.217 -

Coefficient Standard error t-statistic p-value
Intercept 4.894 0.061 80.237 6.05×10-62

1080p avg. mv 0.32 0.088 3.644 5.69×10-4

720p avg. mv -0.7 0.152 -4.594 2.34×10-5

480p avg. mv 0.473 0.129 3.664 5.33×10-4

360p avg. mv -0.103 0.056 -1.826 7.29×10-2

TABLE VII. Results of ANOVA Analysis of Motion Vectors with Four 
Resolutions and Q-Score for 480P Resolution

ANOVA 
analysis

Degree of 
freedom

(DF)

Sum of 
squares

(SS)

Mean 
of sum

(MS)
F Significance 

F

Regression 4 8.983 2.246

34.402 8.21×10−5Residual 59 3.851 0.065

Total 63 12.834 -

Coefficient Standard error t-statistic p-value

Intercept 4.473 0.189 23.625 9.11×10-32

1080p avg. mv 0.644 0.272 2.366 2.13×10-2

720p avg. mv -1.109 0.473 -2.346 0.022

480p avg. mv 0.194 0.401 0.484 0.63

360p avg. mv 0.219 0.174 1.254 0.215

TABLE VIII. Results of ANOVA Analysis of Motion Vectors with Four 
Resolutions and Q-Score for 360P Resolution

ANOVA 
analysis

Degree of 
freedom

(DF)

Sum of 
squares

(SS)

Mean 
of sum

(MS)
F Significance 

F

Regression 4 6.598 1.649

17.118 2.27×10−9Residual 59 5.685 0.096

Total 63 12.283 -

Coefficient Standard error t-statistic p-value

Intercept 3.562 0.23 15.485 1.9×10-22

1080p avg. mv 0.836 0.331 2.528 0.014

720p avg. mv -1.497 0.574 -2.608 0.012

480p avg. mv 0.648 0.487 1.331 0.189

360p avg. mv -0.018 0.212 -0.086 0.932

The Q-score model prediction for the 1080p resolution is of little 
relevance to the other influencing factors, and the Q-score for 1080p 
resolution was always greater than 4.7 points; in other words, most 
users were satisfied with the 1080p resolution. Therefore, we directly 
set the Q-score prediction model for 1080p resolution to a maximum 
of five points. Tables IX–XI present the results of the ANOVA analysis 
for the other three resolutions and their Q-scores, and all of the 
influencing factors have significant differences at the α = 0.05 level. 
The coefficients of determination R2 for the other three resolutions 
were 0.653, 0.699, and 0.537 for the 720p, 480p, and 360p resolutions, 
respectively.

TABLE IX. Results of ANOVA Analysis of Motion Vectors with Three 
Resolutions and Q-Score for 720P Resolution

ANOVA 
analysis

Degree of 
freedom

(DF)

Sum of 
squares

(SS)

Mean 
of sum

(MS)
F Significance 

F

Regression 3 0.795 0.265

37.63 8.3×10−14Residual 60 0.422 0.007

Total 63 1.217 -

Coefficient Standard error t-statistic p-value
Intercept 4.917 0.061 80.679 6.8×10-63

1080p avg. mv 0.261 0.083 3.138 2.63×10-3

720p avg. mv -0.538 0.126 -4.256 7.41×10-5

480p avg. mv 0.268 0.065 4.135 1.12×10-4

TABLE X. Results of ANOVA Analysis of Motion Vectors with Three 
Resolutions and Q-Score for 480P Resolution

ANOVA 
analysis

Degree of 
freedom

(DF)

Sum of 
squares

(SS)

Mean 
of sum

(MS)
F Significance 

F

Regression 3 8.968 2.989

46.384 1.23×10−15Residual 60 3.867 0.064

Total 63 12.834 -

Coefficient Standard error t-statistic p-value
Intercept 4.504 0.177 25.431 7.89×10-34

1080p avg. mv 0.565 0.217 2.609 1.14×10-2

720p avg. mv -0.914 0.244 -3.741 4.13×10-4

360p avg. mv 0.292 0.085 3.424 1.12×10-3

TABLE XI. Results of ANOVA Analysis of Motion Vectors with Three 
Resolutions and Q-Score for 360P Resolution

ANOVA 
analysis

Degree of 
freedom

(DF)

Sum of 
squares

(SS)

Mean 
of sum

(MS)
F Significance 

F

Regression 3 6.597 2.199

23.206 4.28×10−10Residual 60 5.686 0.095

Total 63 12.283 -

Coefficient Standard error t-statistic p-value
Intercept 3.566 0.224 15.948 3×10-23

1080p avg. mv 0.826 0.306 2.702 8.95×10-3

720p avg. mv -1.469 0.464 -3.165 2.44×10-3

480p avg. mv 0.611 0.238 2.573 1.26×10-2

In the regression model, the predicted Q-score is y, the influencing 
factors corresponding to 1080p, 720p, 480p, and 360p resolutions are x1, 
x2, x3, and x4, respectively, and αi is the coefficient of the influencing 
factor. The regression formula is presented in (2): 

 (2)

The results led us to conclude that the variation in the average 
motion vector is higher, regardless of whether the scenes were 
contained in fast or slow motion segments. To evaluate whether the 
average motion vector variation of video segments with four different 
resolutions was significant for the Q-score prediction model, we 
performed multiple regression and ANOVA analyses. In the regression 
model, the predicted Q-score of the video segment was y. The 
calculated average motion vector variations in the 1080p, 720p, 480p, 
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and 360p resolutions are  𝑥 1,  𝑥 2, 𝑥 3, and 𝑥 4, respectively. We obtained 
regression equations to predict the Q-score of a video segment with 
different resolutions (as presented in Table XII).

TABLE XII. Equations for Q-score Prediction with Four Resolutions

Resolution Q-score regression equation (y)

1080p y=5

720p y=4.917+0.261x1-0.538x2+0.268x3

480p y=4.504+0.565x1-0.914x2+0.292x4

360p y=3.566+0.826x1-1.469x2+0.611x3

Fig. 10 shows the multiple regression results for the Q-score 
prediction model with four resolutions. In the slow-motion scenes, 
the Q-score differences between resolutions were small, whereas 
they were larger in the fast motion scenes. This phenomenon is the 
same as that in the original Q-score distribution obtained from the 
CD experiment. Therefore, we also used the correlation coefficient to 
analyze the difference between the predicted and original Q-scores. 
Fig. 10 shows the multiple regression results for the Q-score prediction 
model with four resolutions, which are similar to the results presented 
in Fig. 6.
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Fig. 10.  Average Q-score distribution based on multiple regression analysis.

Fig. 11 shows the predicted Q-scores with the click density (CD) 
and motion vector (MV) at four resolutions. Because the Q-score 
predictions from motion vectors in the video with 1080p resolution 
always equal 5 points, the correlation calculation could not be applied. 
However, Fig. 11(a) shows that the Q-score traces between these two 
methods are similar. Fig. 11(b), Fig. 11(c), and Fig. 11(d) present the 
results for the 720p (correlation = 0.812), 480p (correlation = 0.836), 
and 360p (correlation = 0.733) resolutions, respectively. From these 
results, we conclude that the predicted Q-score from the motion vector 
method is close to the true user QoE.

F. Integer Programming Algorithm
The differences in the Q-scores between the different resolutions 

in the slow-motion scenes calculated with the proposed Q-score 
prediction model were small, but were larger for the fast motion 
scenes. This finding is the same as that for the original Q-score 
distribution obtained from the CD experiment. To schedule video 
playback in which high-resolution video segments are assigned to 
fast motion scenes and low-resolution video segments to slow motion 
scenes, we applied integer programming to maximize the overall 
average Q-score gain [10]. The playback schedule T, is a combination 
of N video segments. We present this playback scheduling, T, in (3). 
Each video segment selects only one resolution among K resolutions. 
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Fig. 11.  Comparison of predicted Q-scores calculated with the click density 
(CD) and motion vector (MV) methods for four different video resolutions.
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The λi, j indicates that video segment i selects the jth resolution and has 
a choice of 0 or 1. 

 (3)

If the jth resolution of segment i is chosen, the Q-score gain, qi, j, is 
accumulated in Q(T). Because the objective is to maximize the average 
Q-score gain, Q(T), the target function is expressed by (4):

 (4)

When each video segment is selected, there are K resolutions to 
choose from, and each resolution has its own Q-score. However, under 
different network bandwidth conditions, R, the selection is subject to 
two restrictions:

 (5)

 (6)

Equation (5) is the first restriction when playing a video, and only 
one resolution is selected for each video segment, . 
Equation (6) presents the second restriction when the resolution 
suitable for video playback is selected in the video segment. 
Additionally, the entire amount of data transmitted, , are 
prevented from exceeding the total data size the given network 
bandwidth is able to transmit, . We used the 
integer programming method and proposed the OSA algorithm to 
determine the best solution for video playback with a video length of 
64 segments. With limited network bandwidth, the OSA algorithm can 
be used to optimize video playback.

IV. Experimental Results

To compare the video playback schedules that were edited using the 
different algorithms, we set up a video test platform to provide subjects 
with video satisfaction tests. BL is a popular scheduling algorithm for 
MPEG-DASH streaming applications [7]. Therefore, we applied this 
BL algorithm to test the effectiveness of our proposed OSA algorithm 
to improve the QoE of the user. The steps of the experiment were as 
follows. Two test videos were used: the first was scheduled using the 
OSA algorithm and the other using the BL algorithm. 

Although the two videos contained the same movie scenes, the 
video segments of different resolutions were arranged in different 
ways in the video playback. Subjects who were participating in the 
experiment viewed the two videos in randomly generated order to 
prevent the subject from having an established impression. After the 
first video had finished playing, to prevent the subject from forgetting 
the current feeling of satisfaction with the video, we asked the user 
to provide a rating regarding the feeling. Moreover, the rating was 
referenced by ACR, the five-level rating scale for different QoE levels, 
and the second video was shown using the same process as before. 
Finally, once each subject had completed the two different video tests, 
we asked the subject to again indicate which one they were more 
satisfied with, to confirm the consistency of the answers. There were 
three options to choose from: the first video, the second video, or 
no difference. The user satisfaction tests were conducted with four 
different resolutions and with playback bitrates of 3000 (1080p), 1500 
(720p), 500 (480p), and 200 (360p) kbps. The playback duration of each 
video segment was 2 s, and the total number of segments in each video 
was 64. Therefore, the video length was 2 min 8 s, and the videos did 
not include sounds or subtitles. For a fair comparison, the startup 

latency for running each algorithm was set to 2 s with a constant 
network bandwidth, and none of the videos froze. To distinguish 
which QoE metrics applied to the playback schedule, OSAC indicates 
that the OSA algorithm applied QoE metrics from click density (CD) 
experiments and OSAM represents that the OSA algorithm applied 
QoE metrics from the motion vector (MV) method.

A. Comparison of OSAC and BL Algorithms
In this section, we compare the user satisfaction results of the BL 

algorithm with a 30s buffer with those obtained with the OSAC algorithm. 
Furthermore, the results obtained with a network bandwidth of 900 
kbps are presented. The experimental results for the different videos 
are shown in Fig. 12. We demonstrate that, among the two algorithms, 
the OSAC algorithm has the largest amount of accumulated data and an 
average bitrate of 896.875 kbps, followed by the BL algorithm with a 
30s buffer and an average bitrate of 628.125 kbps. The OSAC algorithm 
processes the playback schedule based on the QoE metrics from the 
click density (CD) experiments. The results in Fig. 12 show that the 
OSAC algorithm allocates high-resolution video segments starting from 
segments 15 and 46, because the gap in user satisfaction becomes wider. 
Therefore, the amount of accumulated data increased sharply between 
video segments 15 and 46. Conversely, the BL algorithm processes the 
resolution adaption only on the buffer occupation, and it does not adapt 
the video resolution in these time slots.
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Fig. 12.  Two playback schedules processed by the OSAC and BL algorithms 
with a network bandwidth constraint of 900 kbps.

The data presented in Fig. 13 were obtained from 42 test subjects. 
The distributions can be divided into three parts: above the line, 
below the line, and on the line. The line represents the score at which 
the results for the OSAC and BL algorithms were the same. The 
distributions above and below the line correspond to subjects who 
preferred the video playback schedules edited by either the BL or the 
OSAC algorithm, respectively. User satisfaction was rated from 1 to 5 
points, and the different colors represent the situations the subjects 
selected when reconfirming their satisfaction status. Finally, the size 
of each pie chart represents the number of people who chose the 
score in that case. For example, in the case of the largest pie chart, 
which represents eight subjects, five subjects chose the BL algorithm 
with two points and the OSAC algorithm with three points. Upon 
reconfirmation, this result indicated that user satisfaction with the 
OSAC algorithm was higher than that with the BL algorithm. The three 
different situations represented in the bar chart in Fig. 14 correspond to 
the number of subjects who assigned higher scores to either the OSAC 
or BL algorithm or assigned the same score to both. Additionally, the 
subjects chose which playback schedule they preferred. Eighteen users 
scored the schedule derived using the OSAC algorithm higher than 
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that produced by the BL algorithm, and they considered the former 
algorithm to yield superior results. The experimental results shown in 
Fig. 14 indicate that most of the subjects felt that the video playback 
scheduled using the OSAC algorithm provided a more satisfactory 
visual experience.
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Fig. 14 shows that the satisfaction counts obtained by applying the 
OSAC algorithm are higher than those obtained by applying the BL 
algorithm with a 30-s buffer. To confirm whether the two different 
video playbacks were distinct, we conducted a paired sample t-test to 
analyze the significance of the satisfaction scores. The null hypothesis 
was that the effect of the two algorithms was insignificant. Table 
XIII demonstrates that the differences between the experiments were 
significant at the α = 0.01 level. The p-values from the first and second 
experiments were both less than 0.01, refuting the null hypothesis. 
Thus, the video playback scheduled using the OSAC algorithm provides 
a more satisfactory user experience.

TABLE XIII. T-test of Satisfaction Score: OSAC Vs. BL (Buffer = 30S)

Algorithm Sum Average Variance p-value
OSAC 121 2.88 0.8391

3.39×10-5

BL 91 2.17 0.9228

B. Comparison of OSAM and BL Algorithms
The experimental results presented in Section IV-A show that 

video playback scheduled with QoE metrics from the CD experiment 
delivers higher streaming performance. In this section, we applied 
the QoE metrics obtained from the motion vector (MV) method and 
arranged a playback schedule using the OSAM algorithm. We then 
performed video playback scheduling using the OSAM algorithm and 
the original approach using the BL algorithm with a 30-s buffer to 
determine which result is more appealing to users. Therefore, we 
chose a network bandwidth of 900 kbps, where the video playback was 

composed of high-resolution and low-resolution video segments. Fig. 
15 depicts the results of the two different video playback schedules 
with a network bandwidth of 900 kbps. The average bitrate of the 
OSAM algorithm is 875 kbps, which is slightly lower than that of the 
OSAC algorithm but much higher than that of the BL algorithm with 
a 30-s buffer. Additionally, the OASM algorithm uses high-resolution 
video segments starting from video segments 15 and 46 because of the 
fast motion scenes. 
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Fig. 15. Two playback schedules handled by OSAM and BL algorithms with a 
network bandwidth of 900 kbps.

The user feedback, shown in Fig. 16, is that of 30 participants who 
participated in the test. The experimental results indicate that most 
users rated the OSA algorithm higher than the BL algorithm with 
a 30-s buffer. Moreover, the larger pie charts are mostly below the 
line, which means that the subjects were more satisfied with the OSA 
algorithm. Fig. 17 demonstrates that more than half of the subjects 
tended to choose the OSA algorithm instead of the BL algorithm 
with a 30-s buffer. Thus, with a network bandwidth of 900 kbps, the 
QoE gain scheduled using the OSA algorithm was significantly more 
satisfactory to the test users.
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Fig. 16.  Pie chart of user satisfaction with the OSAM and BL algorithms (buffer 
= 30s).

Because of the mechanism of the BL algorithm, it always chooses 
low-resolution video segments at the beginning, and when the buffer 
occupancy is sufficient, the BL algorithm switches to high-resolution 
video segments. In contrast, the OSAM algorithm always uses high-
resolution video segments for video streaming. To confirm whether 
the two different video playbacks were distinct, we conducted a paired 
sample t-test to analyze the significance of the satisfaction scores. Fig. 
17 shows that the satisfaction counts obtained by applying the OSAM 
algorithm are higher than those obtained by applying the BL algorithm 
with 30-s buffering. The null hypothesis was that the effect of the two 
algorithms was insignificant. The results in Table XIV demonstrate 
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that both experiments have significant differences at the α = 0.01 
level. The p-values from the first and second experiments were both 
less than 0.01, refuting the null hypothesis. Thus, the video playback 
scheduled using the OSAM algorithm provides a more satisfactory user 
experience.
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Fig. 17.  User satisfaction statistics for the OSAM and BL algorithms (buffer 
= 30s).

TABLE XIV. T-test of Satisfaction Score: OSAM Vs. BL (Buffer = 30S)

Algorithm Sum Average Variance p-value
OSAM 108 3.6 0.5241

4.48×10-4

BL 86 2.87 1.085

V. Conclusions and Future Work

DASH streaming is a popular method for video streaming over 
the Internet. The QoE score measures the extent to which the user 
is satisfied with the viewing experience but is difficult to evaluate, 
and the factors influencing the QoE, including the user’s subjective 
feeling and sound environment, are complicated. The current 
DASH streaming scheduling algorithms only consider the network 
constraints, and the primary objective of these algorithms is to provide 
stable video playback, instead of focusing on the QoE. To evaluate the 
factors influencing the QoE, we designed a series of click density (CD) 
experiments to collect unsatisfactory click counts in different scenes 
with different video resolutions. The click distributions in the CD 
experiment indicated that the test subjects were usually unsatisfied 
with fast motion scenes and relatively satisfied with slow motion 
scenes at the same video resolution. In other words, the use of high-
resolution video segments in high-motion scenes would significantly 
improve the QoE. Additionally, we observed that the difference 
between the two levels of resolution was greater in high-motion scenes 
than in low-motion scenes. Therefore, we defined an ACR five-level 
Q-score for rating the quality of different QoE levels, applied integer 
programming, and proposed the OSA algorithm to generate video 
playback schedules that maximized the Q-score gain with network 
bandwidth constraints. Then, we designed a subjective experiment to 
test user satisfaction with our proposed OSA algorithm and the most 
popular DASH streaming algorithm, the BL algorithm. In addition 
to converting clicks into Q-scores, we applied multiple regression to 
derive the correlation of the motion vector variations with different 
resolutions with the Q-scores. The experimental results show that 
the playback videos generated using the OSA algorithm with the 
motion vector model also increased user satisfaction. In this study, we 
only used fast or slow motion to investigate user satisfaction during 
different scenes of different video resolutions, where motion speed is 
an influencing factor. Thus, we aim to incorporate other influencing 
factors and modify our proposed Q-score prediction algorithms for 
video playback scheduling in the near future.
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