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Abstract

Wine is an exciting and complex product with distinctive qualities that makes it different from other 
manufactured products. Therefore, the testing approach to determine the quality of wine is complex and 
diverse. Several elements influence wine quality, but the views of experts can cause the most considerable 
influence on how people view the quality of wine. The views of experts on quality is very subjective, and may 
not match the taste of consumer. In addition, the experts may not always be available for the wine testing. 
To overcome this issue, many approaches based on machine learning techniques that get the attention of the 
wine industry have been proposed to solve it. However, they focused only on using a particular classifier with 
a specific set of wine dataset. In this paper, we thus firstly propose the generalized wine quality prediction 
framework to provide a mechanism for finding a useful hybrid model for wine quality prediction. Secondly, 
based on the framework, the generalized wine quality prediction algorithm using the genetic algorithms is 
proposed. It first encodes the classifiers as well as their hyperparameters into a chromosome. The fitness of 
a chromosome is then evaluated by the average accuracy of the employed classifiers. The genetic operations 
are performed to generate new offspring. The evolution process is continuing until reaching the stop criteria. 
As a result, the proposed approach can automatically find an appropriate hybrid set of classifiers and their 
hyperparameters for optimizing the prediction result and independent on the dataset. At last, experiments on 
the wine datasets were made to show the merits and effectiveness of the proposed approach.
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I. Introduction

WINE has always been an essential part of the dinning culture in 
western countries. With the booming economy in Asia countries 

in recent decades, wine consumption has increased even more. From 
the manufacturer point of view, understanding the wine's quality and 
creating a steady production is an important goal for the industry. 
However, testing the quality of the wine is complex and diverse. 
The wine quality is evaluated in terms of subtlety and complexity 
[1], ageing potential, stylistic purity, varietal expression, ranking by 
experts, or consumer acceptance, etc. By excluding the controllable 
object measures, experts' views are very subjective because it can 
cause the most considerable influence on both winemakers and 
how consumers think of the wine's quality [2]. Instead of focusing 
on how experts qualify the wine, focusing on consumer satisfaction 
based on collectable scientific data is more useful for the majority of 
wine producers because understanding the desires of the majority of 
consumers is essential in the production and sales of wine.

Recording the steps of the wine production procedure is to preserve 
the quality and knowledge of the whole winemaking process. The 
collected information is the best tool to guarantee the wine quality. 

The wine industry has currently established the protected designation 
of origin (PDO) system [3] with the support of analytical chemistry 
and chemometric tools to obtain information related to a specific 
wine. With the improvement of technology both in software and 
hardware, winemakers started to use the collected data to improve the 
winemaking technique. Due to the high cost and lack of technological 
resources, it was difficult for most wine industries to classify the 
wines based on the chemical components. Many algorithms based 
on machine learning to assess the quality of wine have gained much 
attention for the wine industry using another approach to determine 
what attributes make a "good" wine that the consumers can satisfy 
with them. For instance, Yeo et al. focused on predicting the wine 
price using a machine learning technique by using past historical wine 
price data [4]. For wine production, Ribeiro et al. utilized the linear 
regression, neuron network and decision tree for predicting the wine 
vilification [5]. Study in [6] collected the wine dataset on the Cabernet 
Sauvignon characteristics for the cost-efficient prediction.

In 2009, Cortez et al. collected a wine quality dataset which consists 
of significant larger instances [7]. Then, three machine learning 
models, including multiple regression, support vector machine (SVM) 
and neuron network (NN), are trained using the collected wine dataset. 
It shows that SVM outperforms the other two methods, and indicates 
the importance of the correct setting of hyperparameters. Over the 
years, the wine dataset has been adopted in several studies with various 
methods such as SVM [8], [9], [10], [11], random forest (RF) [11], [12], 
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[13], [14], [15], decision-tree-based algorithms [13], [15], and NN [5], 
[8], [9] to predict the quality of the wine based on physiochemical 
characteristics in the wine. In addition, several pieces of research used 
feature selection to improve the accuracy of wine quality prediction 
such as recursive feature elimination, principal component analysis 
(PCA) [11], [15], the statistic-based approaches [6], [10], and the 
synthetic minority oversampling technique (SMOTE) [14]. 

Based on the literature, two phenomenons can be found: (1) The 
SVM-based and RF-based algorithms have been proven to provide 
good results[6], [7], [8], [9], [10], [11], [12], [13], [14], [16]; (2) Tree-
based approaches are also popularly used for wine prediction [5], [17]. 
However, the past literature mostly focused on using or comparing 
different machine learning models to find the one that can provide 
the best prediction result for the specific dataset. In other words, 
when the wine datasets are changed, the obtained model may not 
provide the same quality of performance. To solve this problem, in 
this paper, we firstly propose a generalized wine quality prediction 
framework which consists of the hybrid model acquisition and 
online prediction phases. Secondly, based on the framework, the 
generalized wine quality prediction algorithm based on the genetic 
algorithms is proposed. It first encodes the classifiers as well as their 
hyperparameters into a chromosome. The fitness of a chromosome 
is evaluated by the average accuracy of the employed classifiers. The 
genetic operations are then performed to generate new offspring. The 
evolution process is continued until reaching the stop criteria. As a 
result, the proposed approach can automatically find an appropriate 
hybrid set of classifiers and their hyperparameters for optimizing the 
prediction result and is independent on the dataset. Experiments were 
conducted on the wine datasets to show the merits and effectiveness 
of the proposed approach. The main contributions of the proposed 
framework and approach are listed as follows:  

1. The proposed framework can use all types of classifiers with their 
hyperparameters as input in the hybrid model acquisition phase to 
find the suitable hybrid model and its hyperparameters for wine 
quality prediction.

2. The proposed framework overcomes the problem of data 
dependency, which means it provides a mechanism that can 
automatically obtain not only the appropriate hybrid model but 
also the hyperparameters for the given dataset no matter where 
the data is collected, from which areas and countries.

3. Based on the proposed framework, the GA-based generalized wine 
quality prediction algorithm has been proposed, and the obtained 
hybrid model and hyperparameters are better than existing 
approaches in terms of accuracy.

4. Experiments also indicate that when using macro F1-score as 
a fitness function for the proposed approach, the hybrid model 
can not only reach a better macro-F1 score but also has similar 
accuracy when comparing to the existing approaches.

The paper is organized as follows. Section II reviews the past works 
of predicting the wine quality as well as the basic knowledge used in 
the proposed approach. In Section III, the detailed components used 
in the proposed approach are described. In Section IV, the generalized 
wine quality prediction framework and the proposed approach are 
stated. The obtained results are analyzed and explained in Section V. 
Finally, conclusions and future work are drawn in Section VI.

II. Literature Review and Background Knowledge

A. Literature Review
Over the years, several studies used the machine learning 

techniques to predict wine quality, including utilizing SVM, k-NN, 
decision tree (DT), random forest, neuron network, regression and 

others. Before describing them, the recent related studies and methods 
are we summarized and shown in Table I. 

TABLE I. Summary of Recent Studies

SV
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ork
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Cortez et al. [7] (2009) x x x
Ribeiro et al.[5] (2009) x x x
Appalasamy et al. [17] (2012) x x
Bhattacharjee et al.[10] (2016) x x
Andonie et al. [6] (2016) x x x
Er et al.[11] (2016) x x x
Hu et al. [14] (2016) x x x
Petropoulos et al.[18] (2017) x
Zhang et al. [9] (2017) x x x
Agrawal et al. [19] (2018) x
Gupta [8] (2018) x x x
Trivedi et al. [12] (2018) x x
Sowmya et al. [20] (2019) x x x
Kumar et al. [21] (2020) x x x
Mahima et al.[16] (2020) x x
Ozalp et al. [22] (2020) x x
Shaw et al. [13] (2020) x x x

From Table I, according to the used techniques, four types of 
approaches, including studies using SVM, RF, DT and others, are 
reviewed as follows.  

(1) For studies using SVM, for instance, Cortez et al. [7] produced a 
large dataset for red and white vinho verde wines, a unique product from 
the Minho region of Portugal with the most common physicochemical 
tests selected as features. They selected optimal parameters associated 
with models by sensitivity analysis. The model selection was guided 
by parsimony search to find the best model. The results indicated that 
the SVM outperforms multiple regression and NN. In work presented 
by Gupta [8], it preprocessed the dataset using linear transformation 
to remove the inconsistent instances. Then, three models were trained 
using full features and the selected features by regression. Gupta 
summarized that SVM was the best model for wine quality prediction 
based on validating error rate. Also, precisions of SVM and NN using 
selected features were higher than that using all features. Zhang et 
al. [9] analyzed the Helan mountain wine dataset by using the SVM, 
logistic regression and NN as prediction models. The result indicated 
that classification algorithms were feasible for assessing wine quality, 
and it also showed the SVM performed better compared to other 
algorithms. Kumar et al. divided the red wine dataset into 70% and 
30% for training and testing for evaluating the performances of SVM, 
RF and Naïve Bayes (NB) [21]. They used accuracy, recall, precision, 
F1 score and error rate as performance measurements. Based on the 
results, they suggested that combining and tuning models can provide 
better performance.

(2) For studies using RF, for instance, Shaw et al. focused on quality 
prediction performance analysis for the red wine out of three models, 
including the SVM, RF and NN [13]. They also indicated that the RF 
outperformed other models. Trivedi et al. firstly normalized the data 
and removed the outliner from the dataset, and then reduced the 
classifying labels of a used dataset from 10 classes (1-10) to 2 classes 
(bad and good). They discovered the accuracies of RF and logistic 
regression (LR) could achieve 84% and 76% [12]. Hu et al. focused 
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on handling data imbalance in white wine, by classifying labels to 
3 classes that are low quality (3-4), normal (5-7) and high quality 
(8-9) [14]. They used synthetic minority over-sampling technique 
(SMOTE) to preprocess imbalance data and apply the processed data 
into RF, decision tree (DT) and AdaBoost. The experiments showed RF 
produces the best results in terms of error rates and receiver operating 
characteristic (ROC) values. Besides, Mahima et al. transformed the 
labels of the used wine dataset from 10 classes (1-10) to 3 classes, 
including bad (1-4), average (5-6) and good (7-10), for evaluating the 
k-NN and RF by the root-mean-square error (RMSE) [16]. They found 
that employing the most relevant features on both models provided 
better performance, and observed that the extreme instances could 
not be classified appropriately. Ozalp et al. applied a fuzzy logic and 
the random forest to predict the red wine quality using the instances 
with three labels that are low, medium and high [22]. Sowmya et al. 
classified the labels into three groups and used both RF and DT for 
wine quality prediction [20]. The study also used descriptive statistics 
to explain the assoication between each wine characteristics and wine 
quality. 

(3) For studies using DT, for instance, Ribeiro et al. used the dataset 
with 326 samples with the chemical characteristic attributes of wine 
and subjective attributes from wine taster during the production 
phase for wine quality prediction by the DT, NN and linear regression 
[5]. The labels were divided into two classes: medium and good. The 
results showed that the DT and NN could reach exceedingly high 
accuracies from 86% to 99%. Appalasamy et al. indicated that the DT 
performances better than NB [17]. Furthermore, it drilled down the 
results and found that the accuracy of white wine was affected by a 
higher number of physicochemistry attributes when comparing to the 
red wine. 

(4) For other studies, for instance, Petropoulos et al. used 
geographical information to predict the quality of wine grow on 
different sections in the wine region of Nemea, Greece, using fuzzy 
logic multi-criteria decision-making system [18]. Andonie et al. used 
data collected from Cabernet Sauvignon in Washington state with 180 
samples for wine quality prediction via classifiers in Weka, including 
the RF, IBk, multilayer perceptron, KStar, etc [6]. The dataset consists 
of 32 features, and the six labels. Comparing to other works, it not only 
focused on finding the best model but also aimed to find a trade-off 
between the number of used features and accuracy. Bhagyalaxmi et 
al. proposed a framework by gathering the characteristic of red wine 
and judging the quality of red wine based on client inclinations [10]. 
Agrawal et al. used multilayer perceptron model with rectified linear 
unit for building prediction model, and the best accuracy is 53% for 
both red and white wines [19].

To summarise, most recent wine quality prediction works used the 
dataset acquired by Cortez et al. [7], but not all works used both red 
and white wine dataset for the experimental evaluations. Works in 
[12] and [21] only used red wine dataset for the experiments. In [12], 
they discovered RF has a better performance. In [21], they revealed 
that SVM performs better than RF. Works in [13] and [14] only used 
white wine dataset for experiments. Both works indicated RF provides 
better performance on white wine dataset. For works [8], [10], [11], 
[16], [17], they used both red and white wine datasets for experimental 
analysis. In [8], [10], they obtained the SVM performs better than 
other models. [37] [18] indicated that RF is the best among models. In 
[17], the DT was reported as the most suitable model for wine quality 
prediction.

B. Classifier
This section briefly describes the classifiers used in this work, 

including the SVM, random forest, and decision tree. 

1. The SVM Classifier
The support vector machine (SVM) is a supervised machine 

learning model for solving a classification problem [23]. The main 
concept of SVM is utilized the kernel function to find the hyperplane 
that can separate instances into categories. As mentioned earlier, SVM 
[8], [9], [10], [11] have proven to be an effective classifier for wine 
quality prediction.

There are three hyperparameters in SVM that are the penalty 
factor C, parameter gamma γ and kernel function kernel. The C 
is a regularization parameter that controls the trade-off between 
maximizing the margin and minimizing the training error. A small 
value of C tends to emphasize the margin while ignoring the outliers 
in the training data. A large value of C tends to obtain the best fit for 
the training data that may cause the overfitting problem. The γ defines 
the influence degree of a single training. With a small value of γ, the 
model may not be easy to capture the character of the data. With a 
large value of γ, the influence area of the support vectors is limited 
to itself. The final one is kernel. There are three types of kernels, 
including the linear, poly and rbf, can be employed to find the best 
fit model for the given dataset. Hyperparameter tuning relies more 
on experimental results than theory, and therefore the best method 
to determine the optimal settings is by trial and error. By auto fine-
tuning the hyperparameters, the SVM can achieve better performance. 

2. Random Forest
Random forest (RF) is a supervised learning algorithm, and several 

studies have shown that using RF can provide a good prediction 
accuracy [15], [24]. In general, the RF algorithm creates different 
decision trees using randomly sampled instances. Then, in the 
prediction phase, based on the prediction results of the trees, a voting 
technique is used to determine the best solution. Due to using multiple 
decision trees for prediction, the advantage of RF over other methods 
is that it can reduce the overfitting. The RF has six hyperparameters: 
(1) “number of estimators” means the number of trees in the forest, (2) 
“maximum features” refers to the max number of features considered 
for splitting a node, (3) “maximum depth” is the maximum number of 
levels in each decision tree, (4) “minimum samples split” indicates the 
minimum number of instances placed in a node before splitting the 
node. (5) “minimum samples leaf” is the minimum number of instances 
allowed in a leaf node, and (6) “bootstrap” represents a method for 
sampling instances with or without replacement.

3. Decision Tree
The decision tree (DT) belongs to the supervised learning algorithm. 

The DT is a tree structure in which each internal node represents a 
feature, and each leaf node represents a label. The branches represent 
conjunctions of features that lead to those labels, also known as the 
decision rules. The main concept behind the DT is to find features 
which contain the most information. Once the feature is found using 
the selected criteria, the instances will be split by the feature. The 
process of finding the feature and split instances is continued until 
reaching the stopping criterion.

There are many hyperparameters that can be tuned for the DT. 
In this paper, we focused on six of them as following: (1) “Criterion” 
represents a function used to measure the quality of a split and could 
be “gini” for the gini impurity and “entropy” for the information gain, 
(2) “Splitter” is the strategy used to choose the split at each node. 
Two options are available. The first one is to choose the best split, 
and another is to random choose the best split, (3) “Minimum samples 
split” means the minimum number of samples required to split an 
internal node, (4) “Minimum samples leaf” is the minimum number of 
samples required for a leaf node, (5) “Maximum features” indicates the 
number of features is considered when looking for the best split, and 
(6) “Maximum depth” is the maximum depth of the tree.
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C. The Genetic Algorithms
The basic concept of the genetic algorithms (GA) derived from 

Charles Darwin’s theory of natural evolution and can be used in 
many fields [23]. For instance, Holland applied GA on adaptive and 
artificial systems [25]. In GA, each solution is encoded in a string 
called a chromosome, and could be represented in a binary or decimal 
form. Two main genetic operators that are crossover and mutation are 
utilized to generate offspring. The crossover and mutation produce 
offspring as new possible optimal solutions by swapping or mutating 
genes of the chromosomes. The fitness function in GA is used to 
evaluate the fitness of chromosomes in the population. The selection 
process is employed to generate the next population based on the 
fitness values of chromosomes. The evolutionary process is continued 
until reaching the stopping criterion, e.g., reaching a predefined 
number of generations, obtaining a chromosome with the qualified 
fitness value. In this study, the GA is utilized to search the suitable set 
of classifiers and the hyperparameters to form the hybrid model for 
the different dataset automatically. More detailed explanation of the 
proposed approach will be stated in the next section.  

III. Components of GA-based Hybrid Model

This section describes the main components associated with the 
GA-based hybrid quality prediction algorithm. Those components 
include chromosome encoding, initialization of population, fitness 
function, and lastly crossover and mutation operations. 

1. Chromosome Encoding
This paper aims to find an appropriate set of classifiers and their 

hyperparameters as the hybrid model for wine quality prediction to fit 
different wine dataset. Hence, the chromosome consists of two major 
parts, including the hyperparameter and model parts. The encoding 
schema for a chromosome Ci is shown in Fig. 1.

From Fig. 1, in the first part, it represents the hyperparameters for 
the k classifiers, which means k sections should be used. Thus, the 
length of the first part is the sum of the number of hyperparameters 
used for every classifier. The second part decides what algorithms are 
selected for the hybrid model, and every classifier is represented by a 
bit. If the value of wmodel_i is 1, it means wmodel_i is a part of the hybrid 
model. In the following, take three models, SVM, RF and DT, as an 
example. Assume the numbers of hyperparameters of the three models 
are 3, 6, and 6. Therefore, in this case, the chromosome consists of 18 
genes. The first 15 genes in the chromosome are used to represent the 
hyperparameters of three models. The first 3 genes belong to SVM, the 
4th to 9th genes belong to RF, and the last 6 genes belong to DT. The last 
3 genes in the second part decide which model(s) should be activated. 
It can be represented as follows:

Chromosome Ci: [i svm, i rf, i dt, i w], for i ∈ P is the population.

For i w, it consists of three genes [Ws , WF , WT], where Ws, WF, WT 
are used to represent the voting weight of SVM, RF, and DT. Each 
model has it is own hyperparameters. i svm represents the set of 
hyperparameters for SVM that are [C, γ, kernel]. i rf indicates the set of 
hyperparameters for the RF that are [Ro, R1, R2, R3, R4, R5].  i dt represents 
the set of hyperparameters for DT that are [Do, D1, D2, D3, D4, D5]  
as described in previous section. Hence, a possible chromosome is 
shown in Fig. 2.

In Fig. 2, the values of the model part are 1, 1 and 0 that means the 
SVM and the RF are used as the hybrid model. In accordance with the 
hyperparameter part, the first three genes, 500, 0.001 and rbf, represent 
values of the penalty factor, gamma and kernel function used for SVM. 
The the 4th to 9th genes, 800, 3, 45, 2, 1 and False, represent values of the 
number of estimators, maximum features, maximum depth, minimum 
samples split, minimum samples leaf and bootstrap used for RF. The 
last six genes, gini, best, 2, 2, auto and 8, in the hyperparameter part 
represent criterion, splitter, minimum samples split, minimum samples 
leaf, maximum features and the maximum depth, used for DT.

2. Initialization of Population
Population initialization is the first step in the process of the GA. The 

population is a set of chromosomes, and the initial population P(0) in 
this case, is randomly generated. In the previous section, we mentioned 
that each prediction algorithm has its own set of hyperparameters. For 
example, SVM consists of three hyperparameters [C, γ, kernel].

Although the suitable setting for the three parameters are  
kernel = [rbf], C = [9], and γ = [2, 0.5, 0.125] based on three different 
datasets (astroparticle, bioinformatic and vehicles) [22], it still cannot 
guarantee they are suitable for all datasets. Therefore, in order to tune 
the hyperparameters for every algorithm, based on the chromosome 
encoding scheme and the population size, the initial population can be 
generated randomly. 

3. Fitness Function
To evaluate the population of genes in the chromosome, the GA 

requires a fitness function to rank the fitness values of chromosomes 
based on considering the factors. When designing the fitness function, 
it should be used to measure how close a chromosome is to the target 
solution. Designing a useful fitness function is essential to reduce the 
size of the population and to make the GA more likely to find the 
optimal solution in less time. In the proposed approach, the average 
value of the accuracies of active models is employed to calculate the 
fitness values for a chromosome. Thus, the formula of the fitness 
function to evaluate a chromosome Ci as f(Ci) is defined as follows:

 (1)

Hyperparameters for k classifiers k possible classifiers

n1 hyperparameters
for 1st classifier

n2 hyperparameters
for 2nd classifier

nk hyperparameters
for k-th classifier

model 1
n1

imodel 1
0i model_kwmodel 1wmodel 2

n2
imodel 2

0i model k
nk

i... ... ... ...

Fig. 1. Encoding schema.

Hyperparameters for SVM
(length = 3)

Hyperparameters for RF
(length = 6)

Hyperparameters for DT
(length = 6)

Model Part
(length = 3)

500 0.001 rbf 800 3 45 2 1 False gini best 2 2 auto 8 1 1 0

Fig. 2. A possible chromosome.
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were Mj is the j-th prediction model adopted in the chromosome 
Ci. Continue the previous example, when the three prediction models, 
SVM, RF and DT, are used, the fitness value of a chromosome Ci is 
calculated as: 

 (2)

where the Ws, WF, WT are weights of the three models, and the 
function acc() is the accuracy function which is utilized to measure the 
accuracy of a model with an assigned set of parameters. The accuracy 
is calculated using the formula: 

 (3)

4. Crossover
In this section, the crossover operation performed in this study is 

described. Based on the crossover operator used in the steady-state 
GA (SSGA) [26], we made a slight modification and presented the 
modified crossover operator, steady-state crossover operator (SSCO), 
for the proposed approach. The difference between the SSCO and that 
used in SSGA is the way for the selection of parents for crossover. The 
pseudocode for SSCO is illustrated in Table II.  

TABLE II. Pseudocode for the SSCO

Crossover Procedure: SSCO(P, c_rate, pSize)

Input: population P
Parameters: crossover rate c_rate and population size pSize
Output: newly generated population P’

1 Procedure modified_SSGA(){
2     Create new population P’
3     P’ ← add the “elite” chromosome from P
4     Crossover:
5         Select parent C1 from P randomly
6         Select parent C2 from P’ randomly
7         Offspring O ß uniformCrossover(C1, C2, c_rate)
8         If O is better than the worst chromosome from P then
9              Add O to P’ 
10        If P’ < pSize
11            GoTo Crossover
12        Else
13    P ← P’
14 }

From Table II, the SSCO first creates the new population P’ (line 
2). Then, the elite chromosome is picked from the original population 
P and copied to the new population P’ (line 3). After that, two 
chromosomes C1 and C2 are selected from P and P’ (lines 5~6). To 
make the crossover more effective, the uniform crossover operator is 
employed for gene exchanging (line 7) [27]. It first generates a number 
of genes to be exchanged according to the given crossover rate, and 
the exchanging genes follow the randomly generated positions. 
At last, the new chromosome O is formed based on the exchanging 
positions and added to P’ (line 8). Take C1 as base chromosome and 
C1as an inserted chromosome as an example. The genes arrangement 

for C2 is , where * indicates the 
genes that will be passed to C1 to form the new offspring. Hence, the 
new offspring O is generated as: 
. The process is continued until pSize chromosomes are generated 
(lines 9~12). In other words, the benefit is that the best chromosome 
can be utilized as parents to produce the next generation. In addition, 
the reason to select only the best chromosome is to keep sufficient 
diversity and avoid premature convergence.

5. Mutation
In biological evolution, due to genes in chromosome may mutate, 

it provides offspring has the ability to survive when suffering 
environment changing. Hence, the aim for mutation is to keep the 
diversify of the population and to prevent the GA trapped in a local 
optimal [28]. There are several types of mutation. In this study, based on 
the uniform mutation [29], the modified uniform mutation is employed 
to mutate randomly selected gene(s) with a mutation probability pm. 
In original uniform mutation, the operator mutates the value of the 
randomly selected gene with the uniform random value between a 
specified upper and lower bound. Instead of selecting a value between 
a specific range, the proposed approach only allows the mutation 
operator to select a value from the given specified list. Continue the 
previous example, let the second gene of the SVM, the fourth gene of 
the RF and third gene of the DT are mutated in the hyperparameter 
part, and let the first gene of the model part are mutated. Assume the 
specified lists of those genes are [0.01, 0.001, 0.0001], [True, False], [2, 
7], and [0, 1], the mutation operator is illustrated in Fig. 3. 

From Fig. 3, the values, including 0.01, ‘True’, 7, and 1, are selected 
to replace original genes. Then, the chromosome Ci’ is generated. 
After mutation operation, the offspring Ci’ will replace the Ci in the 
population.

IV. Generalized Wine Quality Prediction Framework 
and Proposed Approach

In this section, the generalized wine quality prediction framework 
is presented in Section VI.A. Then, based on the framework, the 
proposed algorithm is described for obtaining the appropriate hybrid 
model using the GA for wine quality prediction in Section VI.B. 

A.  Generalized Wine Quality Prediction Framework 
As mentioned in the previous section, the existing approaches focus 

on how to obtain a classifier that can have the best prediction ability 
on a specific dataset. As to the hyperparameters of the classifier, they 
can be discovered by different strategies, e.g., the grid search [30], 
or random search [31]. However, the wine datasets may be collected 
from different areas and countries, and hyperparameter discovery 
process may time consuming based on the given searching space. In 
this paper, we thus propose the generalized wine quality prediction 
framework for providing a mechanism that can automatically find not 
only the appropriate hybrid model but also the hyperparameters by 
the evolution-based algorithms. The framework is shown in Fig. 4.

[0.01, 0.001, 0.0001] [False, True] [2, 7] [0, 1]

1500 .001 ‘rbf’ 650 3 30 False 0.1 1 gini random 2 2 sqrt 8 0 0 1

1500 .01 ‘rbf’ 650 3 30 True 0.1 1 gini random 7 2 sqrt 8 1 0 1

Fig. 3. Illustration of mutation operator.
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From Fig. 4, the proposed framework contains two phases, including 
the hybrid model acquisition and online prediction phases. In the first 
phase, according to the types of classifiers and their hyperparameters, 
the population is initialized. The initialized population is then sent into 
the evolutionary-based hybrid model acquisition module. Operations 
will generate possible offspring. After generations, the hybrid model 
with the best fitness value is outputted. Note that any evolutionary-
based algorithms can be employed for searching the hybrid model 
as well as their hyperparameters. In the online prediction phase, the 
unknown instance can be identified by the optimized hybrid model. 

B. GA-based Generalized Wine Quality Prediction Algorithm 
Based on the proposed framework, the GA-based generalized wine 

quality prediction algorithm is stated in this section. The pseudocode 
of the proposed algorithm is shown in Table III.

In Table III, the proposed approach first divides the dataset into 
training and testing datasets (line 2). Then, the initial population is 
generated based on the given set of models M, the number of classifiers 
num_c, and the hyperparameters HPM (lines 4~7). The fitness function 
defined in formula (1) is utilized to evaluate the quality of every 
chromosome (lines 9~12). Each chromosome represents a model M. 
Using the given training and testing datasets Dtrain and Dtest, the fitness 
value fValue of a chromosome is calculated (line 10). During this step, 
the encoded model is trained and tested, and a performance score for 
each model is returned as the fitness value in the end. Then the fitness 
value of a chromosome is updated the population (line 10). Note that 
other criteria can also be used as the fitness function, e.g., macro-F1 
score. The two genetic operators are performed on the population to 
generate new offspring (lines 13~14). The newly generated population 
will replace the previous population (line 15). After reaching the 
predefined number of generations num_gene, the best chromosome 
is outputted as the final hybrid model (line 17). The best chromosome 
consists of hyperparameters for the hybrid model. Because many 
works reported that the classification techniques, including the SVM, 
RF and DT are commonly used for wine quality prediction. Therefore, 
in this paper, three models but not limited to are used as the set of 
models to construct the hybrid model. Although there are many 
existing wine quality prediction approaches, they focus only on certain 
dataset or classifiers. Thus, the proposed algorithm’s advantage is that 
it is a general algorithm and can be employed to find the appropriate 

hybrid model and its hyperparameters no matter what kinds of wine 
datasets are given. 

TABLE III. Pseudocode of the GA-based Generalized Wine Quality 
Prediction Algorithm

The proposed algorithm: GA_hybrid()

Input: dataset D, a set of models M, hyperparameter for models HPM, 
number of classifiers num_c
Parameters: population size pSize, number of generations num_gene, 
crossover rate c_rate, mutation rate m_rate
Output: The hybrid model and hyperparameters

1 Procedure GA_hybrid(){
2     Dtrain, Dtest ← trainingandTestingGeneration(D)
3     population ← 𝜙
4     For i = 0 to pSize
5          Ci ← generateModelandHyperpara(M, num_c, HPM)
6          population ← population ◡ Ci
7     End For i    
8     For j = 0 to num_gene
9          For i = 0 to pSize
10             fValuei ← calculateFitness(Ci, M, Dtrain, Dtest)
11             Population ← updateFitness(population, fValuei)
12        End For i
13        newPopulation ← SSCO(population, c_rate, pSize) 
14        newPopulation ← executeMutation(newPopulation, m_rate)
15        population ← newPopulation
16    End For j
17    bestChromosome = findBestSolution(population)
18    Output bestChromosome
19    }
20

V. Experimental Results

A. Dataset Descriptions and Baseline Models
The wine dataset from the UCI database consists of two sets of 

wine datasets that are red and white wine datasets [7]. The red wine 
and white datasets contain 1599 and 4898 instances, respectively. Both 
datasets contain 11 physiochemical variables, including fixed acidity, 
volatile acidity, citric acid, residual sugar, chlorides, free sulfur dioxide, 
total sulfur dioxide, density, pH, Sulphates, and alcohol. The attribute 
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Fig. 4. The generalized wine quality prediction framework.
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“sensory” is a quality rating (class label) which is from 0 (very bad) to 
10 (excellent). 

The datasets were collected from May 2004 up to February 2007 
using the only protected designation of origin samples that were 
tested at the official certification entity (CVRVV). The CVRVV is an 
inter-professional organization to improve the quality and marketing 
of Vinho Verde. The datasets were recorded by a computerized system 
(iLab), which automatically manages the wine sample testing process 
from producer requests to laboratory and sensory analysis [1]. The 
statistical details of the datasets for the physiochemical variables are 
shown in Table IV.

TABLE IV. The Statistics Summary for the Physiochemical Features of 
the Datasets

Red Wine White Wine
Attribute Min. Max. Mean Min. Max. Mean

Fixed acidity 4.6 15.9 8.3 3.8 14.2 6.9

Volatile acidity 0.1 1.6 0.5 0.1 1.1 0.3

Citric acid 0 1 0.3 0 1.7 0.3

Residual sugar 0.9 15.5 2.5 0.6 65.8 6.4

Chlorides 0.01 0.61 0.08 0.01 0.35 0.05

Free sulfur dioxide 1 72 14 2 289 35

Total sulfur dioxide 6 289 46 9 440 138

Density 0.99 1.01 0.996 0.99 1.04 0.994

Sulphates 0.3 2 0.7 0.2 1.1 0.5

pH 2.7 4 3.3 2.7 3.8 3.1

Alcohol 8.4 14.9 10.4 8 14.2 10.4

To show the merits of the proposed approach, we compare the 
hybrid model against the SVM, RF and DT with the hyperparameters 
that were discovered using the grid search and random search. The 
n-fold cross-validation is utilized to construct models. The setting for 
each model is displayed in Table V.

TABLE V. Hyperparameter Setting for the Baseline Models

Model Hyperparameters Setting

SVM
C = 1500, γ = 0.0001,
kernel = rbf

RF
Ro = 1400, R1 = 3, R2 = 20,
R3 = 4, R4 = 3, R5 = True

DT
Do = gini, D1 = 6, D2 = 5,
D3 = auto, D4 = 3, D5 = random

B. Experimental Setting
In this section, we explain the experimental setting of the proposed 

algorithm. There is no specific rule to set proper hyperparameters for 
each model. It is a tedious but crucial task, as the performance of a 
classifier is highly dependent on the choice of hyperparameters. In 
order to find the appropriate initial parameter setting for each model, 
we executed a grid search and random search to find the possible 
parameters for each classifier. The ranges of hyperparameters for SVM 
isvm, RF irf, DT idt and weight option iw are shown in Table VI.

Based on the parameters listed in Table VI, the number of 
chromosomes that can be created is 132,7104. This number is too large 
and unable to complete the evolution process in a reasonable time. 
Therefore, the population size of the proposed algorithm was set at 
500. Hence, it randomly selected 500 chromosomes to form the initial 
population. The number of generations was set at 100. The crossover 
and mutation rates were set at 50% and 1%.

TABLE VI. The Ranges of Hyperparameters for the Used Models

Model Parameters Ranges Data types

isum C [500, 1000, 1500] Integer

γ [0.01,0.001, 0.0001] Float

kernel [‘rbf’, ‘poly’] String

irf Ro [650, 733, 800] Integer

R1 [3, ‘sqrt’] String

R2 [30, 45, None] Integer

R3 [0.1, 2] Float

R4 [1, 3] Integer

R5 [False, True] Boolean

idt Do [‘entropy’, ‘gini’] String

D1 [‘best’, ‘random’] String

D2 [2, 7] Integer

D3 [1, 2] Integer

D4 [‘sqrt’, ‘auto’] String

D5 [9, 8] Integer

iw ws [0, 1] Integer

wF [0, 1] Integer

wT [0, 1] Integer

In the following, the performance measurements of a classifier are 
described. The accuracy of a classifier is one way to measure how 
often the algorithm correctly classifies an instance. The formula is 
shown as follows:

 (4)

where TP is the true positive, which means the number of positive 
instances that are classified to the positive class. TN is the true negative, 
which means the number of negative instances that are classified to 
the negative class correctly. FP is false positive, which means the 
number of negative instances that are classified to the positive class. 
FN is false negative, which means the number of positive instances 
that are classified to the negative class.

In the multi-class classification problem, micro and average 
accuracy, precision, and recall are always the same [32]. Therefore, 
we use the macro-averaging measurements that are macro-precision 
and macro-recall for additional measurement reference. Also, based 
on past work [11], it indicated the wine dataset is imbalanced, only 
using accuracy may not provide a clear picture. Thus, the macro-F1 
score is also utilized for a more detailed comparison. The definition of 
precision to evaluate a multi-class classifier is shown as follows:

 (5)

where TPc and FPc represent the true positive and the false positive 
for class c. When precision is one, it means the prediction ability of the 
classifier is perfect. The macro-precision will be lower than average 
precision. That is because although the model performs exceptionally 
well on some specific classes, it may perform poorly on some classes, 
hence downgrading the value of the macro-precision score. The 
macro-precision is given as follows:

 (6)

The macro- precision is performed by first computing the precision 
of every class, and then taking the average of all precisions. 

Another metric often used to evaluate performance other than 
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accuracy is the recall. There is a trade-off between precision and 
recall. It means higher the recall lower the precision and vice versa. 
The recall measures the percentage of total relevant results correctly 
classified by the algorithm. This value is an important indication of 
how many predictions are correctly predicted. The definition of recall 
to evaluate a multi-class classifier is shown as follows:

 (7)

where TPc and FNc represent the true positive and false negative for 
class c. When the recall is one, it means that all truly positive samples 
were predicted as the positive class. Similar to micro-precision, the 
value will be lower if one class performs poorly. The macro-recall is 
given as follows:

 (8)

Accuracy is useful when the class distribution in the dataset is even, 
but F1 score is a better metric when the dataset has imbalanced classes. 
F1 score is simply a harmonic mean between precision and recall. The 
definition of F1 score to evaluate a multi-higher class classifier is 
shown as follows:

 (9)

where Pc and Rc represent the precision and recall for class c. 
Maximizing the F1 score is like finding the best balancing value 
between precision and recall. Since we are processing multi-class 
dataset, we would prefer to use macro-F1 score for comparison. The 
macro-F1 score calculation is given as follows:

 (10)

There is no defined range of F1 score to determine the performance 
of the model. We can maximize the macro-F1 score to find the best-
balanced value between precision and recall.

C. Experimental Results
Since most of the past works mainly focus on accuracy, we thus 

compare the accuracy of the proposed approach against others. Also, 
most works set the training and testing datasets ratio to 80% and 
20%. Therefore, we also set the same ratio for the training process. 
For comparisons, we include three mentioned classification models, 
the SVM, RF, and DT, as the baseline models. We also compare the 
proposed approach to the works of Cortez et al. [7] and Appalasamy 
et al. [17] for performance evaluations. However, both works did 
not provide enough information to calculate precision and recall. 
Therefore, the comparison results of baseline and proposed approach 
in terms of accuracy, precision and recall on the testing datasets are 
shown in Table VII.

TABLE VII. Comparison of Proposed Approach with Different Models

Red Wine White Wine

Models Accuracy Precision Recall Accuracy Precision Recall

SVM 0.57 0.39 0.37 0.51 0.41 0.35

RF 0.58 0.51 0.36 0.66 0.43 0.41

DT 0.53 0.37 0.34 0.58 0.32 0.32
Cortez et. 

al [7]
0.45 - - 0.51 - -

Apalasamy 
et. al [17]

0.62 - - 0.65 - -

Proposed 
Approach

0.72 0.34 0.36 0.68 0.57 0.37

From Table VII, we can observe that the accuracies of the proposed 
approach on red wine and white wine are 72% and 68% that is better 
than existing approaches. It is also interesting to see that the proposed 
model has lower precision and recall for red wine than most of the 
baseline models. For white wine, accuracy and precision are higher 
than all models, but the recall is slightly lower than the RF. These 
results indicated that using accuracy as fitness function for finding 
the hybrid models are good on white wine but a little worse on red 
wine dataset. To further examine the performances of the proposed 
approach, different training and testing datasets are used to obtain the 
hybrid models for red wine and white wine datasets. The results of 
them are shown in VIII and Table IX.

TABLE VIII. Result for Different Testing Data Ratio (Red Wine)

Red Wine Testing Dataset Size Percentage
10% 20% 30% 40%

Accuracy 0.73 0.72 0.69 0.67
Macro-Precision 0.42 0.34 0.34 0.34

Macro-Recall 0.47 0.36 0.36 0.33
Macro-F1 score 0.45 0.35 0.35 0.33

TABLE IX. Result for Different Testing Data Ratio (White Wine)

White Wine Testing Dataset Size Percentage
10% 20% 30% 40%

Accuracy 0.70 0.68 0.67 0.66
Macro-Precision 0.64 0.57 0.49 0.52

Macro-Recall 0.62 0.37 0.37 0.36
Macro-F1 score 0.49 0.40 0.40 0.40

From Table VIII, when the testing ratios were set at 10% or 20%, 
the hybrid models provide the highest accuracies than others, and 
the accuracies were gradually decreased along with the increasing 
of ratios. The macro-precision and macro-recall are low and almost 
similar for red wine dataset. That means the amount of false-positive 
is very close or equal to the false negative. Besides, the macro-F1 score 
also dropped when the ratio larger and equal to 20%. 

From Table IX, the hybrid model on white wine dataset shows 
a different result, where the macro-precision is always higher than 
macro-recall. When the ratio was set at 10%, the accuracy and 
macro-F1 score are at the highest, and the macro-precision and macro-
recall are at the closest. The macro-F1 score is comparative constant 
with the change of ratio from 20% to 40%. When the macro-F1 score is 
low, the macro-precision and macro-recall score for red wine indicates 
the data is highly skewed on certain classes. The white wine dataset is 
also skewed, but the distribution is more even when comparing to red 
wine. It is interesting to note that when the testing and training ratio 
is 10% to 20%, the proposed approach can reach the best performance. 

Since the work has proven the datasets for both red and white wine 
are imbalance [14], it is more reasonable to focus on macro-F1 score 
instead of accuracy. Macro-F1 score is instrumental in most scenarios 
when working with imbalanced datasets. Under this condition, we 
change the fitness function to focus on finding the hyper model that 
can provide the highest F1 score. The results using the proposed 
approach with the F1 score as a fitness function for red and white 
wine datasets are shown in Table X and Table XI.

The result shows that if we focused on improving the macor-F1 
score, the accuracies would drop under all conditions. It is also 
interesting to see both red wine and white wine datasets behave 
similarly. That is when the increase in the ratios, the macro-F1 score 
and accuracy are decreasing. The results also show that when the 
ratio is 10%, the obtained hybrid model has the best performances of 
0.59 and 0.58 on red and white wine datasets. Overall speaking, the 
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proposed approach using macro-F1 is better than that using accuracy 
as the fitness function. 

TABLE X. Results for Using F1 Score As Fitness Score (Red Wine)

Red wine Testing dataset size percentage
10% 20% 30% 40%

Macro-F1 0.59 0.46 0.42 0.36
Accuracy 0.65 0.61 0.62 0.57

Macro-Precision 0.57 0.44 0.41 0.36
Macro-Recall 0.63 0.48 0.45 0.35

TABLE XI . Results for F1 Score As Fitness Score (White Wine)

White wine Testing dataset size percentage
10% 20% 30% 40%

Macro-F1 0.58 0.41 0.40 0.38
Accuracy 0.65 0.68 0.67 0.65

Macro-Precision 0.66 0.51 0.50 0.52
Macro-Recall 0.55 0.37 0.37 0.35

D. Results of Wilcoxon Signed-Rank and Friedman Tests
We used the Wilcoxon signed-rank test to verify whether the 

proposed approach is statistically significance at a confidence level at 
95%. Since we were unable to retain further experimental data from 
Cortez et al. [7] and APalasamy et al. [17], we compared the proposed 
model (P) with the baseline models (SVM, DT and RF). With the 
accuracies of each model ASVM, ADT, ARF and AP, the Wilcoxon signed-
rank test results on red and white wines against the proposed model 
are summarized in Table XII and Table XIII.  

TABLE XII. The Results of the Wilcoxon Signed-rank Test (Red Wine)

SVM-P DT-P RF- P
H0: Null hypothesis H0: ASVM = AP H0: ADT = AP H0: ARF = AP

Ha: Alternative 
hypothesis

Ha: ASVM < AP Ha: ADT < AP Ha: ARF < AP

z-value (two tail) -2.0896 -1.9604 -1.6803
p-value (two tail) 0.0362 N/A N/A
Twilcox Twilcox(10) = 6.5 Twilcox(8) = 4 Twilcox(8) = 6

According to the Wilcoxon test for red wine, the p-value for the 
SVM-P pair is smaller than the threshold value of 0.05. Therefore, the 
null hypothesis is rejected. In addition, for SVM-P, the Twilcox(10) is 6.5 
which is smaller than the critical value for Wilcoxon at N = 10 (p < 
.05) is 8. Since both p-value and Twilcox all below the threshold, the null 
hypothesis can be rejected. That indicates the proposed approach is 
significantly better than the SVM. However, DT-P and RF-P pairs show 
different results, because the the Wilconx test data size N is 8, which 
is not large enough for the distribution of the Wilcoxon statistic to 
form a normal distribution. Therefore, it is not possible to calculate 
accurate p-value. 

TABLE XIII. The Results of the Wilcoxon Singed-rank Test (White Wine)

SVM-P DT-P RF- P

H0: Null hypothesis H0: ASVM = AP H0: ADT = AP H0: ARF = AP

Ha: Alternative 
hypothesis

Ha: ASVM < AP Ha: ADT < AP Ha: ARF < AP

z-value (two tail) -2.8031 -2.8031 -2.8031

p-value (two tail) 0.00512 0.00512 0.00512

Twilcox Twilcox(10) = 0 Twilcox(10) = 0 Twilcox(10) = 0

For white wine, it is interesting to see all null hypothesis can be 
rejected since Twilcox(10) = 0 for all three sets of experiments. In short, 

given the accuracy for each method on the same dataset, the proposed 
model performed better than all other models for white wine dataset. 
However, for red wine, the proposed model performed better than 
SVM, but cannot make a conclusion for DT and RF for red wine 
dataset. We can only conclude that the data size for red wine used for 
each test is small and does not provide enough information to make 
an effective conclusion.

A Friedman test was then conducted on ten runs for red and white 
wines to examine performances (accuracies) of the four different 
models on 10 datasets. The Friedman test is a non-parametric 
equivalent of the repeated measures ANOVA [33]. Results showed that 
different red wine models produce statistically significant differences 
in terms of accuracy with Q = 149.64 and p < 0.000001. For white 
wine, it also showed that different models also perform statistically 
significant difference in terms of accuracy with Q = 168.48 and p < 
0.000001. 

E. Discussion
There are some works in the recent two years that also conduct 

experiments on the same wine dataset. However, those studies divided 
the instances into two labels [12] or three labels, such as [34], [16], 
[22] and [20] for building models. Therefore, it makes the comparison 
slightly unfair due to the different standard. Other studies like [19], 
[15], [13] and [21] either have lower results than Appalasamy’s work 
[17]. In this paper, we thus compared the proposed method with the 
models proposed by Cortez et al. [7] and Appalasamy et al. [17] because 
they provided detailed description of each evaluation measurement 
matrices.

Evolutionary Algorithms (EA) refers to a set of biologically-inspired 
algorithms, for example, the Genetic Algorithms (GA), the Particle 
Swarm Optimization (PSO) [35], etc. GA is a stochastic search method 
that mimics the metaphor of natural biological evolution. For the PSO, 
it is inspired by the social behaviours of animals, and by updating the 
position and velocity of each individual to find solutions. Recently, 
PSO gained some attention in the field of the next-generation wireless 
network [36].

The differences between the GA and PSO are stated as follows. 
Based on [37], the PSO performs better in terms of the computational 
efficiency than the GA for solving the unconstrained non-linear 
problems with continuous design variables. However, the GA 
performs better when applied to the constrained non-linear problems 
with continuous or discrete design variables. For the problem to 
be solved in this paper, variables are constrained, non-linear and 
discrete. Therefore, the GA is adopted to deal with the hybrid model 
optimization algorithm. However, if the problem can be mapped 
to the unconstrained non-linear problems, the PSO will be a good 
methodology to be employed for searching the solution. In the future, 
we will continue to enhance the framework and to try and design 
different approaches to tune the performances.

VI. Conclusion and Future Work

In this paper, unlike most past works focusing on which 
classification model provides the best performance in predicting 
wine quality. Instead, we have proposed a generalized wine quality 
framework which consists of the hybrid model acquisition and online 
prediction phases. Based on the framework, the GA-based generalized 
wine quality prediction algorithm has been proposed. The proposed 
approach first encodes a set of classifiers and hyperparameters into 
a chromosome. The fitness functions including the accuracy and 
macro-F1 score are employed to evaluate the goodness of every 
chromosome. The steady-state crossover operator and uniform 
operator are applied on the population to generate new offspring. 
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After the evolution process, the appropriate hybrid model and the 
hyperparameters are used for wine quality prediction. Experiments on 
the red and white wine datasets indicate that the proposed approach 
is better than other existing approaches in terms of accuracy. In 
addition, when using macro-F1 score as the fitness function, although 
the accuracy of the hybrid model is decreasing, the macro-F1 score, 
macro-precision and macro-recall are increasing. In the future, under 
the proposed framework, other types of evolutionary algorithms can 
be employed to get a more solid classifier. In addition, more classifiers 
or other ML approach like different neural networks [38] can also be 
considered to construct the hybrid model. 
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