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Abstract

Doctors conventionally analyzed echocardiographic images for diagnosing congenital heart diseases (CHDs). 
However, this process is laborious and depends on the experience of the doctors. This study investigated 
the use of deep learning algorithms for the image detection of the ventricular septal defect (VSD), the most 
common type. Color Doppler echocardiographic images containing three types of VSDs were tested with 
color doppler ultrasound medical images. To the best of our knowledge, this study is the first one to solve this 
object detection problem by using a modified YOLOv4–DenseNet framework. Because some techniques of 
YOLOv4 are not suitable for echocardiographic object detection, we revised the algorithm for this problem. The 
results revealed that the YOLOv4–DenseNet outperformed YOLOv4, YOLOv3, YOLOv3–SPP, and YOLOv3–
DenseNet in terms of metric mAP-50. The F1-score of YOLOv4-DenseNet and YOLOv3-DenseNet were better 
than those of others. Hence, the contribution of this study establishes the feasibility of using deep learning for 
echocardiographic image detection of VSD investigation and a better YOLOv4-DenseNet framework could be 
employed for the VSD detection.
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I. Introduction

Wu et al. [1] studied the 7-year data of the Taiwan health 
insurance database and determined that, on average, 13 out of 

1000 newborn infants have congenital heart disease (CHD) annually. 
The 5-year relative mortality rate of infants with CHDs is 5% [2]. 
With the advances in medical technology, CHDs can be detected 
using ultrasound images obtained at 18–22 weeks of gestation [3]. 
Echocardiographic images do not involve radioactivity, cause minimal 
stress on fetuses and newborns, and are cost effective [4]–[6]. Most 
parents and doctors begin medical planning at 18–22 weeks. Therefore, 
it is critical to detect CHDs by using ultrasound images in the early 
stage.

Two types of ultrasound images are possible, namely black-
and-white and color doppler echocardiographic images. The color 
doppler echocardiographic images can provide critical information on 

velocities, accelerations, direction of the heart’s blood flow (denoted 
by the red and blue color, respectively), flow rate, and whether the 
blood pressure is diastolic or systolic [7]. The red and blue colors 
represent blood flowing toward and leaving the ultrasound probe, 
respectively. A golden-yellow color indicates a rapid blood flow. 
Doppler ultrasound images provide essential features of CHD. 
Therefore, doppler echocardiographic imaging was used in this study.

The ventricular septal defect (VSD) is the most common CHD and 
accounts for upto 30% of all CHDs [1]. Therefore, the VSD recognition 
problem was investigated in this study. Furthermore, three subtypes of 
VSD, namely Type 1, Type 2, and Type 4, were included in this study. 
Because type 3 VSD usually is associated with other congenital cardiac 
anomaly (so called endocardial cushion defect or atrial-ventricular 
canal defect) and it is very rare to have isolated type 3 VSD; thus, we 
exclude type 3 VSD to study. Doppler echocardiographic images of 
the three images are depicted in Fig. 1. Both VSD Type 1 and Type 2 
typically involve the parasternal short-axis view’s aortic root section. 
The aortic valve is at the center of the echocardiographic image. Fig. 
1a in Fig. 1 shows that if the blood flow of the hole is between 11 and 1 
o’clock, then the VSD may be Type 1. If the hole blood flow is between 
9 and 11 o’clock, then the VSD is Type 2. The echocardiographic image 
of a patient with VSD Type 2 are presented in Fig. 1b of Fig. 1. 
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(a) The short axis imaging at cardiac base show-ing Type 1 VSD color flow jet 
(arrow-head)

(b) The short axis imaging at cardiac base show-ing Type 2 VSD color flow jet 
(arrow-head)

(c) The short axis imaging near cardiac apex showing Type 4 VSD color flow 
jet (arrow-head)

Fig. 1. Doppler echocardiographic of VSD Type 1, Type 2 and Type 4 in the 
parasternal short-axis view (LV: Left Ventricle, RV: Right Ventricle, RVOT: 
Right Ventricular Outflow Tract, LA: Left Atrium, RA: Right Atrium, AV: 
Aortic Valve, PA: Pulmonary Artery).

For identification of Type 4 VSD, doctors evaluate the horizon-
tal section of the mitral valve of the parasternal short-axis view and 
determine the doppler flow in the left ventricle from 9 to 1 oâ€™clock. 
In practice, more than one hole of Type 4 VSD may oc-cur. Therefore, 
the recognition of this VSD type is difficult. In Fig. 1c, a spot was 
observed in the 12 o'clock position. To the best of our knowledge, this 
study is the first to focus on the VSD object detection problem. There 
is much room to study this problem.

Different views and angles may lead to difficulties in identifying 
the characteristics of the three VSD types. Pézard et al. [8] stated that 
ultrasound image detection of CHDs involved challenges such as the 
ability and experience of physicians or radiologists [8], ambiguous images, 
and the nature of defects, which may affect the outcome of the judgment 
[9]. Furthermore, doctors may capture many ultrasound images when 
they check a patient; however, determining appropriate image data is 
time con-suming. Deep learning (DL) algorithms used for automatic 
detection and segmentation of complex cardiac echocardiographic 
structures may detect the region of interest (ROI) rapidly, thus reducing 
time and effort required for the process [5], [10]-[15].

You only look once (YOLO)v3 [16], YOLOv4 [17], RetinaNet [18], 
and Faster RCNN [19] are some popular algorithms. YOLOv4 is a state-
of-the-art algorithm [17] that can improve the quality and efficiency 
of detection. Compared with YOLOv3, YOLOv4 integrates numerous 
methods. However, according to our pilot experiments, we determined 
that some methods may not apply to our studied problem. A modified 
YOLOv4 was used in the study.

YOLOv4 comprises a cross-stage partial (CSP) network [20] and 
DarkNet [21]. Because DenseNet [22] can extract more features than 
DarkNet, DarkNet was replaced with DenseNet121 in YOLOv3, which 
provided better results [23], [24]. Therefore, we replaced CSPDarkNet 
with CSPDenseNet121 in YOLOv4. The model was named YOLOv4-
DenseNet121 or YOLOv4-DenseNet. To the best of our knowledge, this 
study is the first to attempt such modification. The proposed algorithm, 
YOLOv4-DenseNet, is the other major contribution of this study.

The rest of this paper is organized as follows. Section II provides 
detailed steps of data collection and automatic organization of the 
data set. The patients' ID, name, or birthday, were removed to ensure 
privacy and avoid information leak. In Section III, we present the 
YOLOv4-DenseNet algorithm. Next, we compare the revised YOLOv4-
DenseNet with the unmodified YOLOv4 and some variants of YOLOv3. 
We present a comparison of the proposed algorithms in Section IV. 
Finally, we present our conclusions in Section V.

II. Medical Image Collection and Automation of Data 
Set Arrangement

The ultrasound images used in this study were provided by 
Kaohsiung Veterans General Hospital1. Videos were transformed 
into frames/figures. Doctors identified each figure from the collected 
images to ensure the correctness of the data set. Sorting the correct 
classification and the required bounding boxes can be time-
consuming. This study developed a standard operating procedure in 
Fig. 2 considering the professional ability of the doctor, protection of 
the patient’s information, and correctness of the data. The step-by-
step procedure is as follows.

1. Echocardiographic videos were provided by Kaohsiung Veterans 
General Hospital. The study protocol was approved by the 
Institutional Review Board (IRB) of the hospital [IRB number is 
19-CT8-10(190701-2)]. Patients with VSD diagnosis were selected 
for the study.

2. We extracted each frame from the echocardiographic videos. The 
principal image resolution was 800×600.

3. Privacy: We removed images that contained the patient’s personal 
information, such as name, case number, and date of birth. Thus, 
we removed any identifying information from each figure. The 
final resolution of the images was 706 × 532.

4. The images were converted to the PNG format to ensure 
compression without loss of information. The file name of the 

1 https://eng.vghks.gov.tw/
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image was encrypted using the original video file name, and 
the custom private key of the project was encrypted using the 
advanced encryption standard algorithm combined with the video 
and frame number.

5. We used a few data sets to train the DL model. Then, the initial 
model was used to classify the images that were not arranged.

6. We then examined the classification results and labeled the images.

7. At least one cardiologist verified the classification and ROIs. 
Before implementing Step 1, the coauthors obtained the required 
licenses from the relevant human research ethics committee. Steps 
3–6 were executed after Kaohsiung Veterans General Hospital 
provided the required medical images. The final steps in processing 
these data still relied on professional doctors’ judgment to provide 
adequate training quality.

VSD  Ultrasound Videos

Images Frame Extraction

Privacy Information Removal

Images Files Encryption

 

Deep Learning Model Classifies the Out Images 

Results Examination & Labeling

Fig. 2. Dataset arrangement procedures.

III. Methods

The YOLOv4 algorithm is described in Section III.A. The differ-
ences between YOLOv4 and the modified YOLOv4-DenseNet are 
described in Section III.B. The metrics applied to evaluate the per-
formance of the proposed algorithm against other algorithms are 
presented in Section III.C.

A. Main Characteristics of the YOLOv4 Framework
State-of-the-art algorithms, such as CSP, spatial pyramid pooling 

(SPP), feature pyramid network (FPN), path aggregation network 
(PANet), Mish activation function, Mosaic augmentation, dropblock, 
complete IoU loss (CIoU), class label smoothing, and cosine annealing 
scheduler, are incorporated in YOLOv4. Fig. 3 presents the modified 
YOLOv4 framework, which includes three parts, namely the backbone, 
neck, and head.

CSPDarknet is the main characteristic of the YOLOv4 backbone. 
The CBM, which is a combination of the convolution layer and the 
batch normalization (BN) and Mish activation function, was the input 
of CSPDarkNet. The input resolution of the first convolution layer was 
608*608. The Mish function is a self-regular non-monotonic neural 
activation function that allows relavant information to penetrate the 
neural network. The ZCRn is composed of zero padding, CBM, and 
CSPRn. CSPRn denotes the CSPNet framework with n number of 
replications. CSPNet divided the feature maps into two parts. In the first 
part, the gradient changes from the beginning to the end are recorded 
into the feature map, which reduces the number of calculations and 
memory costs and ensures high accuracy. The second includes the 
ResNet skip connections. Finally, the first part is concatenated with 
the second part’s feature maps. The output resolutions of ZCR1, ZCR2, 
and ZCR8 were 76 × 76, 38 × 38, and 19 × 19, respectively.

In the neck area, the FPN and PANet are used in YOLOv4, whereas 
only the FPN is used in YOLOv3. The FPN performs the upsampling 

from a smaller resolution to larger resolutions and then concatenates 
with the large-size ZCRn. The PANet framework employs the bottom-
up path augmentation with prior local convolution layers through the 
upsampling operation to shorten the information path between high- 
and low-resolution features.

In the head area, YOLOv4 and YOLOv3 use the same head. The 
output resolution with the number of feature maps was 76 × 76/256,  
38 × 38/512, and 19 × 19/1024. The only change is the loss function. 
The CIoU is used as the loss function of YOLOv4 to measure the 
difference between the ground truth and predicted box.

B. Modified YOLOv4-DenseNet Algorithm
The results of our pilot experiments revealed that not all approaches 

of YOLOv4 suited our problem. In particular, the performance of the 
mosaic data augmentation, SPP, and cosine annealing scheduler was 
not satisfactory. For example, although the mosaic augmentation 
method is the major cause of the superior performance of YOLOv4 in 
small object detection, the size of the CHD detection objects is large, 
and characteristics of CHD are located at a specific area. The cosine 
annealing scheduler did not yield superior performance. Therefore, 
the algorithm was suitably modified to address the aforementioned 
characteristics. Because of the GPU memory limitation, our input 
resolution decreased to 416 × 416 instead of 608 × 608 used in YOLOv4.

To enhance the performance of the YOLOv4 algorithm, this study 
replaced CSPDarkNet with CSPDenseNet because DenseNet extracts 
more information than DarkNet does. In the backbone area of Fig. 4, 
the ZCRn block was replaced with the CSPDn block. The values of n 
are 6, 16, and 24. Two subblocks belonged to the CSPDn block, namely 
the repeated Denseblocks (blk) and transition block. The number of 
times Dense blk is repeated is based on the value of n. In the proposed 
algorithm, the FPN and PANet were implemented in the neck area. The 
first dif-ference between the proposed algorithm and YOLOv4 is that 
we removed the SPP because the SPP lowers performance. Second, 
because the SPP was removed, the number of CBL was six instead of 
seven in the top branch.

Finally, in the head area, we used a small input resolution; thus, 
the output scales were 52 × 52, 26 × 26, and 13 × 13. Furthermore, 
we determined that the number of output feature maps may not be 
useful for our studied problem. To solve this problem, we added more 
feature maps in the YOLO head. The corresponding output resolution 
with the number of feature maps was 52 × 52/512, 26 × 26/1024, and  
13 × 13/1024. The loss function of the proposed algorithm was identical 
to those of the original YOLOv4 algorithm.

C. Evaluation Metrics
The unlearned image was the target of the test. The threshold 

of intersection over union was set to 50. If the predicted box of the 
unlearned images intersected with the ground truth was less than 50, 
the prediction failed. The four conditions for classification were as 
follows: true positive, true negative, false positive, and false negative. 
We evaluated the performance of the model in terms of accuracy (Eq. 
1), average precision (Eq. 2), average recall (Eq. 3), and F1-Score (Eq. 4). 
Finally, we used the average precision metric of Pascal VOC 2012. We 
calculated the classification mean to obtain the mAP.

 (1)

 (2)

 (3)

 (4)
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IV. Empirical Results

This research collected 483 images of Kaohsiung Veterans General 
Hospital. There are 67, 129, and 287 images for type 1, type 2, and type 
4 of VSD, respectively. These figures are further divided into train, 
validation, and test sets. The dataset distribution is shown in Fig. 5.
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Fig. 5. Dataset arrangement PDF.

Based on a YOLOv3 project on Github2, we code the YOLOv3-SPP 
[21], YOLOv3-DenseNet [23], [24], YOLOv3-DenseNet-SPP, YOLOv4 
[17], and revised YOLOv4-DenseNet framework by ourselves. Each 
algorithm runs 1000 epochs with three replications. We executed 
these algorithms on Tensorflow 1.15.3 environment and nVidia RTX 
2080 GPU to experiment. The parameters of the proposed revised 
YOLOv4-DenseNet are shown as follows. The optimization algorithm 
is Adam, with the learning rate 1e-4. The number of epochs is 1,000. 
Due to the limitation of the GPU memory, the number of batch size 
is set to 4 and the input resolution to be 416*416 for YOLOv4 instead 
of 608*608. Hence, we denote YOLOv4 to be YOLOv4’ to distinguish 
the difference. Finally, we employed the latest model trained by each 
algorithm to do the following comparisons.

We list the precision, recall, F1-score, and mAP-50 of the six 
algorithms in Table I. When we compare the variants of YOLOv3, 
YOLOv3-DenseNet might be the best one, according to the F1-score 
and mAP-50. In particular, when we compare the YOLOv3 with 
YOLOv3-DenseNet, the F1-score is improved by 10%, and mAP is 
increased by 20%. The improvement is quite significant. Later on, SPP 
only improves the combination with YOLOv3 alone; however, SPP 
does not yield positive outcomes for YOLOv3-DenseNet-SPP because 
the variance of the mAP-50 values is high. That is the reason why 
our proposed algorithm does not include the SPP technique in the 
proposed algorithm.

TABLE I. Algorithm Models for the VSD

Algorithm Precision(%) Recall(%) F1-score(%) mAP-50

YOLOv3 99% 70% 81% 57.11%

YOLOv3-SPP 100% 77% 87% 59.54%

YOLOv3-Densenet 99% 84% 91% 71.56%

YOLOv3-Densenet-SPP 99% 83% 90% 70.56%

YOLOv4’ 98% 71% 82% 58.42%

Revised YOLOV4-Densenet 97% 85% 91% 72.61%

When it comes to comparing the YOLOv4’ and revised YOLOv4-
DenseNet with the YOLOv3 variants, YOLOv4’ is better than the 

2 https://github.com/qqwweee/keras-yolo3

YOLOv3. YOLOv4-DenseNet is the best one in terms of the result of F1-
score and mAP-50. However, YOLOv3-DenseNet remain outperforms 
YOLOv4’. YOLOv4-DenseNet might be promising because this 
algorithm inherits the merit of YOLOv4, DenseNet [22] captures more 
information, and we remove some techniques that may decrease the 
solution quality. Most important of all, our proposed algorithm is 
assisted by CSPDenseNet as the backbone. This strategy enhances the 
prediction quality.
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Fig. 6. The mAP performance of the compared algorithms.
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On the other hand, to explore the difficulty level of three VSD 
diseases, we draw the mAP details of the six selected algorithms in 
Fig. 6. Among all the algorithms, VSDType1 and VSDType2 achieve 
satisfactory results. However, VSDType4 does not perform well. 
For this issue, there is much room for the VSDType4 because most 
algorithms do not perform well. It is interesting to take a closer look at 
the correct and incorrect classifications.

In general, the locations of VSD Type 4 are distributed at variable 
sites within the muscular ventricular septum. Hence, it is good 
challenge for deep learning algorithms. To explain the other possible 
reason, we demonstrate the correct and incorrect detection in Fig. 7 to 
Fig. 9, which presented the three types done by our revised YOLOv4-
DenseNet. The blue bounding box is the ground truth marked by us. 
The bounding box in green means the correct prediction done by 
the proposed algorithm. Otherwise, the bounding box color is in red. 
Except the Fig. 7b does not detect the VSDType1 at all, the bounding 
box in Fig. 8b and Fig. 9b might be too small. This problem may cause 
the result is not satisfactory. In addition, the symptoms of VSD Type 4 
are discovered at varied places. Hence, it is quite necessary to increase 
the number of training dataset for VSD Type 4.

(a) Correct (b) Incorrect

Fig. 7. The correct and incorrect detection of VSDType1.

(a) Correct (b) Incorrect

Fig. 8. The correct and incorrect detection of VSDType2.

(a) Correct (b) Incorrect

Fig. 9. The correct and incorrect detection of VSDType4.

There are three ways of improving this situation. Firstly, we 
should increase the number of figures to train the deep learning 
model. Secondly, due to we set the threshold of IoU to be 50, a smaller 
detected bounding box yields the incorrect judgment. If we increase 
the IoU threshold, the mAP result should be increased. Secondly, the 

bounding boxes prepared by this research might be too large. As a 
result, we should revise the scale of the bounding boxes for the three 
types. In general, even though the mAP-50 result of VSDType4 is 
not satisfactory, it might remain useful for doctors to arrange the 
echocardiographic images.

V. Conclusions

This paper might be the first one to study the CHD in ultrasound 
image object detection problem. The revised YOLOv4-DenseNet 
algorithm is proposed in this paper. The reason for proposing the 
revised YOLOv4-DenseNet is that some features of YOLOv4 are 
not suitable for the ultrasound medical image, such as the mosaic 
data augmentation, SPP, and Cosine annealing scheduler. Later 
on, due to DenseNet could extract more features than DarkNet, 
we use CSPDenseNet as the backbone. The proposed algorithm 
was further compared with the origi-nal YOLOv3, YOLOV3-SPP, 
YOLOv3-DenseNet. We found the revised YOLOv4-DenseNet is the 
best in terms of the F1-Score and mAP-50. YOLOv4’ is better than 
YOLOv3; however, YOLOv4’ is not better than YOLOv3-DenseNet, 
and YOLOv3-DenseNet-SPP. These results indicated DenseNet as 
the backbone is effective.

For future research, we plan to improve the prediction quality 
of VSD Type 4 and study more CHDs, such as Atrial septal defect, 
Pulmonary stenosis, and Tetralogy of Fallot solved by our proposed 
algorithm. The hyper-parameters are not optimized; thus, we could 
use a genetic algorithm to do a global search. Finally, there are some 
ways of improving the medical image qualities [15], [25], [26]. when 
the Contrast Limited Adaptive Histogram Equalization (CLAHE) was 
applied on COVID-19 in chest X-Ray images, the detection accuracy 
was greatly improved [15]. We attempt to employ the CLAHE 
(supported in OpenCV) in ultrasound images without modifying the 
proposed algorithm.
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