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Abstract

We construct a convolutional neural network to classify pulmonary nodules as malignant or benign in the 
context of lung cancer. To construct and train our model, we use our novel extension of the fastai deep 
learning framework to 3D medical imaging tasks, combined with the MONAI deep learning library. We train and 
evaluate the model using a large, openly available data set of annotated thoracic CT scans. Our model achieves 
a nodule classification accuracy of 92.4% and a ROC AUC of 97% when compared to a “ground truth” based on 
multiple human raters subjective assessment of malignancy. We further evaluate our approach by predicting 
patient-level diagnoses of cancer, achieving a test set accuracy of 75%. This is higher than the 70% obtained 
by aggregating the human raters assessments. Class activation maps are applied to investigate the features 
used by our classifier, enabling a rudimentary level of explainability for what is otherwise close to “black 
box” predictions. As the classification of structures in chest CT scans is useful across a variety of diagnostic 
and prognostic tasks in radiology, our approach has broad applicability. As we aimed to construct a fully 
reproducible system that can be compared to new proposed methods and easily be adapted and extended, the 
full source code of our work is available at https://github.com/MMIV-ML/Lung-CT-fastai-2020.
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I. Introduction

Using convolutional neural networks is well-known to result 
in powerful tools to analyse medical images, across a variety 

of important applications [1], [2]. This approach to medical image 
analysis can lead to valuable insights and assistance in imaging 
diagnostics. The path from research to clinical practice is however 
slow and arduous, perhaps more so than is generally thought [2], [3]. 
But the number of software solutions on the market, with regulatory 
approval and aimed at diagnostic support, is growing, along with their 
adoption in hospital workflows.

In radiology, the computed tomography (CT) imaging modal-
ity is currently experiencing the highest impact of deep learning-
based solutions. CT uses computer-processed combinations of many 
X-ray measurements taken from different angles to produce cross-
sectional digital images (virtual slices) of specific regions or organs 
within the human body. This allows for non-invasive inspection of 

disease processes or lesions. Another prominent and widespread 
imaging modality is magnetic resonance imaging (MRI). It is based on 
quite different physical principles (nuclear spins in magnetic fields, 
spin excitation by application of radio-frequency pulses, magnetic 
resonance, and tissue specific and disease-related magnetization and 
relaxation phenomena) and enables exploitation of a large collection 
of measurement techniques and contrast mechanisms. Compared 
to CT, MRI examinations are generally more expensive, more time-
consuming and less available. The signal properties are also more 
complex and typically multi-parametric, and proper interpretation 
puts high demands on radiologists’ specialized training and experience. 
This partly explain why CT is more heavily used in daily routine 
radiology, and also why it is a popular target for the med-ical machine 
learning community [4].

Identifying and assessing structures in the lung from thoracic CT 
scans (chest CT) is a crucial task across multiple diseases involving the 
lungs and upper abdomen, e.g. lung cancer, chronic lung disease and 
pneumonia. Computer-aided diagnostic tools addressing chest CT is 
therefore an important area in medical imaging1.

The diagnosis and follow-up of lung cancer patients using chest 
CT requires the identification of malignant tumors appearing as 

1 An area of particular relevance at the time of writing is the viral pneumonia 
caused by SARS-CoV-2 ( [5], [6]).
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pulmonary nodules (i.e. spots on the lungs). Distinguishing benign 
and malignant nodules is difficult, as the differences can be subtle and 
the malignancy potential is highly variable [7], but such assessment 
forms an important source of information for diagnosis and evaluation 
of progression and treatment responses. Indications of lung cancer 
can also appear as incidental findings on CT scans. As chest CT is 
widely used across a range of diseases and injuries, this represents an 
additional challenge for radiologists.

II. Related Work

Multiple studies have investigated how CNNs can be used in the 
context of lung cancer. Two recent and quite comprehensive reviews 
are [8], [9]. Below we highlight two illustrative examples of recent, 
related work.

In [10], the authors constructed an end-to-end system based on 
three 3D CNNs for the localization and categorization of lung cancer 
risk, using low-dose CT images as inputs. They achieved a test set ROC 
AUC of 94.4% using data from the National Lung Cancer Screening 
Trial (NLST), and a ROC AUC of 95.5% on an independent data set 
collected at Northwestern Medicine. A retrospective reader study was 
conducted, in which their model outperformed six experienced US 
board-certified radiologists. Their system had four main components: 
(i) a Mask R-CNN for instance segmentation used to produce lung 
segmentation masks; (ii) a 3D RetinaNet CNN trained to output ROIs 
around possible cancer lesions; (iii) a 3D version of Inception V1 
trained to predict cancer diagnosis within one year directly from CT 
volumes; (iii) a CNN classifier trained on features extracted from the 
detected ROIs as well as features extracted from the volume model, 
outputting malignancy scores for each ROI. Their study was based on 
a combination of publicly available data from LUNA, LIDC and NLST, 
in combination with a large data set sourced from Northwestern 
Medicine that is not publicly available. The source code used in their 
work is not publicly available.

In [11], the authors construct DeepLung, a “cancer diagnosis 
system” based on two 3D CNNs that perform lung nodule detection 
and binary classification (benign vs. malign), respectively. For nodule 
detection they constructed a 3D Faster R-CNN with dual-path blocks 
and a similar encoder-decoder structure to the U-Net of [12], obtaining 
a FROC (Free Response Operating Characteristic) score of 84.2% on 
the LUNA16 data set [13] using a 10-fold patient-level cross-validation 
split. Their nodule classification model consisted of a 3D dual-path 
network extracting classification features, and a gradient boosting 
machine trained on the extracted features combined with raw nodule 
CT pixels and nodule size. They achieved a classification accuracy 
of 90.44%on the LIDC-IDRI data set using the same cross-validation 
approach as in LUNA16. The source code is available at https: //github.
com/wentaozhu/DeepLung.

III. Main Contributions

Motivated by a lack of a common set of training data for machine 
learning models for lesion malignancy classification in the literature 
and what we see as important missing elements in how most CNNs for 
3D medical imaging tasks are trained, our objectives are the following: 
(i) bring a set of techniques for training CNNs that have been shown 
to be highly impactful for 2D image classification to 3D by extending 
and incorporating ideas from the popular fastai library, and (ii) to 
provide a reproducible setup of data and model evaluation that can 
be used by other researchers aiming to train models to perform lung 
nodule classification. Our main contributions are:

1. We preprocessed and prepared the comparably large and well-
annotated LIDC-IDRI data set (Section IV) for use in a binary 

malignancy prediction task, taking care to set aside a separate test 
set consisting of particularly well-characterized patients.

2. We constructed and trained a three-dimensional CNN using our 
novel extension to 3D of the fastai [14] deep learning library, 
combining it with features from MONAI (https://github.com/
Project-MONAI/MONAI2), obtaining results comparable to the 
state-of-the-art in nodule classification and patient-level cancer 
diagnoses for the LIDC-IDRI data set.

3. We investigated the malignancy predictions by integrating a 3D 
version of gradient-weighted class activation mapping (Grad-
CAM) [16] in our framework, enabling some element of explainable 
AI [17].

4. To ensure reproducibility and to ease further extensions or 
adaptions of our approach, we have made the source code openly 
available under a permissive open source license at https://github.
com/MMIV-ML/Lung-CT-fastai-2020, in a tutorial-like Jupyter 
Notebook [18] that step through the process from data loading to 
result interpretations.

IV. Methods and Materials

A. Data Set
Using supervised learning with CNN models requires large amounts 

of labelled training data. For pulmonary nodule analysis, the data is 
typically obtained by manually labelling nodule locations and outlining 
lesions on CT images, a costly and hard to scale process hampered 
by intra- and inter-rater variability. Nevertheless, reasonably large 
annotated data sets with benign and malignant pulmonary nodules 
have been made openly available for researchers, reducing the entry 
price and increasing the pace of new research.

We used the Lung Image Database Consortium image collection 
(LIDC-IDRI), consisting of diagnostic and clinical lung cancer screening 
thoracic computed tomography (CT) scans with marked-up annotated 
lesions [19]3. The images were extracted from the picture archiving 
and communication systems (PACS) of seven different institutions 
and anonymized in accordance with HIPAA guidelines. The data 
collection was approved by the local IRBs of the seven participating 
LIDC-IDRI institutions. To each image there is associated the results 
of a two-stage anno-tation process involving four experienced 
thoracic radiologists. First, in a blinded-read phase, each radiologist 
independently reviewed the CT scans, marking lesions belonging to 
one of three categories (nodule ≥ 3 mm, nodule < 3 mm, and non-nodule 
≥ 3 mm), where the concept of “nodule” refers to a focal abnormality4. 
Then each radiologist (among a total of 12 radiologists coming from 
altogether five LIDC-IDRI institutions) assessed independently and 
subjectively each nodule ≥ 3 mm for characteristics such as subtlety, 
internal structure, spiculation, lobulation, shape (sphericity), solidity, 
margin, and likelihood of malignancy. Each such nodule, having (by 
its size) a greater probability of malignancy than lesions in the other 
two categories, was marked regardless of presumed histology, e.g. a 
primary lung cancer, metastatic disease, a noncancerous process, or 
indeterminate in nature.

By design, reader consistency studies are not possible with the 
LIDC-IDRI data set as the order of the readers varies from instance 
to instance. However, the marks from up to four readers for a given 

2 Originally, we developed our extension of fastai and MONAI for 3D MRI 
of the head, as a tool for the estimation of brain age from MRI recordings 
(unpublished work and [15]) indicating our framework’s general utility.
3 See also https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI
4 Some radiologists will argue that these three lesion categories could be 
somewhat artificial relative to clinical practice.
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lesion, using a five-point scale (a low score denoted likely benign 
nodule, a high score likely malignant), makes it possible to assess 
different degrees of reader agreement. Assessing inter-rater variability 
is very important to gauge the performance of systems aiming to 
automate the process. We therefore made an analysis of inter-rater 
variability regarding the “likelihood of malignancy” characteristic 
using the Krippendorff’s alpha coefficient [20].

In our study, we have used a total of 2662 annotated nodules 
that were annotated as nodule ≥ 3 mm by at least one radiologists, 
collected from clinical thoracic CT scans of 1018 patients in the LIDC-
IDRI data set.

B. Preprocessing
The voxels in a 3D CT recording are displayed in terms of relative 

radiodensity. More specifically, the signal intensities or attenuations 
in CT are expressed in Hounsfield units (HU). This is based on a linear 
transformation of the original attenuation coefficients in which the 
radiodensity of distilled water has HU = 0 and the radiodensity of air is 
set to HU = −1000. According to this HU scale, lung parenchyma is in 
the range [−700, −600], fat is [−120, −90], lymph nodes [+10, +20], 
and blood [+13, +50], to mention a few relevant tissue types. In our 
CT data we considered voxels within a HU-range of [−1200, +600], 
and voxel values were normalized to the interval [0, 1] according to 
the transformation x'' ↦ x'' : x' = (x + 1200)/(1200 + 600);  x'' = 0 if 
x' < 0, x'' = 1 if x' >… 1, else x'' = x'.

For each CT scan of a subject, we collected all the radiologists 
segmentation masks. To ensure that we captured entire nodules we took 
the union of the masks. To make some of the surrounding context of each 
nodule available for the classification model, we dilated the resulting 
mask by adding 3 voxels to its boundary. The data set used to construct 
and evaluate our models was the constructed by applying the masks to 
the corresponding normalized CT and cropping to a cube containing the 
nodules. This gave us a total of 2662 3D images containing nodules. See 
Fig. 1 for an illustration of the preprocessing process.

We extracted each of the radiologists’ subjective assessments of 
malignancy likelihood and computed the median scores across the 
readers for each nodule. If the median score for a nodule was < 3 we 
marked it as benign, if > … 3 as malignant. The nodules with median 
score 3 (indeterminant) were dropped from our data set. This gave us 
a total of 1106 benign nodules and 525 malignant.

C. Our fastai Extension and the 3D CNN Architecture
Our work is based on a combination of the MONAI deep learning 

framework and our own extension of the powerful fastai library 
built on top of PyTorch [14]. We have added functionality to support 
the construction, training and evaluation of three-dimensional 
convolutional neural networks, tailored for medical imaging-specific 
problems and file formats. In short, we have extended fastai to 
support 2D and 3D MRI and CT images by constructing new data 
loaders and data augmentation capabilities, and enabled the use of 
custom 3D CNNs while still supporting the highly impactful training 
techniques of fastai. This includes the learning rate finder [21] to 
find the optimum learning rate and the one-cycle learning rate policy 
(i.e. specific learning rate changes during the training, related to the 
concept of super-convergence [22], [23]).

The architecture of our 3D CNN is shown in Fig. 1. Each con-
volutional layer in our network consists of 3 × 3 × 3 convolutions, 
followed by a batch normalization layer [24] and a rectified linear 
unit (ReLU) layer [25]. We add residual connections after each second 
convolutional layer. Each down-sampling block has a two-stride 2 × 2 × 2 
max-pooling layer.

To enable discriminative learning rates, i.e. different learning rates 
for different parts of the network, we divide the network into two layer 
groups: convolutional layers and additional layers. This also allow us 
to do gradual unfreezing, and eases the potential re-use of trained 
weights from the early layers for other tasks (i.e. transfer learning).
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Fig. 1. The annotated images from our data source, LIDC-IDRI, are preprocessed by extracting 3D regions of interests around each of the nodules by taking the 
union of all the masks provided by expert annotations (e.g. A1−A4), before dilating the image slightly to capture some of the nodule surroundings. Using the 
expert assessment of malignancy, the resulting nodule images are used to train a 3D CNN model. This results in a nodule classification model with binary output: 
malignant (M) or benign (B). Our 3D implementation of class activation maps provides a visual explanation, here shown as a pair of 2D slices, indicating areas 
impacting our model’s nodule classification decision. For further details, see the text and the accompanying code repository: https://github.com/MMIV-ML/
Lung-CT-fastai-2020
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D. Training and Evaulation
To evaluate and get a robust estimate of our model’s performance, 

we selected all the subjects in the LIDC-IDRI data set that have 
corresponding patient-level diagnoses as our test set (99 subjects, 238 
nodules). The remaining data were divided into a training set (526 
subjects, 1140 nodules) and a validation set (90 subjects, 255 nodules), 
using stratified sampling and no patient overlap between the sets. In 
order to deal with imbalanced classes in the training set (802 benign, 
338 malignant), we over-sampled the malignant class by duplicating 
each sample.

Before feeding the images into the network, each image was 
padded to have the same volume dimension as the largest volume data 
× a scaling factor. We used data parallelism to train our model on four 
NVIDIA Tesla V100 32GB GPUs. Our training process was composed 
of two phases:

• Training a model on 44 × 46 × 31 volumes, with weights randomly 
initialized (He initialization [26]).

• Training a final model on 88 × 91 × 62 volumes, with weights 
initialized by copying the weights of the previous model.

This approach is known as progressive image resizing [27], a 
technique used to both reduce training time and to increase model 
performance. In our case, we found that it improved the accuracy on 
the validation set by almost two percentage points.

Our model was trained end-to-end in mixed precision [28] using 
the Adam optimizer [29]. The base value for the cyclic learning rate 
in the final model was set to 6 × 10−4 for frozen layers and 5 × 10−5 

after unfreezing the layers, with learning rates for earlier layers scaled 
down by a factor of 20. We trained the model using a batch size of 
128. For data augmentation we used random scaling with a factor 
from 1.0 to 1.1 and random rotation by an angle in the range [-35, 
35]. As the geometry of the nodules can contain information about 
their malignancy, we only used shape-preserving morphisms. For 
regularization, we used a weight decay rate of 0.01 and a dropout ratio 
of 0.4, selected based on the performance on the validation data. Our 
final model was trained on the combined training and validation data 
for a few epochs, with a small cyclic learning rate, to also make use of 
the information contained in the validation data and its labels during 
model training.

E. Explainable AI and Class Activation Maps
As deep learning models are highly complex hierarchical objects 

with enormous amounts of parameters, there is an inherent “black-
boxiness” to them. As they are increasingly being implemented 
across the medical imaging and decision making domains, this raises 
both technical challenges (how to open the black box?) and ethical 
conundrums (when is it OK to use predictions you cannot fully 
understand?). Using our extension of fastai we can produce what 
are called class activation maps (CAM) [30] and gradient-weighted 
class activation mapping (Grad-CAM) [16]. These are heat maps that 
can be used to indicate the importance of regions of an image for the 
model’s classification, providing a relatively simple way to gain some 
explainability for image classification models, and potentially also to 
gain useful insights into the data used to construct the model.

CAM generates heat maps from the adaptive pooling layer, where 
the average of each cell across every channel is calculated. On the 
other hand, Grad-CAM uses the gradient information flowing into the 
last convolutional layer to produce heat maps, making it applicable to 
any CNN architecture.

A problem with these methods is that the resolution of the heat 
maps are the same size as the final convolutional layer. This means 
that we have to upsample them to the same size as the input images 
to highlight class-specific image regions. To mitigate this problem one 

can remove the pooling layers, but this will require more computational 
power due to larger spatial dimensions. In addition, overfitting is more 
likely to occur, which might reduce the performance of the network.

V. Experimental Results

Our test set consisted of 238 nodules from 99 subjects, 146 benign 
and 92 malignant. There were no overlap among train and test subjects. 
In addition to predicting nodule malignancy, we further investigated 
the models predictive capabilities by using the ground truth labels of 
patient diagnosis available in the LIDC-IDRI data set. The 99 patients 
in our test set were all diagnosed as either malignant or having benign 
or non-malignant disease. If one or more nodules from a patient was 
predicted to be malignant, we predicted malignant, else benign or non-
malignant disease.

The results are displayed in Table I, Fig. 2 and Fig. 3.

TABLE I. Performance Metrics of Our Binary Classifier Predicting 
Single Nodules (N=238) and Patient Cases (N=99) in the Test Data Set: 

Accuracy (ACC), Precision (PREC) and Recall (REC). For the Patient 
Predictions We Give Performance Values Separately for Those 

Obtained by Our Model (CNN) and for Those Obtained by the Median 
Radiologist Assessments (Rad)

Classification task

Nodule classification (%) Patient classification (%)

ACC PREC REC Source ACC PREC REC

92.4 85.6 96.7 CNN 75 86.8 78.7

Rad 70 88.1 69.3
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Fig. 2. Predicting the “likelihood of malignancy” in the test set of 238 nodules. 
(a) Confusion matrix. (b) ROC curve.
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Fig. 3. Confusion matrices: (a) for the CNN predictions, (b) for the 
median malignancy scores by the radiologists. Note the additional cancer 
diagnoses captured by our CNN.

The mean score assigned to each nodule classified correctly as 
benign was 1.91 (SD 0.56) and as malignant 4.18 (SD 0.56). The nodules 
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misclassified as benign had a mean score of 3.5 (SD 0.0) and those 
misclassified as malignant had a mean score of 2.23 (SD 0.4).

To assess the inter-rater variability and how the model compares 
to the human raters, we calculated the Krippendorff’s alpha 
coefficient [20] for the 238 nodules. Krippendorff’s alpha applies to 
any measurement level, can handle various number of raters and is 
invariant to the permutation and selective participation of raters. It also 
ignores missing data entirely. The independent and interchangeable 
rater panel per unit consisted of one to five radiologists using scores  
s ∈ {1 (most likely benign), 2, . . . , 5 (most likely malignant)}.5 We note 
that the agreement on these subjective assessments were not very 
high. For the Krippendor’s α ∈ [0, 1], α  = 0 is absence of agreement, 
and α = 1 is perfect agreement. For the “likelihood of malignancy” 
we found Krippendorff’s α = 0.49, CI.025,.975 = [0.43, 0.54] (obtained by 
bootstrapping), indicating poor agreement among the raters.

The Krippendorff’s alpha coefficient (in this case equivalent to 
Cohen’s Kappa score) comparing the model’s rating to the ground 
truth (determined by the median radiologist rating) was 0.84, 
CI.025,.975 = [0.78, 0.91].

The Krippendorff’s alpha of the binary assessments of malignancy 
among the radiologists was α = 0.58. By including the independent, 
CNN-based rater we obtained an increased alpha score to 0.68, 
indicating the usefulness of including this rater in the assessment of 
each nodule.

We applied our class-activation map approach described in Section 
IV.E to a selection of test nodules and CNN predictions. In general, 
getting better insight into CNN behavior and model predictions, both 
in cases where it classifies correctly and in cases where it fails, is of 
interest for several reasons. The class activation maps can provide 
discriminative information in image regions or part of the lesion 
being used by the model to predict the class label for the particular 
instance. This ability can at best introduce interpretability and trust 
in the model, or facilitate exploration and discovery of new features 
(image biomarkers) that might have a mechanistic relation to the 
disease process or disease state. In the present study, we did not fully 
explore the CAM approach or its potential by involving radiologists 
or pathologists, and the CAM results are anecdotal and not rigorously 
validated.

Some of the generated heat maps from our CNN model are presented 
in Fig. 4. By examining the malignant nodules (nodule 1 and nodule 2) 
and their corresponding heat maps, we can see that the lesion brims 
are highlighted, indicating that these regions are most important for 
the predictions. This might reflect typical malignant tumor growth 
characterized by central necrosis and viable tumor cells in a well-
vascularized periphery. Another interesting finding was nodule 
4, a nodule rated benign but classified as malignant by our model. 
This nodule was assessed by two radiologists deciding malignancy 
likelihood 2 and 3, respectively (i.e. towards benign), whereas the 
biopsy done on this nodule concluded that it was a malignant primary 
lung tumor.

VI. Discussion and Perspectives

We have addressed an important field of oncological radiology: the 
use of 3D CT scans to characterize focal lung lesions as benign or 
malignant. Using a large multi-center collection of well-organized CT 
examinations we constructed and trained a 3D CNN model to perform 
nodule malignancy classification.

5  The “likelihood of malignancy” characteristic is particularly subjective since the 
radiologists were not provided with any clinical information about the patients. 
As a general scaling guide, the likelihood of malignancy was rated under the 
assumption that the lesion was associated with a 60‐year‐old male smoker.

Because CNNs automatically extract features from data, both 
interpretation and troubleshooting are more difficult compared 
to traditional machine learning models. For domains like medical 
diagnosis, where decision confidence is crucial, it is important to make 
sure that the results make sense. Otherwise, these models can easily 
end up performing worse than expected when used for real-world 
decision making. CAMs and Grad-CAMs generated from CNN models 
can be valuable for developers to gain some visual insights into models 
decision processes, helpful to identify data leakage, structural bias and 
for more comprehensive performance evaluation. In addition, the 
heat maps have the potential to detect local features that can be used 
as a biomarker for identifying malignant nodules. We implemented 
and explored these simple “explainable AI” techniques, assessing 
successful and unsuccessful nodule predictions.

Our model had a test set accuracy of 92.4% on the per-nodule 
malignancy classification task. On the patient-level malignancy 
classification task, our model had an accuracy of 75%. This gave an 
indication of the network’s ability to pick up patterns corresponding to 
real nodule malignancy. As shown in Fig. 4, class activation maps can 
highlight regions of particular relevance for the nodule classifications, 
further indicating that the reasonableness of the features picked up by 
our CNN model.

In further work we will use the present system as a component 
in a detection + classification framework, obviating the need for 
manual annotation steps. We will test the system in the established 
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radiology research workflow at our hospital, through our “research 
PACS and RIS” system, enabling us to run arbitrary algorithms on 
locally recorded images. Such real-world testing is crucial to uncover 
and surmount the many technical obstacles faced when attempting 
to bring deep learning-based systems into practice [3]. Especially as 
it facilitates prospective investigations of the effect of combining the 
algorithm’s predictions with radiologists’ expertise, arguably the most 
interesting next step for research into applications of deep learning in 
medicine.
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