
International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 6, Nº6

- 164 -

I. Introduction

Generally, Artificial Intelligence (AI) can be encompassed in
some functional graphical and mathematical models that act as a

symbolic system [1]. Greater impact can be achieved when symbolic
operations have been integrated inside the Artificial Neural Network
(ANN). ANN known as the conductive system has received careful
attention due to its ability to evaluate the complex nonlinear dataset
[1]. ANN has been successfully used in solving non-limited applications
such as classification and optimization of approximation functions.
However, the functionality of ANN can be measured by embedding
the correct symbolic rule to govern the whole neural system. Logic
programming has been a language of ANN for decades. Wan Abdullah
[2] successfully explored the neural network that has been governed
by logic programming. In this work, logical rule embodied ANN and
the characteristic of the network will be examined by using Lyapunov
energy analysis. The minimization of energy as a solution to the
combinatorial representation motivates the integration of logical rules
in a neural network [3]-[6]. The question remains on how one can
choose the best ANN model in order to embed logic programming.

The reliable ANN model typically has the least prediction and
classification error analysis. In that regard, Radial Basis Function

Neural Network (RBFNN) fascinated the researchers from sciences and
engineering field because of simpler networks structure, faster learning
speed and better approximation capabilities. As stated by Hamadneh
et al. [7] in their paper, RBFNN can be used to develop separate models
for the shear stress and heat transfer rate due to simpler networks
structure. RBFNN is a feedforward neural network that contains
3 neuron layers (input, hidden and output layers). The input layer
(containing input neurons) receives information being transferred
to the hidden layer for data synthesis and training. The synthesized
data will be used in the output layer (containing output neuron).
The foundation of having 3 layers is to minimize the classification
and prediction error in RBFNN [8]. Hamadneh et al. [4] initially
implemented logic programming in RBFNN. Their proposed network
explored the capability of HornSAT as a logical rule in RBFNN. In this
case, logical structure of RBFNN is solely dependent on 3 parameters:
the center of all input neurons, its widths, and its Gaussian activation
function. Despite the fact that RBFNN can be applied effectively, the
number of neurons in a hidden layer for RBFNN will determine the
complexity of the network [9]. If the number of neurons in the hidden
layers is not enough, the learning in RBFNN fails to achieve optimal
convergence. However, if the number of neurons in the hidden layers
is very high, the network will experience overlearning [10]. Since the
complexity of RBFNN increases as the number of clauses increase, an
optimization algorithm becomes crucial.

Yang and Ma [11] have successfully applied the Sparse Neural
Network (SNN) algorithm for optimizing the number of hidden
neurons. The core mechanism of SNN is in reducing the error via trial

Satisfiability Logic Analysis Via Radial Basis Function
Neural Network with Artificial Bee Colony Algorithm
Mohd Shareduwan Mohd Kasihmuddin1, Mohd. Asyraf Mansor 2*, Shehab Abdulhabib Alzaeemi1, Saratha
Sathasivam1

1 School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)
2 School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)

Received 6 October 2019 | Accepted 7 May 2020 | Published 25 June 2020

Keywords

Artificial Bee Colony
Algorithm, Radial
Basis Function Neural
Network, 2 Satisfiability,
Logic.

Abstract

Radial Basis Function Neural Network (RBFNN) is a variant of artificial neural network (ANN) paradigm,
utilized in a plethora of fields of studies such as engineering, technology and science. 2 Satisfiability (2SAT)
programming has been coined as a prominent logical rule that defines the identity of RBFNN. In this research,
a swarm-based searching algorithm namely, the Artificial Bee Colony (ABC) will be introduced to facilitate the
training of RBFNN. Worth mentioning that ABC is a new population-based metaheuristics algorithm inspired
by the intelligent comportment of the honey bee hives. The optimization pattern in ABC was found fruitful in
RBFNN since ABC reduces the complexity of the RBFNN in optimizing important parameters. The effectiveness
of ABC in RBFNN has been examined in terms of various performance evaluations. Therefore, the simulation
has proved that the ABC complied efficiently in tandem with the Radial Basis Neural Network with 2SAT
according to various evaluations such as the Root Mean Square Error (RMSE), Sum of Squares Error (SSE),
Mean Absolute Percentage Error (MAPE), and CPU Time. Overall, the experimental results have demonstrated
the capability of ABC in enhancing the learning phase of RBFNN-2SAT as compared to the Genetic Algorithm
(GA), Differential Evolution (DE) algorithm and Particle Swarm Optimization (PSO) algorithm.

* Corresponding author.

E-mail address: asyrafman@usm.my

DOI: 10.9781/ijimai.2020.06.002

Regular Issue

- 165 -

and error approach for determining the number of hidden neurons
explicitly from the set of neurons. The limitation of SNN paradigm
can be seen in extensive computational time during the number of
hidden neuron computation process. Inspired by several works of
[12]-[14], the 2 Satisfiability (2SAT) logic representation will be
utilized with RBFNN to determine the important parameters for the
hidden layer that control the number of hidden neurons. In fact, 2SAT
is selected since it is complying with RBFNN based on the structure
and representations.

Another major component of 2SAT in RBFNN is the training method
that has a significant influence on the performance of RBFNN. On this
matter, a plethora of global optimization methods have been extensively
applied due to their global search capability. Metaheuristics algorithm
is a popular algorithm to search for a near optimal solution for RBFNN
[15], [16]. There are various nature-inspired and recently developed
optimization algorithms such as Genetic Algorithm, Differential
Evolution algorithm, Particle Swarm Optimization algorithm, Artificial
Bee Colony, etc. and many of these proved their suitability to many
engineering optimization problems [17].

The theoretical basis of the Genetic Algorithm (GA) has been
developed by Holland [18]. The first who used GA in a problem
involving the control of gas-pipeline transmission were Goldberg and
Holland [19]. Other studies have been made by Hamadneh et al. [4]
who used GA to train the hybrid model RBFNN with higher-order SAT
logic. In this study, they used the full training paradigm to train RBFNN
with higher-order SAT logic using k-means cluster algorithm and GA.
The quest of finding the optimal algorithm was continued by Pandey et
al. [20] who compared Multiple Linear Regression (MLR) and genetic
algorithm to predict temporal scour depth near-circular pier in non-
cohesive sediment. This study utilized 1100 laboratory experimental
data-sets to develop the generalized scour equation using MLR and GA.
In recent publications, Jing and Li [21] developed a reliability analysis
method by integrating GA with RBFNN. This paper adopted GA to find
the “potential” most probable point (MPP) in the optimization problem
by control the density of samples to refine the RBFNN.

Differential evolution (DE) was first introduced by Storn and
Price [22] to solve the various global optimization problems. DE is a
manageable yet powerful evolutionary algorithm with the advantages
of less parameter, high simplicity, and fast convergence [22]. DE has
been beneficial to various networks such as Hopfield Neural Network
[23] and feed-forward neural networks [24]. Chauhan & Chandra [22]
proposed the DE algorithm to train a wavelet neural network (WNN)
by minimizing network error to obtain the proper relationship from
the input vector in the input layer to the output vector in the output
layer. Tao et al. [25] utilized the DE algorithm to improve RBFNN as
the prediction model for the coking energy consumption process.
Particle Swarm Optimization algorithm (PSO) is a nature-inspired
evolutionary algorithm that imitates the influence of bird migration
behavior [26]. PSO algorithm is one of the evolutionary algorithms
proposed by Kennedy and Eberhart [27]. In some succeeding works,
Qasem & Shamsuddin [28] proposed the PSO algorithm for enhancing
RBFNN learning by optimizing the parameters of the hidden layer
and output layer. Another study has been made by Alexandridis et
al. [29], who used the PSO algorithm to optimize the construction of
RBFNN. The proposed model was able to solve classification problems
and solve function approximations with improved generalization
capabilities and accuracy.

Karaboga and Basturk [30], [31] proposed the Artificial Bee
Colony algorithm (ABC) to gain computational edge in optimizing the
capability of both local search and global search. ABC was inspired by
collective behaviors of bees gathering honey in an optimized pattern.
ABC has been beneficial to various networks such as Hopfield Neural
Network [14] and Hermite Neural Network [32]. Kurban & Besdok

[33] utilized ABC to estimation the centers, width, and weights as the
main parameters of RBFNN. Yu and Duan [34] proposed an optimized
ABC in RBFNN integrated with Fuzzy C mean Clustering. In this paper,
2 layers of optimization in ABC were reported to increase the accuracy
of the image fusion. Jafrasteh and Fathianpour [35] proposed hybrid
RBFNN by introducing perturbation in ABC. The proposed system
was reported to capture non-linear relationship in ore grade data. In
another development, Satapathy et al. [36] combined the benefit of
kernel trained ABC to further optimize the capability of RBFNN. The
proposed RBFNN managed to increase the classification accuracy of
EEG signal for epileptic seizure identification. The perspective has
been expanded by Aljarah et al. [37] when they introduced hybrid
ABC with RBFNN to solve well known datasets. On the perspective of
logic programming in RBFNN, little studies have been done to optimize
the parameter of RBFNN by using ABC. Kasihmuddin et al. [14] has
demonstrated the ability of ABC to serve as an effective learning
algorithm in Hopfield Neural Network (HNN). One of the notable
use of ABC is proposed by Jiang et al. [30]. In this work, the ABC is
employed for optimizing the parameters of RBFNN and predicting the
ecological pressure. In another development, Menad et al. [38] have
utilized the RBFNN framework with ABC algorithm (RBFNN-ABC) for
predicting the carbon dioxide solubility and concentration in brine.
The results manifested the capability of ABC in optimizing RBFNN
that result in higher accuracy. By hybridizing RBFNN with 2SAT logic,
here we examine the effects of ABC on the training phase as a single
framework, RBFNN-2SATABC. Worth noting that the proposed model
will be compared with the existing models. Thus, the main motivation
of employing ABC in this research is due to:

1. According to Kasihmuddin et al. [14], [62], ABC has outperformed
the other algorithm such as [5] and [6] in enhancing the training
phase for bipolar 2SAT logical representation. We extended the non-
binary representation for optimizing the parameter entrenched in the
hidden layer of RBFNN as inspired by the binary operators consist of
employed bees and onlooker bees’ phase.

2. Several current studies such as Menad et al. [38] and Jiang et al.
[39] utilize the ABC in optimizing the prediction capability of RBFNN.
Both local search and global search capability reduce the chances for
ABC to achieve sub-optimal fitness. Motivated by these recent works,
ABC algorithm is applied in improving the output quality from the
output weight thereby improving the performance of the structure
RBFNN-2SAT.

To this end, the contributions of this paper are as follows:

1. This paper explores another perspective in approaching implicit
knowledge by using an explicit learning model. Real-life problem
(implicit representation) is learnable by using a set of explicit
mathematical representation (2SAT logical rule).

2. This is the first attempt to embed 2SAT logical rule (knowledge)
to the feed-forward neural networks (learner). In this study, the
2SAT logical rule has been embedded in RBFNN by systematically
obtaining the optimal value of parameters (center and width).
2SAT logical rule is expected to optimize the structure of the
RBFNN by fixing the number of hidden neurons involved.

3. Since the training of the proposed RBFNN always converges to
suboptimal output weight, this paper will explore the capability of
Artificial Bee Colony (ABC) compared to other existing established
metaheuristics. The aim of the training model in RBFNN is to
obtain the optimal output weight with the lowest iteration error.
Extensive experimentation with various performance metrics has
been conducted to reveal the effectiveness of ABC in the proposed
RBFNN-2SAT.

4. The proposed RBFNN provides an interesting perspective.
RBFNN obtained the output weight of 2SAT by minimizing the

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 6, Nº6

- 166 -

objective function with the structurally systematic parameters.
This approach is interestingly different from Sathasivam [40] that
utilized the Wan Abdullah method in finding the correct synaptic
weight (output weight). Although both paradigms utilized ABC
in optimizing the proposed methods, the method proposed in
this paper deals with non-binary optimization compared to the
existing method. Therefore, the proposed method creates a new
possible horizon for logic programming in the neural networks.

The rest of this paper is arranged as follows. The 2SAT logical
rule is formulated in the first section. After the overview structure
of the general RBFNN, the proposed hybrid model integrated with
2SAT is constructed. Accordingly, the proposed training model via
metaheuristics algorithm namely GA, DE, PSO, and ABC will be
discussed in detail. Finally, this paper presents numerical results to
show the effectiveness of ABC in optimizing 2SAT in RBFNN and we
conclude the paper with some remarks and future work.

II. Boolean 2 Satisfiability Representation

Satisfiability (SAT) is demarcated as a logic rule with an array
of clauses composed of binary literals. SAT is effectively governed
by positive [5] and negative outcomes. The main structure of SAT
representation is shown as follows:

(a) Consists of a set of m variables of 1 2 3, , ,....., mv v v v .

(b) Composes of a set of literals. A literal refers to the variable v or
a negation of a variable, v¬ .

(c) A set of n discrete clauses, 1 2 3, , ,..., nl l l l . Every single clause
composes of literals strictly combined by only ∧ logical operator.

Every variable can only take a bipolar value which is 1 or 0
that exemplifies the idea of true and false. Another variant of SAT
representation is 2 Satisfiability. 2 Satisfiability (2SAT) consist of set
of clauses that contain strictly 2 literals. The general formula for 2SAT
logic is as follows:

2
1 1 1

,where , 2
n k n

SAT i i i j
i i j

P l l C D k
= = =

= ∧ = ∨ ∨ =
 (1)

where il refers to the clauses of 2SAT, meanwhile andi iC D denote
the literals, ∨ refers to Disjunction (OR), and ∧ is an logical operator
of Conjunction (AND).

The goal of 2SAT logic is to establish the ideal logical model of
RBFNN to calculate the parameters of the hidden layer which
contribute in deciding the number of hidden neurons in the hidden
layer. Ideally, a combinatorial problem is similar to an ordinary
mathematical model with quantifiable rate of change. Unfortunately,
that statement does not hold if the specific combinatorial problem is
dynamical and appeared as non-linear or linearly distributed. There
were several efforts to represent the combinatorial problem via 2SAT
formulation [42], [43]. These combinatorial problems contain implicit
knowledge and could not be represented in standard rate of changes
[44]. From that perspective, 2SAT is the main representation because
this logical rule has a huge flexibility in terms of state (1 or 0) compared
to standard mathematical representation.

III. Radial Basis Function Neural Network

Radial Basis Function Neural Network (RBFNN) is a variant of feed
forward neural network with hidden interconnected layer which was
pioneered by Lowe and Moody [45], [46]. Compared to other network,
RBFNN has a more integrated structure and architecture. In terms
of structure, RBFNN contains three neuron layers for computation
purposes (See Fig. 1) [47]. In the input layer, m neurons represent the

input data that was transferred to the system. During the training
phase, the parameters (center and width) will be calculated in the
hidden layer. The parameters obtained will be used to calculate the
output weight in the output layer. To reduce the dimensionality from
the input to the output layer, a Gaussian activation function has been
introduced. The Gaussian activation function, ()i xϕ of the hidden
neuron in RBFNN is as follows [48], [49]:

()

2

'

1
22

N

ji j j
j

j

w x c

Q x
σ

=

−

=

∑

 (2)

() ()Q x
i x eϕ −= (3)

where cj , iσ are the center and width of the hidden neuron,
respectively. In this case, jx is a input value for N input neurons and
the Euclidean norm from neuron i to j can be defined as follows:

2

' '

1 1 1

N N N

ji j i ji j i
j m j

w x c w x c
= = =

 − = −

∑ ∑ ∑
 (4)

where '
jiw is the input weight between the input neuron j and the

hidden neuron i. Structurally, jx is a input data in the training set and
the hidden neuron i. ic is the center of the hidden neuron. The final
output of RBFNN ()iF w is given by the following:

() ()
1

j

i i i k
i

F w w xϕ
=

=∑
 (5)

where () () () () ()()1 2 3, , ,.....,i NF w F w F w F w F w= is the output value
of RBFNN and the output weight is given by 1 2(, ,...,)i Nw w w w= .

The aim of RBFNN is to obtain the optimal weights iw that satisfy
the desired output value. In RBFNN, the hidden neuron provides a
set of function that represents input pattern spanned by the hidden
neuron [4], [47].

.

.

.

.

.

.

.

.

.

Input
Neutron

Output
Neutron

Hidden
Neutron

Input
Data

Input
weight

Output
weight

w’1 w1

w’2

w’n wn

w2φ2

φnxn

An

Bn

φ1

A1 x1

x2

f (xn)

f (x1)

f (x2)
A2

B1

B2

Fig. 1. Structure of RBFNN.

In this section, we will consider no training in conventional method
Radial Basis Function Neural Network. Radial Basis Function Neural
Network no-training paradigm was proposed by Vakil-Baghmisheh
and Pavešić [50]. No training in Radial Basis Function is the simplest
training because all the parameters were fixed. This method of
training of RBFNN-2SAT does not have any practical value, because
the number of prototype vectors should be equal to the number of

Regular Issue

- 167 -

input data, and consequently the network will be too complex. Fig. 2
shows the steps to integrate RBFNN no training with 2SAT, which can
be abbreviated as RBFNN-2SATNT [9]:

Start

End

Given a logic Programming and convert the formula into
Boolean algebra system

Determine the input data xi=[–2, –1, 0, 1] and the target output
yi in RBFNN

Determine the centers are the input values of the training data
ci=[–2, –1, 0, 1]

To assign initial values to the output weights in the output layer
by some random values in the range [–1, +1]

Calculate the width σi=[0.074, 0.056. 0.094, 0.105]

Compute the output linear equation actual output

| f (wi) – yi| ≤ ζ

Performance evaluation

Fig. 2. Flowchart of RBFNN-2SATNT.

The parameter ix is the input data, whereas ic = ix is the center, iσ
is the width, and ζ is the tolerance value.

IV. 2SAT Programming in RBFNN

Kasihmuddin et al. proposed logic programming by integrating
2SAT rule with neural network [14], [51]. The weight of the
network was determined by Wan Abdullah method [2] where the
inconsistencies of 2 Satisfiability logical rule have been minimized.
The only problem of the proposed network is the rigidness of the
weight calculation. 2SAT can be embedded to RBFNN by representing
the variable as input neuron. Each input neuron jx constitutes {0,1}
which signifies False and True. By using the value from input neuron,
the parameters such as ic and iσ will be computed and the best number
of hidden neuron will be obtained. In other words, embedding 2SAT
as a logical rule makes RBFNN able to receive more input data with a
fixed value of center and width. Hence the aim of the combination is to
create a RBFNN model that classifies data based on 2SAT logical rule.
Representation of 2SAT in RBFNN is given as the following formula:

2
1 1

k n
SAT i j

i j
P C D

= =
= ∨ ∨

 (6)

where . iC and jD are atoms. Applying embedding
method of RBFNN, Eq. (6) will transform to:

() ()
1 1

k n

i i j
i j

x I C I D
= =

= +∑ ∑
 (7)

() () 1,
0,i j

whenC or DisTrue
I C or I D

whenC or Dis False

=
 (8)

Eq. (7) and (8) are vital in calculating training data for each 2SAT
clause. Hence the implementation of 2SAT in RBFNN is abbreviated

as RBFNN-2SAT. Table I illustrates the input data of RBFNN-2SAT for:

2 , , ,SATP C D E F K L= ← ← ← (9)

TABLE I. The Input Data and the Output Target data for

2 , , ,SATP C D E F K L= ← ← ←

Clause ,C D ← E F← K L←

DNF C D∨ E F∨ ¬ K L∨ ¬

The Input Data Form x C D= + x E F= − x K L= −

Input Data in the Training Set xi 0 1 2 -1 0 1 -1 0 1

The Target Output Data yi 0 1 1 0 1 1 0 1 1

After finding the center and the width of the hidden layer, RBFNN
will use the Gaussian function in Eq. (3) to calculate the output
weight. As the number of clauses increase, RBFNN-2SAT requires
more efficient learning method to find the correct output weight. In
this paper, a metaheuristics algorithm will be implemented to find the
optimal output weights that minimize the following objective function:

() ()

1

j

i i i
i

f w w xϕ
=

=∑
 (10)

where ()if w is the final output classification of the RBFNN-2SAT.

V. Genetic Algorithm in RBFNN-2SAT

A Genetic Algorithm (GA) is a standard metaheuristic algorithm
in solving various optimization problems. Given a finite solution
space, the structure of a GA can be divided into local search and global
search [52]. In a GA, the strings populations called chromosomes are
represented in terms of solutions to the optimization problem [53].
The quality of the chromosome is denoted by the fitness value. At
every generation, the fitness value of each chromosome is estimated,
and the best fitness is selected as final solution. The chromosomes
improve their fitness by implementing three (3) operators namely
crossover, selection and mutation. Crossover promotes the exchange
of information between chromosomes. Hamadneh et al. [4] used
the GA to decide the centers of hidden neurons width and number
of the hidden neuron by minimize the sum of absolute error of the
actual outputs and the desired outputs. During selection, several
chromosomes are selected from the current population depending on
their fitness value. Mutation has been added to create genetic diversity
of the chromosomes. In this paper, GA will be used to optimize the
output weight of RBFNN-2SAT by reducing the training error. The
implementation of GA in RBFNN is defined as RBFNN-2SATGA. In
RBFNN-2SATGA, GA will calculate the output weight by using the
centers, width in the hidden neuron. The steps involved in RBFNN-
2SATGA are as follows:

Step 1
Population Initialization: The output weights represented by a

chromosome will be initialized. The representations of chromosomes
are as follows:

()1 2 3, , ,....,i Nw w w w w= (11)

The population has Npop chromosomes containing NN of random
output weights. The aim is to minimize the objective function:

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 6, Nº6

- 168 -

()
()

1

1, 0

0,

j

i i
GA i i

w x
f w

Otherwise

ϕ
=

 ≤=

∑
 (12)

where ()GA if w is the objective function in the RBFNN-2SATGA
model.

Step 2
Fitness Computation: The fitness of each individual chromosome

is calculated via a basis function of RBFNN-2SAT. The basis function
used in this paper is shown in the following equation:

()()
1

1i
GA i

fit
f w

=
+

, 0 1ifit≤ ≤ (13)

where ()GA if w is the objective function and ifit is the fitness
value.

Step 3
Selection: The chromosomes are arranged in descending order

based on the value of the fitness function. Only the best chromosomes
(with the highest fitness value) are kept while others are discarded.
The selection probability, pi for each chromosome will be calculated
by using the following equation:

0

i
i n

i
i

fitp

fit
=

=

∑
 (14)

Step 4
Crossover: During the crossover phase, information from the

parent will be randomly exchanged for creating offspring with
different genetic composition. The location of the crossover will be
randomly selected. Crossover phase will determine the number of
cross-population according to the crossover rate. Given two parents wk
and wm, the offspring wi

new will be produced by the following equations
[54], [55]:

(), , 1,2,3,...
, 1

m k m inew
i

m i

w r w w p i n
w

w p
+ − == − (15)

where pi is the probability, r is the crossover rate, wk is the
chromosome with higher probability, wm is the chromosome with
lower probability and the parameter k is choosen by the following
equation:

(,),
, 1

i

i

rand m n p
k

m p
= − (16)

where k + m = n and k > m. The value of k is uniformly distributed
between k and m.

Step 5
Mutation: During the mutation phase, the chromosome

information will be randomly assigned within the pre-determined
range (often determined by the user). The mutation is expected to
create a newly breed of chromosome. The equation involved is as
follows:

()5,5 , (0,1)
, (0,1)

new
m

i

rand rand
w

w rand
τ

τ

 − <=
≥ (17)

where new
mw is the new chromosome from mutation phase when

[0,1]τ ∈ .

Step 6
Termination: GA will iterate up to 10000 Generations. If a given

solution termination criterion is met, the calculation of the algorithm
is stopped or will go back to step 2 with i = i + 1. The final output of
RBFNN-2SAT is a chromosome that contains optimal output weights
of RBFNN-2SATGA.

VI. Differential Evolution Algorithm in RBFNN-2SAT

Storn and Price [22] has fruitfully introduced a new evolutionary
population-based algorithm called the Differential Evolutionary (DE)
algorithm which typically is being used in numerical optimization.
The fundamental framework of DE algorithm can be divided into
local and global search with an adaptable function optimizer [56]. The
core differences between GA and DE is that the selection operator
in DE uses an equal probability to elect parents. Hence, the chance
is independent towards the fitness value of the solutions. In the DE
algorithm, every individual solution competes with its parent and the
fittest one will win [57]. In this work, the DE algorithm will be adopted
as a learning mechanism during the training phase. The purpose of the
training is to compute the corresponding output weights that connect
hidden neurons and output neurons of RBFNN-2SAT. The stages
involved in RBFNN-2SATDE in optimizing the connection weights
between the hidden layer and the output layer is represented in Fig. 3.

Start

End

Initialization of the population
w = (w1, w2, w3, ..., wn)

Randomly select the initial parameter
w0 = w1 + rand (0,1) (wu – wl)

| f (wi) – yi| ≤ ζ

Mutation is generated according to
wi

M = wi
0 + F (wi

u – wi
l)

Recombination

wi
R =

wi
M, if (rand(0,1) ≤ Cr)

wi
0, otherwise,

wi
best =

Selection
wi

R, if (f (wi
R) ≤ f (wi

0))
wi

0, otherwise,

Save as

No

Yes

Output
results

Stop

wi
best

i++

Fig. 3. Flowchart of RBFNN-2SATDE.

The real parameters wl and wu are lower and upper bounds,
respectively. w0 is the initial parameter value distributed uniformly on

the intervals [,]l u
i iw w .

M
iw is the mutation output weight, [0,2]F ∈ is

the mutation factor. R
iw is the recombination output weight, [0,1]rC ∈

is the crossover probalitiy. ζ is the tolerance value.

VII. Particle Swarm Optimization Algorithm in RBFNN-
2SAT

The PSO algorithm is a class of iterative swarm-based searching

Regular Issue

- 169 -

algorithm, deployed widely as the learning algorithm or universal
optimization. The pioneer work of PSO was coined by Eberhart and
Kennedy [26] by mathematically modelling the socio-behavioral
feature of the bird flocking and fish schooling in their own population.
The remarkable feature in PSO is the existence of adjustable free
parameters, which makes it easy to implement and optimize.
Specifically, PSO adopted a vigorous searching process by impending
the best particle in a solution space [58]. Pursuing that, the potential
solutions, named particles, fly over the searching space by succeeding
the existing optimum particles. In addition, the changes in the position
of the particles occur in PSO, where it is vital in searching for the
best particle. This study adopts the PSO algorithm to optimize the
output weight among the hidden neurons and the output neurons of
RBFNN-2SAT. Therefore, the steps involved in RBFNN-2SATPSO are
represented in Fig. 4.

Start

Initialization of the population w0, x0

Evaluate initial populations using objetive function f (wi)

If f (xi) < f (pi
best) then pi

best = xi

If f (xi) < f (gi
best) then gi

best = xi

End

Save as wi
best

Output results

Stop

| f (wi) – yi| ≤ ζ

The particle updates its velocity:

wi+1 = Ω wi + ε1 rand1 (pi
best – xi) + ε2 rand2 (gi

best – xi)

The particle updates
its position: xi+1 = xi + wi+1

i++

No

Yes

Fig. 4. Flowchart of RBFNN-2SATPSO.

The parameter Ω is the inertia weight, whereas ε1 = ε2 = 2 are
acceleration constants, rand1= rand2 are experimented arbitrarily
within [0, 1], best

ip refers to the individual best position attained by
the particle of the primary swarm, and best

ig denotes the global best
position completed by the particles of the sucessive swarm and the
position of the new particle, xi. Additionally, ζ is the tolerance value.

VIII. Artificial Bee Colony Algorithm in RBFNN-2SAT

Artificial bee colony (ABC) algorithm has been introduced by
Karaboga [59] in resolving various mathematical optimization
problems. In ABC, the colony of bees contains three groups called
employed bees, onlooker bees, and scout bees. Generally, employed
bees bring quantities of nectar from the resource food to the hive.
They will share the information about the source of food with a
certain probability by dancing inside the hive. Then, onlooker bees
stay in the dancing areas and decide source of food depending on the
prospect (the probability) provided by the employed bees [32]. The
other type of bees is called the Scout Bee, which conducts the random
search for new sources of food if the quality of the food source is not
in a satisfactory state. In this paper, ABC will be used to optimize the
output weight of RBFNN-2SAT by reducing the training error. The

implementation of ABC in RBFNN is defined as RBFNN-2SATABC. In
this context, the function to be optimized is:

()
()

1

1, 0

0,

j

i i
ABC i i

w x
f w

Otherwise

ϕ
=

 ≤=

∑
 (18)

where ()ABC if w is the objective function of the RBFNN-2SATABC
model. The algorithm involved in RBFNN-2SATABC is as follows:

Step 1

Population Initialization: Initialize all the bee that is:

1, 2,(, ,..., ,...,)ji i i ji diw w w w w=
 (19)

in RBFNN-2SAT as:

min max min[0,1] ()ji j j jw w rand w w= + −
 (20)

where min max,ji j jw w w ∈ , minjw and maxjw are the minimum
value and maximum value of the output weight with index of

{1,2,..., }i n∈ and {1,2,..., }j d∈ . n is the number of employed bees (the
number of solutions), and d is the dimension of the solution space
(number of hidden neurons).

Step 2

Employed Bee Phase: Employed bee will search for the food
source. The new food source (solution) for employed bees, employed

jiw
is given as follows:

()0,1employed
ji ji jkjiw w rand w w= + − (21)

where j, k are selected randomly and the wjk is called the neighbor
bee of wji. The value of ()employed

ABC jif w will be calculated as follows:

() ()
1

j
employed employed

ABC iji ji
i

f w w xϕ
=

=∑
 (22)

()
1

1
i employed

ABC ji

fit
f w

=
+

 (23)

where ifit is the fitness value of the bee.

Step 3

Onlooker Bee Phase: The probability value of the food sources
will be calculated. Onlooker bee will perform exhange of information
based on the following probability:

()
()

Onlooker

1

employed
i

i i SN
employed
i

i

fit w
p

fit w
=

=

∑
 (24)

By using the above probability, the food source will be obtained by
using equation (21).

Step 4

Scout Bee Phase: If the values of fitness of the employed bees are
not improving by a number continuous predetermined of iterations,
which is called (Limit) those food source are abandoned, and these
employed bee become the scouts, and generate a new solution new

iw
for the employed bee by using the following equation:

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 6, Nº6

- 170 -

(5,5),
,

new
i

i

rand limit trial
w

w Otherwise
− >

=
 (25)

Step 5

Termination: If the stopping criterion is met, then it stops and
the best food source is memorized, otherwise, the algorithm returns
to Step 2.

IX. Experimental Setup

All the proposed RBFNN-2SAT model will be executed and coded
in Microsoft Visual C # 2008 Express program in Microsoft Window
7, 64-bit, with 500 GB hard drive specification, 4096 MB RAM, and
3.40 GHz processor. The lists of parameters used in each RBFNN-2SAT
model are summarized in Table II to Table V. Simulated data sets will
be obtained by randomly generate the input data. The choice of data
reduces the possible bias of the data which covers a wider range of
search space. Next, the number of neurons NN used in the experiment
varies from 6 108NN≤ ≤ .

TABLE II. List of Parameters in RBFNN-2SATGA

Parameter Value

Number of iteration 10000

Selection type Wheel selection

Number of individuals 50

Mutation ratio 1

Mutation type Uniform

Crossover ratio 1

Crossover type Single point

TABLE III. List of Parameters in RBFNN-2SATDE

Parameter Value

Number of iteration 10000

Cr [0, 1]

F [0, 2]

Population 50

TABLE IV. List of Parameters in RBFNN-2SATPSO

Parameter Value

Ω 0.6

ε1 2

ε2 2

rand1 = rand2 [0,1]

Number of iteration 10000

TABLE V. List of Parameters in RBFNN-2SATABC

Parameter Value

No_Employed_bees

No_Onlooker_bees

No_Scout_bees

50

50

1

Limit 1000

Trial 10000

X. Results and Discussion

Hamadneh et al. [60] use mean square error as a metric to appraise
the performance of the trained RBFNN. In this paper, both proposed
hybrid models will be compared by using four performance metrics
such as Root Mean Square Error (RMSE), Sum of Squares Error (SSE),
Mean Absolute Percentage Error (MAPE) and CPU Time. The equation
for each performance metrics is as follows:

()()2

1

1n

i i
i

RMSE f w y
n

=

= −∑
 (26)

()()2
1

n

i i
i

SSE f w y
=

= −∑
 (27)

()()
1

100 n
i i

ii

f w y
MAPE

n y
=

−
= ∑

 (28)

where ()if w is the actual output value, iy is the target output
value and n is number of the iterations. In addition, computation time
will be considered in order to evaluate the efficiency of the RBFNN
model.

0 20 40 60 80 100 120

NN

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
R

M
SE

Root Mean Square Error vs Number of Neurons

RBFNN-2SATABC

RBFNN-2SATPSO
RBFNN-2SATDE

RBFNN-2SATGA

RBFNN-2SATNT

20 40 60 80
0

0.01

0.02

0.03

0.04

Fig. 5. RMSE value for all RBFNN-2SAT models.

0 20 40 60 80 100 120
NN

0

1000

2000

3000

4000

5000

6000

7000

SS
E

Sum of Squares Error vs Number of Neurons

RBFNN-2SATABC
RBFNN-2SATPSO
RBFNN-2SATDE
RBFNN-2SATGA
RBFNN-2SATNT

10 15 20 25
0

200

400

600

Fig. 6. SSE evaluation.

Regular Issue

- 171 -

0 20 40 60 80 100 120
NN

0

1

2

3

4

5

6

7

8
M

AP
E

Mean Absolute Percentage Error vs Number of Neurons

RBFNN-2SATABC
RBFNN-2SATPSO
RBFNN-2SATDE
RBFNN-2SATGA
RBFNN-2SATNT

8 10 12

0.008

0.01

0.012

Fig. 7. MAPE evaluation.

0 20 40 60 80 100 120

NN

0

20

40

60

80

100

120

140

160

C
PU

 T
im

e
(S

)

CPU Time vs Number of Neurons

RBFNN-2SATABC
RBFNN-2SATPSO
RBFNN-2SATDE
RBFNN-2SATGA
RBFNN-2SATNT

Fig. 8. Computation time evaluation.

In this study, 2SAT logical rule is expected to perform comparatively
exceptional to other non-systematic logical rule such as [6], [29], [61],
[62], [63]. This is due to the variation of the number of variables in
each clause. This causes RBFNN-2SAT to alter the dimension of the
hidden layer. Imbalance signal from the hidden layer to the output
layer will lead to imbalance value of parameters (centre and width)
and high computation error. The results in Fig. 5 until Fig. 8 allow to
deduce the following findings:

1. RBFNN-2SAT can receive more input data with a fixed value of
center and width. In this case, RBFNN-2SATABC creates a model
that classifies data based on 2SAT logical rule with minimum value
of RMSE, SSE and MAPE.

2. RBFNN-2SATABC has best performances in terms of errors as the
number of neurons is increased. In the exploration front (employed
bee), ABC locates the general range of the optimal output weight.
The value of the output weight improves significantly during
the exploitation phase (onlooker bees). Based on the result, the
probability for RBFNN-2SATABC to reach the scout bee phase
is approximately zero. In this case, RBFNN-2SATABC effectively
explores different solution space in less iterations.

3. In terms of computation time, RBFNN-2SATABC was reported
to be faster than the other RBFNN-2SAT model. At 20NN > , the
possibility for the conventional method RBFNN-2SATNT to be
trapped in trial and error state increases. Trial and error cause
RBFNN-2SATNT to achieve pre-mature convergence.

4. On the other hand, RBFNN-2SATGA has a relatively larger
learning error because of ineffective initial crossover. It requires
several iterations for RBFNN-2SATGA to produce high quality
output weight. During that time, the only operator that is effective
is mutation. The problem is worsened when the suboptimal output
weight is a floating number.

5. RBFNN-2SATDE is reported to illustrate some drawbacks such
as tendency to be trapped at sub-optimal output weight and
slow convergence rate. In this case, RBFNN-2SATDE requires
more iterations to satisfy ()i if w y ζ− ≤ which results in the
accumulation of error. In addition, the unbounded mutation
operator in DE tends to create numerous alternate search space
that reduces the probability of the RBFNN-2SATDE to achieve
optimal output weight.

6. In another perspective, RBFNN-2SATPSO has a relatively lower
learning error compared to another model. This is due to the use
of the particle in this algorithm that mimics our proposed ABC
algorithm. Although the result for RBFNN-2SATPSO seems quite
promising, this algorithm lacks the control of the effective local
search. In this case, as 10000t → , the search space for each
particle will magnify indefinitely and result in suboptimal output
weight. Hence, RBFNN-2SATPSO will converge prematurely.

These experiments show that the ABC algorithm can be
successfully applied to train RBFNN-2SAT. Another observation is
that the effectiveness of ABC can be seen vividly when the number of
neurons increases. Moreover, ABC algorithm in RBFNN achieves more
promising performance based on RSME by 94.8%, SSE by 72.9%, MAPE
by 99.1%, and CPU time by 39.8%. This concludes that ABC in RBFNN-
2SAT could be used in practice to achieve better prediction results for
the 2SAT logic programming.

XI. Conclusion

A hybrid paradigm, ABC algorithm incorporated with RBFNN and
2SAT (RBFNN-2SATABC) has been fruitfully developed to foster the
learning phase with different number of neurons. Following that, the
work as reported in this paper reveals the significant differences in the
performance of RBFNN-2SATABC in terms of Root Mean Square Error
(RMSE), Sum of Squares Error (SSE), Mean Absolute Percentage Error
(MAPE), and process time (computation time in seconds). Furthermore,
the proposed paradigm offers an error of approximately 2% of
MAPE, and faster computation time compared to RBFNN-2SATGA.
Henceforth, the RBFNN-2SATABC has been clearly recognized to be
more robust than the RBFNN-2SATGA in certain aspects which include
better lower error and faster process time in performing 2SAT logic
programming. As future development, the RBFNN-2SATABC can be
improved by using different classes of Satisfiability logic ranging from,
Major Satisfiability (MAJ-SAT), Weighted SAT, Maximum Satisfiability
(MAX-SAT) and Unsatisfiable Satisfiability (MIN-UNSAT). This work
also can be applied as a traditional optimization method to solve
problems such as travelling salesman and N-queen’s problem.

Acknowledgment

This research was supported by Fundamental Research Grant
Scheme (FRGS), Ministry of Education Malaysia, grant number 203/
PMATH/6711804 and Universiti Sains Malaysia (USM).

References

[1] M. S. Alkhaawneh, (2019). Hybrid Cascade Forward Neural Network
with Elman Neural Network for Disease Prediction. Arabian Journal for
Science and Engineering, 44(11), 9209-9220.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 6, Nº6

- 172 -

[2] W. A. T. W. Abdullah, (1992). Logic programming on a neural network.
International journal of intelligent systems, 7(6), 513-519.

[3] S. Sathasivam, (2010). Upgrading logic programming in Hopfield
network. Sains Malaysiana, 39(1), 115-118.

[4] N. Hamadneh, , S. Sathasivam, S. L. Tilahun, & O. H. Choon, (2012).
Learning logic programming in radial basis function network via genetic
algorithm. Journal of Applied Sciences(Faisalabad), 12(9): 840-847.

[5] M. S. M. Kasihmuddin, M. A. Mansor, & S. Sathasivam, (2017). Hybrid
Genetic Algorithm in the Hopfield Network for Logic Satisfiability
Problem. Pertanika Journal of Science & Technology, 25(1), 139 - 152.

[6] M.A.B. Mansor, M.S.B.M. Kasihmuddin, and S. Sathasivam, 2017. Robust
Artificial Immune System in the Hopfield network for Maximum
k-Satisfiability. International Journal of Interactive Multimedia and
Artificial Intelligence, 4(4), 63-71.

[7] N. Hamadneh, W. A. Khan, I. Khan, & A. S. Alsagri, (2019). Modeling and
Optimization of Gaseous Thermal Slip Flow in Rectangular Microducts
Using a Particle Swarm Optimization Algorithm. Symmetry, 11(4), 488-
491.

[8] H. de Leon-Delgado, R. J. Praga-Alejo, D. S. Gonzalez-Gonzalez, & M.
Cantú-Sifuentes, (2018). Multivariate statistical inference in a radial basis
function neural network. Expert Systems with Applications, 93, 313-321.

[9] S. Alzaeemi, M.A. Mansor, M.S.M. Kasihmuddin, S. Sathasivam, and M.
Mamat, (2020). Radial basis function neural network for 2 satisfiability
programming. Indonesian Journal of Electrical Engineering and Computer
Science, 18(1), 459-469.

[10] M. H. Horng, Y. X. Lee, M. C. Lee, & R. J. Liou, (2012). Firefly meta-
heuristic algorithm for training the radial basis function network for data
classification and disease diagnosis. In Theory and new applications of
swarm intelligence. IntechOpen, 10(19), 7-28.

[11] J. Yang, & J. Ma, (2019). Feed-forward neural network training using
sparse representation. Expert Systems with Applications, 116, 255-264.

[12] M. S. M. Kasihmuddin, M. A. Mansor, M. B. M. Faisal, & S. Sathasivam,
(2019). Discrete Mutation Hopfield Neural Network in Propositional
Satisfiability. Mathematics, 7(11), 1133-1154.

[13] M.S.M., Kasihmuddin, Mansor, M.A. and Sathasivam, S., 2018. Discrete
Hopfield Neural Network in Restricted Maximum k-Satisfiability Logic
Programming. Sains Malaysiana, 47(6), 1327-1335.

[14] M. S. M. Kasihmuddin, M. A. Mansor, & S. Sathasivam, (2017). Robust
Artificial Bee Colony in the Hopfield Network for 2-Satisfiability
Problem. Pertanika Journal of Science & Technology, 25(2), 453 - 468.

[15] N. Hamadneh, S. Sathasivam, and O.H. Choon, (2012). Higher order
logic programming in radial basis function neural network. Appl Math
Sci, 6(3), 115-127.

[16] H. V. H. Ayala, & L.dos Santos Coelho, (2016). Cascaded evolutionary
algorithm for nonlinear system identification based on correlation
functions and radial basis functions neural networks. Mechanical Systems
and Signal Processing, 1(68), 378-393.

[17] R. D. Dandagwhal, & V. D. Kalyankar, (2019). Design Optimization of
Rolling Element Bearings Using Advanced Optimization Technique.
Arabian Journal for Science and Engineering, 44(9), 7407-7422.

[18] J. H. Holland, (1973). Genetic algorithms and the optimal allocation of
trials. SIAM Journal on Computing, 2(2), 88-105.

[19] D. E. Goldberg, & J. H. Holland, (1988). Genetic algorithms and machine
learning, Machine Learning, 2(3), 95-99.

[20] M. Pandey, M. Zakwan, P. K. Sharma, & Z. Ahmad, (2020). Multiple
linear regression and genetic algorithm approaches to predict temporal
scour depth near circular pier in non-cohesive sediment. ISH Journal of
Hydraulic Engineering, 26(1), 96-103.

[21] Z. Jing, J. Chen, & X. Li, (2019). RBF-GA: An adaptive radial basis function
metamodeling with genetic algorithm for structural reliability analysis.
Reliability Engineering & System Safety, 189, 42-57.

[22] R. Storn and K. Price, (1997). Differential evolution a simple and efficient
heuristic for global optimization over continuous spaces. Journal of
Global Optimization, 11(4), 341-359.

[23] A. Saha, A. Konar, P. Rakshit, A. L. Ralescu, & A. K. Nagar, (2013, August).
Olfaction recognition by EEG analysis using differential evolution
induced Hopfield neural net. In The 2013 International Joint Conference
on Neural Networks, 4(9), 1-8.

[24] J. Ilonen, J. K. Kamarainen, & J. Lampinen, (2003). Differential evolution
training algorithm for feed-forward neural networks. Neural Processing

Letters, 17(1), 93-105.
[25] W. Tao, J. Chen, Y. Gui, & P. Kong, (2019). Coking energy consumption

radial basis function prediction model improved by differential evolution
algorithm. Measurement and Control, 52(8), 1122-1130.

[26] R. Eberhart, & J. Kennedy, (1995, October). A new optimizer using
particle swarm theory. In MHS’95. Proceedings of the Sixth International
Symposium on Micro Machine and Human Science, 39-43.

[27] J. Kennedy, & R. Eberhart, (1995, November). Particle swarm optimization.
In Proceedings of ICNN’95-International Conference on Neural Networks,
vol. 4, 1942-1948.

[28] S. N. Qasem, & S. M. H. Shamsuddin, (2009, May). Improving performance
of radial basis function network based with particle swarm optimization.
In 2009 IEEE Congress on Evolutionary Computation, Man and Cybernetics,
3149-3156.

[29] A. Alexandridis, E. Chondrodima, & H. Sarimveis, (2016). Cooperative
learning for radial basis function networks using particle swarm
optimization. Applied Soft Computing, 49, 485-497.

[30] D. Karaboga, & B. Basturk, (2007). A powerful and efficient algorithm for
numerical function optimization: artificial bee colony (ABC) algorithm.
Journal of global optimization, 39(3), 459-471.

[31] D. Karaboga, & E. Kaya, (2019). Training ANFIS by using an adaptive
and hybrid artificial bee colony algorithm (aABC) for the identification
of nonlinear static systems. Arabian Journal for Science and Engineering,
44(4), 3531-3547.

[32] G.E. Tsekouras, V. Trygonis, A. Maniatopoulos, A. Rigos, A. Chatzipavlis,
J. Tsimikas, N. Mitianoudis, and A.F. Velegrakis, (2018). A Hermite
neural network incorporating artificial bee colony optimization to model
shoreline realignment at a reef-fronted beach. Neurocomputing, 280, 32-
45.

[33] T. Kurban, & E. Beşdok, (2009). A comparison of RBF neural network
training algorithms for inertial sensor based terrain classification.
Sensors, 9(8), 6312-6329.

[34] J. Yu, & H. Duan, (2013). Artificial bee colony approach to information
granulation-based fuzzy radial basis function neural networks for image
fusion. Optik-International Journal for Light and Electron Optics, 124(17),
3103-3111.

[35] B. Jafrasteh, & N. Fathianpour, (2017). A hybrid simultaneous
perturbation artificial bee colony and back-propagation algorithm for
training a local linear radial basis neural network on ore grade estimation.
Neurocomputing, 235, 217-227.

[36] S. K. Satapathy, S. Dehuri, & A. K. Jagadev, (2017). ABC optimized
RBF network for classification of EEG signal for epileptic seizure
identification. Egyptian Informatics Journal, 18(1), 55-66.

[37] I. Aljarah, H. Faris, S. Mirjalili, & N. Al-Madi (2018). Training radial
basis function networks using biogeography-based optimizer. Neural
Computing and Applications, 29(7), 529-553.

[38] N. A. Menad, A. Hemmati-Sarapardeh, A. Varamesh, & S. Shamshirband,
(2019). Predicting solubility of CO2 in brine by advanced machine
learning systems: Application to carbon capture and sequestration.
Journal of CO2 Utilization, 33, 83-95.

[39] S. Jiang, C. Lu, S. Zhang, X. Lu, S. B. Tsai, C. K. Wang, & C. H. Lee,
(2019). Prediction of Ecological Pressure on Resource-Based Cities Based
on an RBF Neural Network Optimized by an Improved ABC Algorithm.
IEEE Access, 7, 47423-47436.

[40] S. Sathasivam, (2010). Upgrading logic programming in Hopfield
network. Sains Malaysiana, 39(1), 115-118.

[41] T. Hoeink, (2019). Boolean satisfiability problem for discrete fracture
network connectivity. Patent Application Publication, 180(53), 1-12.

[42] S. Mukherjee, & S. Roy, (2015). Multi terminal net routing for island
style FPGAs using nearly-2-SAT computation. In VLSI Design and Test
(VDAT), 2015 19th International Symposium on IEEE, 10(1109), 1-6.

[43] R. Miyashiro, & T. Matsui, (2005). A polynomial-time algorithm to find
an equitable home away assignment. Operations Research Letters, 33(3),
235-241.

[44] S. Even, A. Itai, & A. Shamir, (1976). On the Complexity of Timetable
and Multicommodity Flow Problems. SIAM Journal on Computing, 5(4),
691-703.

[45] J. Moody, & C. J. Darken, (1989). Fast learning in networks of locally-
tuned processing units. Neural computation, 1(2), 281-294.

[46] D. Lowe, (1989, October). Adaptive radial basis function nonlinearities,

Regular Issue

- 173 -

and the problem of generalisation. In Artificial Neural Networks, First IEE
International Conference, 1(313), 171-175.

[47] A. K. Hassan, M. Moinuddin, U. M. Al-Saggaf, & M. S. Shaikh, (2018).
On the kernel optimization of radial basis function using nelder mead
simplex. Arabian Journal for Science and Engineering, 43(6), 2805-2816.

[48] A. Idri, A. Zakrani, & A. Zahi, (2010). Design of radial basis function
neural networks for software effort estimation. IJCSI International
Journal of Computer Science Issues, 7(4), 11-17.

[49] S. B. Roh, S. K. Oh, W. Pedrycz, K. Seo, & Z. Fu, (2019). Design
methodology for Radial Basis Function Neural Networks classifier
based on locally linear reconstruction and Conditional Fuzzy C-Means
clustering. International Journal of Approximate Reasoning, 106, 228-243.

[50] M. T. Vakil-Baghmisheh, & N. Pavešić, (2004). Training RBF networks
with selective backpropagation. Neurocomputing, 62, 39-64.

[51] L.C. Kho, M. S. M. Kasihmuddin, M. A. Mansor, & S. Sathasivam, (2020).
Logic Mining in League of Legends. Pertanika Journal of Science &
Technology, 28(1), 211 - 225.

[52] W. Jia, D. Zhao, T. Shen, C. Su, C. Hu, & Y. Zhao, (2014). A new optimized
GA-RBF neural network algorithm. Computational intelligence and
neuroscience, 1(4), 1-6.

[53] H. Marouani, K. Hergli, H. Dhahri, & Y. Fouad, (2019). Implementation
and Identification of Preisach Parameters: Comparison Between Genetic
Algorithm, Particle Swarm Optimization, and Levenberg–Marquardt
Algorithm. Arabian Journal for Science and Engineering, 44(8), 6941-6949.

[54] M. Awad, (2010). Optimization RBFNNs parameters using genetic
algorithms: applied on function approximation. International Journal of
Computer Science and Security (IJCSS), 4(3), 295-307.

[55] L. J. Eshelman, & J. D. Schaffer, (1993). Real-coded genetic algorithms and
interval-schemata. In Foundations of genetic algorithms, Vol. 2. Elsevier,
187-202.

[56] S. L. Wang, F., Ng, T. F. Morsidi, H. Budiman, & S. C. Neoh, (2020).
Insights into the effects of control parameters and mutation strategy on
self-adaptive ensemble-based differential evolution. Information Sciences,
514, 203-233.

[57] K. R. Opara, & J. Arabas, (2019). Differential Evolution: A survey of
theoretical analyses. Swarm and evolutionary computation, 44, 546-558.

[58] Y. Fukuyama, & H. Yoshida, (2001, May). A particle swarm optimization
for reactive power and voltage control in electric power systems. In
Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat.
No. 01TH8546), vol. 1, 87-93.

[59] D. Karaboga, (2005). An idea based on honey bee swarm for numerical
optimization. Technical reporttr 06, Erciyes university, engineering faculty,
computer engineering department, Vol. 200, 1-10.

[60] N. Hamadneh, S. Sathasivam, S. L. Tilahun, & O. H. Choon, (2014, July).
Satisfiability of logic programming based on radial basis function neural
networks. In AIP Conference Proceedings, 1605(1), 547-550.

[61] M. S. M. Kasihmuddin, M. A. Mansor, & S. Sathasivam, (2016). Genetic
Algorithm for Restricted Maximum k-Satisfiability in the Hopfield
Network. International Journal of Interactive Multimedia & Artificial
Intelligence, 4(2), 52-60.

[62] M. S. M. Kasihmuddin, M. A. Mansor, & S. Sathasivam, (2016). Artificial
Bee Colony in the Hopfield Network for Maximum k-Satisfiability
Problem. Journal of Informatics and Mathematical Sciences, 8(5), 317-334.

[63] C. Caleiro, F. Casal, & A. Mordido, (2019). Generalized probabilistic
satisfiability and applications to modelling attackers with side-channel
capabilities, Theoretical Computer Science, 781, 39-62.

Mohd Shareduwan Mohd Kasihmuddin

Mohd Shareduwan Mohd Kasihmuddin is a lecturer
in School of Mathematical Sciences, Universiti Sains
Malaysia. He received his Ph.D from Universiti
Sains Malaysia. His current research interests include
Metaheuristics method, neural network development,
artificial intelligence and logic programming. He can be
contacted via shareduwan@usm.my.

Mohd. Asyraf Mansor

Mohd. Asyraf Mansor is a lecturer in School of Distance
Education, Universiti Sains Malaysia. He received his
Ph.D from Universiti Sains Malaysia. His current research
interests include evolutionary algorithm, satisfiability
problem, neural networks, logic programming and heuristic
method.

Shehab Abdulhabib Alzaeemi

Shehab Abdulhabib Alzaeemi received a Bachelor Degree
of Education (Science) from Taiz Universiti in 2004,
Master of Science (Mathematics) from Universiti Sains
Malaysia in 2016 and an ongoing PhD student in Universiti
Sains Malaysia. He was a fellow under the Academic Staff
Training System of Sana’a Community College from 2005-
2014. His research interests mainly focus on neural network,

logic programming, and data mining. His email is shehab_alzaeemi@yahoo.com

Saratha Sathasivam

Saratha Sathasivam is an Associate Professor in the School
of Mathematical Sciences, Universiti Sains Malaysia.
She received her MSc and BSc(Ed) from Universiti Sains
Malaysia. She received her Ph.D at Universiti Malaya,
Malaysia. Her current research interest are neural networks,
agent based modeling and constrained optimization
problem. Her email is saratha@usm.my.

