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Abstract

Nowadays organizations often need to employ data-driven techniques to audit their business processes and 
ensure they comply with laws and internal/external regulations. Failing in complying with the expected process 
behavior can indeed pave the way to inefficiencies or, worse, to frauds or abuses. An increasingly popular 
approach to automatically assess the compliance of the executions of organization processes is represented by 
alignment-based conformance checking. These techniques are able to compare real process executions with 
models representing the expected behaviors, providing diagnostics able to pinpoint possible discrepancies. 
However, the diagnostics generated by state of the art techniques still suffer from some limitations. They 
perform a crisp evaluation of process compliance, marking process behavior either as compliant or deviant, 
without taking into account the severity of the identified deviation. This hampers the accuracy of the obtained 
diagnostics and can lead to misleading results, especially in contexts where there is some tolerance with 
respect to violations of the process guidelines. In the present work, we discuss the impact and the drawbacks 
of a crisp deviation assessment approach. Then, we propose a novel conformance checking approach aimed 
at representing actors’ tolerance with respect to process deviations, taking it into account when assessing the 
severity of the deviations. As a proof of concept, we performed a set of synthetic experiments to assess the 
approach. The obtained results point out the potential of the usage of a more flexible evaluation of process 
deviations, and its impact on the quality and the interpretation of the obtained diagnostics.
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I. Introduction

Nowadays organizations often need to employ data-driven 
techniques to audit their business processes and ensure they 

should comply to the predefined process models with internal/external 
regulations, e.g., on the execution time or other data perspective 
constraints. Failing in complying with the expected process behavior 
can indeed pave the way to inefficiencies or, worse, to frauds or abuses, 
which often result in loss of money and/or reputation which can have 
a strong impact on the organization. In recent years, alignment-based 
conformance checking [1] emerged as a widely used approach for 
organization process auditing. These techniques allow to automatically 
detect possible discrepancies between real-world process executions 
and the expected process behavior, usually represented by means of 
some modelling formalism (e.g., Petri net, or BPMN) [1]-[5].

However, state of the art techniques suffer from some limitations. 
Processes often involve several alternative execution paths, whose 
choice can depend on the values of one or more data variables. 
While this aspect has been traditionally neglected in conformance 

checking, typically focused on the control flow perspective [1]-[4], 
recently a few approaches have been proposed to assess process 
compliance with respect to multiple perspectives [5], [6]. However, 
existing techniques consider an activity performed at a given point 
of an execution either completely deviated or completely correct. Such 
a crisp distinction is often not suitable in many real-world processes, 
where decisions on data-guards are often generated with some level 
of uncertainty, which gives rise to some challenges in drawing exact 
lines between acceptable/not acceptable values. As a result, in these 
domains there often exists some tolerance to deviations. For example, 
let us assume that in a medical process there is a guideline stating 
that in between two procedures there must be an interval of at most 
five hours. Adopting a crisp evaluation, 4 hours 59 minutes would be 
considered fully compliant, while 5 hours and 1 minute would be fully 
not compliant, which is intuitively unreasonable. Such an approach 
can lead to generating misleading diagnostics, where executions 
marked as deviating actually correspond to acceptable behaviors. 
Furthermore, the magnitude of the deviations is not considered; small 
or large violations are considered at the same level of compliance, 
which can easily be misleading to the diagnosis. It is worth noting that 
this approach can also hamper the overall process resilience, making 
it very sensible even to small exceptions/disruptions. For instance, 
if process executions are monitored in a real-time way, every small 
deviations can lead to raise some alarms and/or to stop the execution.
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To deal with these challenges, in this work we perform an 
exploratory study on the use of fuzzy sets [7] in conformance checking. 
Fuzzy sets have been proven to be a valuable asset to represent 
human decisions making process, since they allow to formalize the 
uncertainty often related to these processes. In particular, elaborating 
upon fuzzy theory, we propose a new multi-perspective conformance 
checking technique that accounts for the degree of deviations. 
Taking into account the severity of the occurred deviations allows a) 
improving the quality of the provided diagnostics, generating a more 
accurate assessment of the deviations, and b) enhancing the flexibility 
of compliance checking mechanisms, thus paving the way to improve 
the overall resilience of the process management system with respect 
to unforeseen exceptions [8]. As a proof-of-concept, we tested the 
approach over a synthetic dataset.

The rest of this work is organized as follows. Section II discusses 
related work. Section III introduces a running example to discuss the 
motivation of this work. Section IV introduces basic formal notions. 
Section V illustrates the approach. Section VI discusses results 
obtained by a set of synthetic experiments. Finally, Section VII draws 
some conclusions and future work.

II. Related Work

Conformance checking discipline has evolved significantly in 
recent times. One of the first automatic approaches was introduced 
by [9], which proposed a token-based approach to detect deviations 
by  replaying each event of a process execution against a process 
model, to determine whether the execution was or not allowed by 
the model. While this seminal work provides detailed diagnostics, 
supporting the detection of inserted and skipped activities, and it is 
able to deal with possible infinite behavior (e.g., in the case of loops), 
further research proved that token-based techniques can lead to 
misleading diagnostics [10]. Recently, alignments have been proved 
to be a robust way to check the conformance of the given logs [2]. 
Alignment-based techniques are able not only to pinpoint occurred 
deviations, but also to determine the most probable explanation of 
non conformity. To this end, a cost function is used to determined 
the cost of alternative explanations, then returning the one with 
minimum cost. Although most alignment-based approaches apply 
the standard distance cost function defined by [2], several variants 
have been suggested to enhance the quality of the compliance 
assessment. For instance, Alizadeh et al. [11] proposes a method to 
obtain the probable explanations for nonconformity by computing 
the cost function from historical logging data. While traditional 
conformance checking techniques are solely focused on assessing 
compliance with respect to the control-flow, i.e., the ordering of the 
activities, recently few approaches in literature investigated how to 
include other perspectives, e.g., resources, time, data, and so on in 
conformance checking algorithms. The approach introduced in [6] 
suggests to align the control-flow first, and then check the executions 
compliance with respect to the data perspective. While this approach 
does allow to detect data-related deviations, it still gives more 
importance to the control flow perspective when it comes to the 
deviation interpretation, with the results that he can miss some critical 
deviations in the alignment [5]. With a different interpretation, the 
work of [12] considers the data perspective prior to control flow, thus 
aligning the data variables to the data-aware decision paths first for 
a reference trace, and next replaying it to the execution trace for the 
mismatches on control flow conformance. The research in [5], instead, 
aims at balancing the impact of all the different process perspectives 
when generating the alignment, considering all perspectives equally 
important. To this end, they propose a cost function which takes into 
account both data and control flow deviations simultaneously.

The techniques mentioned above adopt a crisp evaluation of the 
conformance, where a behaviour is completely wrong or completely 
correct. In this work, we propose to use fuzzy sets theory to assess the 
magnitude of the detected deviations. Several researches in literature 
have explored the employment of fuzzy sets in representing expert 
decision making processes; among them, we can mention, for example, 
[13], which studies a fuzzy approach to model farmers’ decision 
process in a integrated farming systems; [14], which represents 
vagueness in linguistic judgements by means of a fuzzy analytic 
hierarchy process; [15], which applies a fuzzy dynamic method for 
risk decision making problems for a mine; and the work of [16], which 
proposes a fuzzy linguistic method for Multiple Criteria Decision 
Making (MCDM) problem to Prioritize the elective surgery admission 
in a local public hospital. However, only a few approaches also 
explored the use of fuzzy theory in process analysis. [17] proposes to 
characterize the conformance problem by means of an existing fuzzy 
rule-based framework ; the study of [18] uses a fuzzy process miner 
on a clinical data-set to support hospital administrators in improving 
the performance of their processes (e.g., reducing patients’ waiting 
times). However, to the best of our knowledge, no previous work 
has exploited fuzzy sets theory in the cost function of conformance 
checking techniques.

III. Motivating Example

Consider, as a running example, a loan management process 
derived from previous work on the event log of a financial institute 
made available for the BPI2012 challenge [19], [20]. Fig. 1 shows the 
process in BPMN notation. The process starts with the submission of 
an application. Then, the application passes through a first assessment, 
aimed to verify whether the applicant meets the requirements. If the 
requested amount is greater than 10000 euros, the application also 
goes through a more accurate analysis to detect possible frauds. If the 
application is not eligible, the process ends; otherwise, the application 
is accepted. An offer to be sent to the customer is selected and the 
details of the application are finalized. After the offer has been created 
and sent to the customer, the latter is contacted to discuss the offer with 
him/her, possibly adjusting according to her preferences. At the end of 
the negotiation, the agreed application is registered on the system. At 
this point, further checks can be performed on the application, if the 
overall duration is still below 30 days, before approving it.

Let us assume that this process is supported by some systems able to 
track the execution of its activities in a so-called event log. In practice, 
this is a collection of traces, i.e., sequences of activities performed 
within the same process execution, each storing information like the 
execution timestamp of the execution, or other data element [1]. Let the 
following be two example traces extracted by the system supporting 
the process at hand (note that we use acronyms of the activities names, 
for the sake of simplicity)1: 

σ1 = ⟨(A_S,{Amount = 9950}),  W_FIRST_A, ⊥),  (W_F_C,  ⊥),  (A_A,  ⊥),  
(A_F,⊥),  (O_S,  ⊥),  (O_C, ⊥),  (O_S,  ⊥),  (W_C,  ⊥),  (A_R,{Duration=50}),  
(A_AP,  ⊥)⟩ ;

σ2 = ⟨(A_S,{Amount = 2000}),  W_FIRST_A, ⊥),  (W_F_C,  ⊥),  (A_A,  ⊥),  
(A_F,⊥),  (O_S,  ⊥),  (O_C, ⊥),  (O_S,  ⊥),  (W_C,  ⊥),  (A_R,{Duration = 60}),  
(A_AP,  ⊥)⟩ ;

Both these executions violate the guard on the Amount value; indeed, 
the activity W_F_C should have been skipped, being the requested loan 
amount lower than 10000. It is worth noting, however, that there is 

1  We use the notation (act, {att_1 = v1, …, attn = vn}) to denote the occurrence 
of activity act in which variables att_1 … attn are assigned to corresponding 
values v1, … vn. The symbol ⊥ means that no variable values are changed when 
executing the activity.



International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 6, Nº5

- 136 -

a significant difference in terms of their magnitude. Indeed, while in 
the first execution the threshold was not reached only by few dozens 
of euros, the second violation is several thousands of euros below the 
limit. It is worth noting that applying state-of-the art conformance 
checking techniques, this difference between σ1 and σ2 would remain 
undetected. Indeed, these techniques adopt a crisp logic, where the 
value of a data variable can be marked only either as correct or wrong.

We argue that taking into account the severity of the violations 
when assessing execution compliance allows to obtain more accurate 
diagnostics, especially in contexts where there exists some uncertainty 
related to the guards definition. Indeed, in these cases guards often 
represent more guidelines, rather than strict, sharp rules, and there 
might be some tolerance with respect to violations. In our example, 
σ1 could model an execution considered suspicious for some reasons, 
making a a fraud check worthy, since the amount is only slightly 
less than 10000. On the other hand, the violation in σ2 deserves some 
attention, since the amount is so far from the threshold that the 
additional costs needed for the fraud check are probably not justified.

Differentiating among different levels of violations also impacts 
the analysis of possible causes of the deviations. Indeed, conformance 
checking techniques also attempt to support the user in investigating 
the interpretations of a deviation. In our example, the occurrence of the 
activity W_F_C could be considered either as a control-flow deviation or 
as a data-flow deviation. In absence of domain knowledge in determining 
what is the real explanation, conformance checking techniques assess 
the severity (aka, cost) of the possible interpretations and select the least 
severe one, assuming that this is the one closest to the reality. In our 
example, conformance checking would consider both the interpretation 
equivalent for both the traces; instead, differentiating between the 
severity of the deviations would make the second interpretation the 
preferred one when the deviation is limited, like in σ1, thus providing 
more guidance to the analyst during process diagnostics.

IV. Preliminaries

This section introduces a set of definitions and concepts that will 
be used through the paper. First, we recall important conformance 
checking notions; secondly, we introduce basic elements of fuzzy 
theory.

A. Conformance Checking: Aligning Event Logs and Models
Conformance checking techniques detect discrepancies between a 

process model describing the expected process behavior and the real 
process execution.

The expected process behavior is typically represented as a process 
model. Since the present work is not constrained to the use of a specific 
modeling notation, here we refer to the notation used in [2], enriched 
with data-related notions explained in [6].

Definition 1 (Process model). A process model M = (P, PI , 
PF , AM , V, U, T, G, W, Values) is a transition system defined 
over a set of activities AM and a set of variables V, with states 
P, initial states PI ⊆ P, final states PF ⊆ P and transitions  
T ⊆ P × (AM×2V ) × P. The function U defines the admissible data 
values, i.e., U(Vi) represents the domain of Vi for each variable Vi 
∈ Vi; the function G: AM → Formulas(V ∪ {Vi' ∣ Vi ∈ V}) is a guard 
function, that associates an activity to a criterion, i.e., a boolean 
formula expressing a condition on the values of the data variables; 
W: AM → 2V is a write function, that associates an activity with the 
set of variables which are written/updated by the activity; finally,  
Values: P → {Vi = 𝑣i,  i =1 .. |V| ∣ 𝑣i ∈ U (Vi) ∪ {⊥}} is a function that 
associates each state with the corresponding pairs variable=value.

When a variable Vi ∈ V appears in a guard G (AM), it refers to the 
value just before the occurrence of AM; however, if Vi ∈ W(AM), it can 
also appear as Vi', and refers to the value after the occurrence. The 
firing of an activity s = (a, w) ∈ AM × (V ↛ U) in a state p' is valid if: 1) 
a is enabled in p'; 2) a writes all and only the variables in W(a); 3) G(a) 
is true when evaluated over Values (p'). To access the components 
of s we introduce the following notation: vars(s) = w, act(s) = a. 
Function vars is also overloaded such that vars(s, Vi) = w(Vi) if Vi ∈ 
dom(vars(s)) and vars(s, Vi) = ⊥ if Vi ∉ dom(vars(s)). The set of valid 
process traces of a process model M is denoted with ρ(M) and consists 
of all the valid firing sequences σ ∈ (AM × (V ↛ U)* that, from an initial 
state Pi lead to a final state PF. 

Process executions are often recorded by means of an information 
system in so-called event logs. In particular, an event log consists of 
traces, each collecting the sequence of events recorded during the 
same process execution. Formally, let SN be the set of (valid and invalid) 
firing of activities of a process model M; an event log is a multiset of 
traces 𝕃 ∈ 𝔹( ). Given an event log L, conformance checking builds an 
alignment between L and M, whose goal consists in relating activities 
occurred in the event log to the activities in the model and vice versa. To 
this end, we need to map moves“ occurring in the event log to possible 
moves” in the model. However, since the executions may deviate from 
the model and/or not all activities may have been modeled or recorded 
[2], we might have log/model moves which cannot be mimicked by 
model/log moves respectively. These situations are modeled by a “no 
move” symbol “≫”. For convenience, we introduce the set  = SN ∪ 
{≫}. Formally, we set SL to be a transition of the events in the log, SM 
to be a transition of the activities in the model. A move is represented 
by a pair (sL, sM) ∈  ×  such that:

• (sL, sM) is a move in log if sL ∈ SN and sM = ≫
• (sL, sM) is a move in model if sM ∈ SN and sL = ≫
• (sL, sM) is a move in both without incorrect write operations if sL ∈ SN, 

sM ∈ SN and act(sL) = act(sM) and ∀ Vi ∈ V(vars(sL, Vi) = vars(sM,Vi))
• (sL, sM) is a move in both with incorrect write operations if sL ∈ SN, sM 
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Fig. 1. The Load Management Model.
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∈ SN and act(sL) = act(sM) and ∃ Vi  ∈ V ∣ vars(sL, Vi) ≠ vars(sM,Vi))
Let ALM = {(sL, sM) ∈  ×  ∣ sL ∈ SN ∨ sM ∈ SN} be the set of all legal 

moves. The alignment between two process executions σL, σM ∈  is γ 
∈  such that the projection of the first element (ignoring ≫) yields 
σL, and the projection on the second element (ignoring ≫) yields σM .

Given log trace and process model, multiple alternative alignments 
exist. Our goal is to find the optimal alignment, i.e., a complete 
alignment as close as possible to a proper execution of the model. 
To this end, the severity of deviations is assessed by means of a cost 
function:

Definition 2 (Cost function, Optimal Alignment). Let σL , σM be a 
log trace and a model trace, respectively. Given the set of all legal 
moves AN, a cost function k assigns a non-negative cost to each 
legal move: AN . The cost of an alignment γ between σL and 
σM is computed as the sum of the cost of all the related moves:  
K(γ) = ∑(SL,SM)∈γ k (SL, SM). An optimal alignment of a log trace and a 
process trace is one of the alignments with the lowest cost according 
to the provided cost function.

B. Basic Fuzzy Sets Concepts
Classic sets theory defines crisp, dichotomous functions to 

determine membership of an object to a given set. For instance, a set N 
of real numbers smaller than 5 can be expressed as N = {n ∈ ℝ | n < 5}. 
In this setting, an object either belongs to N or it does not. Although 
crisp sets have proven to be useful in various applications, there 
are some drawbacks in their use. In particular, human thoughts and 
decisions are often characterized by some degree of uncertainty and 
flexibility, which are hard to represent in a crisp setting [21].

Fuzzy sets theory aims at providing a meaningful representation of 
measurement uncertainties, together with a meaningful representation 
of vague concepts expressed in natural language and close to human 
thinking [22]. Formally, a fuzzy set is defined as follows:

Definition 3 (Fuzzy Set). Let N be a collection of objects. A fuzzy set F 
over N is defined as a set of ordered pairs F = {n, μF (n) ∣ n ∈ N}. μF (n) is 
called the membership function (μ) for the fuzzy set F, and it is defined as  
μF: N → [0, 1] . The set of all points n in N  such that μF (n) > 0 is called 
the support of the fuzzy set, while the set of all points in N in which 
μF (n) = 1 is called core.

It is straightforward to see that fuzzy sets are extensions of classical 
sets, with the characteristic function allowing to any value between 0 
and 1. In literature several standard functions have been defined for 
practical applications (see, e.g., [22] for an overview of commonly used 
functions).

V. Methodology

The goal of this work is introducing a compliance checking 
approach tailored to take into account the severity of the deviations, 
in order to introduce some degree of flexibility when assessing 
compliance of process executions and to generate diagnostics more 
accurate and possible closer to human interpretation. To this end, we 
investigate the use of fuzzy theory. In particular, we propose to use 
fuzzy membership functions to model the cost of moves involving 
data; then, we employ off-shelf techniques based on the use of A* 
algorithm to build the optimal alignment. The approach is detailed in 
the following subsections.

A. Fuzzy Cost Function
The computation of an optimal alignment relies on the definition 

of a proper cost function for the possible kind of moves (see Section 
[sec:preliminaries]). Most of state-of-the art approaches adopt 
(variants of) the standard distance function defined in [2], which sets a 

cost of 1 for every move on log/model (excluding invisible transitions), 
and a cost of 0 for synchronous moves. Furthermore, the analyst can 
use weights to differentiate between different kind of moves. 

The standard distance function is defined only accounting for the 
control-flow perspective. However, in this work we are interested in 
the data-perspective as well. In this regards, a cost function explicitly 
accounting for the data perspective has been introduced by [5] and it 
is defined as follows.

Definition 4 (Data-aware cost function). Let (SL, SM) be a move 
between a log trace and a model execution, and let, with a slight abuse 
of notation, W (SM) to represent write operations related to the activity 
related to SM. The cost k(SL, SM) is defined as:

 (1)

In this definition, data costs are computed as a) number of missing 
data variables because the corresponding activity was skipped, i.e., for 
a move in model, b) number of data variables in a synchronous move 
whose values are not allowed according to the process model, i.e., for 
a move in both.

Compared to Definition 4, in this paper we integrate both data 
violation situations a) and b), by considering the missing variables as a 
noncompliance to the rule as well, thereby counting the data cost with 
a move in both. Besides, the cost function in (1) uses a dichotomous 
function which considers every move either as completely wrong or 
completely correct. To differentiate between different magnitude of 
deviations, in this work we propose to use fuzzy membership functions 
as cost functions for the alignment moves. Note that here we focus on 
data moves. Indeed, when considering other perspectives the meaning 
of the severity of the deviation is not that straightforward. For example, 
when considering control-flow deviations, usually an activity is either 
executed or skipped. Nevertheless, fuzzy costs can be defined also 
for other process perspectives, for instance, to differentiate between 
skip of activities under different conditions. We plan to explore these 
directions in future work.

Following the above discussion, we define our fuzzy cost function 
as follows:

Definition 5 (Data-aware fuzzy cost function). Let (SL, SM) be a 
move between a process trace and a model execution, and let μ(var(SL, 
Vi)) be a fuzzy membership function returning the degree of deviation 
of a data variable in a move in both with incorrect data. The cost k(SL, 
SM) is defined as:

 (2)

To define the fuzzy cost function in (2), we first need to determine 
over which data constraints we want to define a μ 2. Then, for each of 
them first we need to define a tolerance interval; in turn, this implies to 
define a) an interval for the core of the function, and b) an interval for 
the support of the function (see Section IV). This choice corresponds 
to determine, for a given data constraint, which values should be 
considered equivalent and which ones not optimal but still acceptable. 
Once the interval is chosen, we need to select a suitable membership 
function. In literature, several different μ have been defined (see, e.g., 
[22] for an overview), with different level of complexity and different 

2  Note that multiple μ functions can be defined for the same data variable, if 
it is used in multiple guards.
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interpretations. It is straightforward to see that determining the best μ 
to explicit the experts’ knowledge is not a trivial task. For the sake of 
space, an extended discussion over the μ modeling is out of the scope 
of this paper, and left for future work. Nevertheless, we would like 
to point out that this is a well-studied issue in literature, for which 
guidelines and methodologies have been drawn like, e.g., the one 
presented by [23]. The approach can be used in combination of any of 
these methodologies, since it does not depend on the specific μ chosen.

It is worth noting that on one hand, the cost function (2) can be 
seen as a direct extension of (1) to the fuzzy case, where the cardinality 
of a set of differences has been replaced by the cardinality of a fuzzy 
set (denoting the compliance to a soft constraint). On the other hand, 
there is also some reasoning behind this formulation of the fuzzy 
cost function from an aggregation of information perspective. There 
are various problems in which the deviation from a control-flow 
perspective is comparable to a deviation in the data perspective in 
terms of the consequences of the deviation. In this case, an additive 
cost function makes sense in which the cost incurred from a gradual 
violation in the data perspective is comparable (or is the same) as 
the cost incurred from a violation of an activity in the control- flow 
perspective. Additionally, the cost function in (2) is essentially a 
penalty function in which different costs are aggregated in additive 
fashion, implying that a small compliance along one data dimension 
can be compensated by a large compliance along another data 
dimension. There is a large class of problems in which such an additive 
cost function makes sense [24], since good properties in one variable 
(criterion) can be compensate the poor qualities along another variable 
(criterion).

In general, it is possible to consider different, more advanced 
and/or more complex aggregation of the information regarding 
the violations. Fuzzy set theory provides a rich set of aggregation 
functions, pre-aggregation functions, and other mathematical 
formalisms for aggregating the cost information regarding violations 
[25]. A thorough analysis beyond the additive function is not within 
the scope of this preliminary paper. However, an initial investigation 
of using more complex fuzzy set aggregations can be found in [26].

B. Alignment Building: Using A* to Find the Optimal Alignment
The problem of finding an optimal alignment is usually formulated 

as a search problem in a directed graph [27]. Let Z = (ZV, ZE) be a 
directed graph with edges weighted according to some cost structure. 
The A* algorithm finds the path with the lowest cost from a given 
source node v0 ∈ Zv to a node of a given goals set ZG ⊆ ZV. The cost for 
each node is determined by an evaluation function f(v) = g(v) + h(v), 
 where:

• g: ZV → ℝ+ gives the smallest path cost from v0 to v;

• h: ZV  gives an estimate of the smallest path cost from v to any 
of the target nodes.

If h is admissible,i.e. underestimates the real distance of a path 
to any target node vg, A* finds a path that is guaranteed to have the 
overall lowest cost.

The algorithm works iteratively: at each step, the node v with 
lowest cost is taken from a priority queue. If v belongs to the target set, 
the algorithm ends returning node v. Otherwise, v is expanded: every 
successor v0 is added to priority queue with a cost f(v0).

Given a log trace and a process model, to employ A* to determine 
an optimal alignment we associate every node of the search space 
with a prefix of some complete alignments. The source node is an 
empty alignment γ0 = ⟨⟩, while the set of target nodes includes every 
complete alignment of σL and M. For every pair of nodes (γ1, γ2), γ2 is 
obtained by adding one move to γ1.

The cost associated with a path leading to a graph node γ is then 

defined as g(γ) = K(γ) + ϵ |γ|, where K(γ) = ∑(sL,sM)∈γ k (sL, sM), with k 
(sL, sM) defined as in (2); |γ| is the number of moves in the alignment; 
and ϵ is a negligible cost, added to guarantee termination when 
implementing the A* algorithm (see [5] for a formal proof). Note that 
the cost g has to be strictly increasing. While a formal proof is not 
possible for the sake of space, it is however straight to see that g is 
obtained in our approach by the sum of all non negative elements; 
therefore, while moving from an alignment prefix to a longer one, 
the cost can never decrease. For the definition of the heuristic cost 
function h(v) different strategies can be adopted. Informally, the idea 
is computing, from a given alignment, the minimum number of moves 
(i.e., the minimum cost) that would lead to a complete alignment. 
Different strategies have been defined in literature, e.g., the one in [2], 
which exploits Petri-net marking equations, or the one in [28], which 
generates possible states space of a BPMN model.

VI. Implementation and Experiments

This section describes a set of experiments we performed to obtain 
a proof-of-concept of the approach. To this end, we compared the 
diagnostics returned by a crisp conformance checking approach with 
the outcome obtained by our proposal. In order to get meaningful 
insights on the behavior we can reasonably expect by applying the 
approach in the real world, we employ a realistic synthetic event log, 
introduced in a former paper [29], obtained starting from one real-
life logs, i.e., the event log of the BPI2012 challenge3. We evaluated 
the compliance of this log against a simplified version of the process 
model in  , to which we added few data constraints (see Fig. 1). The 
approach has been implemented as an extension to the tool developed 
by [28], designed to deal with BPMN models. In the following we 
describe the experimental setup and the obtained results.

A. Settings
The log in [29] consists of 5000 traces, where a predefined set of 

deviations was injected. The values for the variable “Amount” were 
collected the from the BPI2012 log, while for calculating “Duration” 
a random time window ranging from 4 to 100 hours has been put in 
between each pair of subsequent activities, and the overall duration 
was then increased of by 31 days for some traces. For more details on 
the log construction, please check [29].

Our process model involves two constraints for the data 
perspective, i.e., Amount >= 10000 to execute the activity W_F_C, and 
Duration <= 30 to execute the activity W_FURTHER_A. For the crisp 
conformance checking approach, we use the cost function provided 
by (1); while for the fuzzy approach, the cost function in (2). Here 
we assume that Amount ∈ (3050, 10000) and Duration ∈ (30, 70)  
represent a tolerable violation range for the variables. Since we do not 
have experts’ knowledge available for these experiments, we derived 
these values from simple descriptive statistics. In particular, we draw 
the distributions of the values for each variable, considering values 
falling within the third quartile as acceptable. The underlying logic 
is that values which tend to occur repeatedly are likely to indicate 
acceptable situations. Regarding the shape of the membership 
function, here we apply a special trapezoidal function, reported below. 
Amount  and Duration are abbreviated to A and D.

3  https://www.win.tue.nl/bpi/doku.php?id=2012:challenge
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B. Results
We compare the diagnostics obtained by the crisp approach and 

by our approach in terms of a) kind of moves regarding the activities 
ruled by the guard, and b) distribution of fitness values, computed 
according to the definition in [6]. Table I shows differences in terms 
of number and kind of moves detected for the activities W_F_C and 
W_FURTHER_A within the crisp/fuzzy alignments respectively, 
considering also the possible existence of multiple optimal alignments. 
Namely, when the same move got different interpretations in different 
alignments, we count the move as both move in log and move in data. 
Note, however, that the multiple optimal alignments with the same 
interpretation for the move count one. It is worth noting that while 
we obtained the same result for both the move-in-log and move-in-
data amount for the crisp approach, these values change considerably 
when considering the fuzzy approach, which returned a significantly 
smaller amount of move-in-log. The reason for this difference becomes 
clear by analyzing the boxplots in Fig. 2, which shows the distributions 
of data deviation severity. We can see that the ranges are similar for 
both the constraints, with most of the values remaining below 0.65. 
These distributions suggest that data deviations are mostly within the 
tolerance range in our dataset; as a consequence, we expect that in 
most of the cases the move-in-data will have a smaller cost than the 
move-in-log and will hence be preferred when building the optimal 
alignment, which justifies the numbers reported in Table I. 
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Fig. 2. Boxplots of data deviation.

TABLE I. Number of Different Moves Kinds for Activities W_F _C and 
W_F URTHER_A

W_F _C W_FURTHER_A

move-in-log move-in-data move-in-log move-in-data

Crisp 744 744 958 958

Fuzzy 177 744 245 958

From these observations, it follows that we also expect relevant 
differences in fitness values computed by the fuzzy and the crisp 
approaches. In particular, we expect to obtain higher values of fitness 
with the fuzzy approach, being the fuzzy costs less severe than the 
crisp ones. Fig. 3 shows a scatter plot in which each point represents 

one trace. The x-axis represents the fitness level of alignment with 
crisp costs, while the y-axis represents the value corresponding to 
the fuzzy cost. For the traces on the main diagonal, the fitness level 
remains unchanged between the two approaches; while for traces 
that are above the main diagonal, the fuzzy approach obtained higher 
values of fitness. From the graph we can see that the fuzzy approach 
never returned lower values of fitness than the crisp one; instead, it 
returned (also significantly) improved level of fitness for a relevant 
percentage of the examined cases. Delving into this observation, we 
found out that the fuzzy approach returns higher value of fitness for 
24.3% of the traces.
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Fig. 3. Comparison of the fitness values obtained with crisp and fuzzy cost.

It is worth noting that, since alignments aim at supporting also 
the interpretation of the detected deviations, as discussed in Section 
[sec:motivation], different cost functions also impact the interpretation 
of the output from an human analyst. To better clarify this aspect, in 
the following example, we discuss the alignments obtained on one of 
the traces of our dataset in which the fuzzy and the crisp approach 
returned different outputs.

Example 1. Let us consider σ = ⟨(A_S, {Amount = 8160}),  (W_FIRST_A, 
⊥),  (W_F_C,  ⊥),  (A_D,  ⊥),  (A_A,  ⊥),  (A_F,  ⊥),  (O_S,  ⊥),  (O_C,  ⊥),  (O_S, 
⊥),  (W_C,  ⊥),  (O_C,  ⊥),  (O_S,  ⊥),  (W_C,  ⊥),  (O_C,  ⊥),  (O_S,  ⊥),  (W_C,  ⊥),  
(A_R, {Duration=97}),  (W_FURTHER_A,  ⊥) , (A_AP,  ⊥),  ⟩. Table II and 
Table III show the alignment obtained adopting the crisp cost function 
the fuzzy cost function, respectively. For the sake of space, here we 
report only the lines of the alignments related to the activities ruled 
by the data guards. For each move, we report the position of the move 
in the alignment followed by "#". We can observe that for the second 
deviation multiple alternative interpretations were returned by both 
the approaches, either as move-in-log or a move-in-data; indeed, the 
data deviation is outside the tolerance range, with the result that the 
costs are equal to 1 both for the move-in-log and for the move-in-data. 
Instead, the first deviations is always considered as a move-in-data in 
the fuzzy approach, since the deviation is within the tolerance range 
and, hence, the cost is less than 1. We argue that this interpretation 
is reasonably closer to the human’s interpretation than the crisp 
one. Indeed, we can expect that a human analyst would consider the 
execution of W_F_A as correct in this trace, being the data violation 
negligible. Furthermore, the fuzzy approach returned a higher fitness 
value for the trace than the crisp one; this is reasonable, since the first 
deviation is still close enough to the ideal value.
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TABLE II. The Optimal Alignments Returned by the Crisp Cost 
Function

No. Model Log δcost

... ... ... ...

3# ≫ W_F _C (Amount = 8160) 1

... ... ... ...

18# ≫ W_F _A (Duration = 97) 1

TABLE III. The Optimal Alignment Returned By a Fuzzy Cost Function

No. Model Log δcost

... ... ... ...

3# W_F _C W_F _C (Amount = 8160) 0.265

... ... ... ...

18# ≫ W_F _A (Duration = 97) 1

Summing-up, the performed comparison did highlight how the use 
of a fuzzy cost led to improved diagnostics. On the overall fitness level, 
the fuzzy cost function has obtained higher level of fitness, which 
represents a more accurate diagnostics [9]. It proves that the fuzzy 
approach provides a more precise evaluation of the deviation level, 
taking into account actors’ acceptance. In particular, the results show 
that the fuzzy approach allows to obtain a more fine-grained evaluation 
of traces compliance levels, allowing the analyst to differentiate 
between reasonably small and potentially critical deviations. 
Furthermore, they pointed out the impact that the cost function has 
on the interpretation of the alignments. Indeed, the approach allows 
to establish a preferred interpretation in cases in which the crisp 
function would consider possible options as equivalent, thus reducing 
ambiguities in interpretation, and providing interpretations for the 
detected deviations reasonably closer to human analysts’ ones.

VII.  Conclusion

The present work investigated the use of fuzzy sets concepts in 
multi-perspective conformance checking. In particular, we showed 
how fuzzy set notions can be used to take into account the severity of 
deviations when building the optimal alignment. We implemented the 
approach and performed a proof-of-concept over a synthetic dataset, 
comparing results obtained adopting a standard crisp logic and our 
fuzzy logic. The obtained results confirmed the capability of the 
approach of generating more accurate diagnostics, as shown both by 
a) the difference in terms of fitness of the overall set of executions, due 
to a more fine-grained evaluation of the magnitude of the occurred 
deviations, and b) by the differences obtained in terms of the different 
preferred explanations provided by the alignments of the different 
approaches.

Our results indicate that by exploiting the flexibility in the 
definition of gradual concepts, conformance analysis from the data 
perspective is improved. By using fuzzy sets to represent gradual 
constraints, the penalization of slight violations of the constraints is 
also made gradual, which reduces the cost associated with a slight 
violation, and this seems to improve the results of matching between 
a process model and the event log. Effectively, the fuzzy sets are 
used to represent a weighting of the violation of business (clinical) 
rules, which renders the conformance analysis less sensitive to small 
violations of such rules.

Since this is an exploratory work, there are several research 
directions that can still be explored. First, in future work we plan to 
test our approach in real-world experiments, to generalize the results 

obtained so far. When dealing with real-world experiments, we expect 
handling of missing values to be an important step in our analysis. 
There are various methods in which this could be done, such as 
imputation methods or approaches based on possibility theory in order 
to deal with the unknown nature of the missing data. Another research 
direction we intend to explore consists of introducing interval valued 
fuzzy sets or type-2 fuzzy sets for dealing with the variability that 
might occur when obtaining the fuzzy sets in our cost function from 
experts. Inter-expert variability can best be handled with more generic 
forms of fuzzy sets, which will allow us to extend the flexibility of the 
analysis process to the process analysts’ needs.

Finally, in future work we intend to investigate how to exploit our 
flexible conformance checking approach to enhance the system on-
line resilience to exceptions and unforeseen events.

Acknowledgment

The research leading to these results has received funding from the 
Brain Bridge Project sponsored by Philips Research.

References

[1] W. Van der Aalst, A. Adriansyah, A. K. A. De Medeiros, F. Arcieri, T. 
Baier, T. Blickle, J. C. Bose, P. Van Den Brand, R. Brandtjen, J. Buijs, et 
al., “Process mining manifesto,” in International Conference on Business 
Process Management, 2011, pp. 169–194, Springer.

[2] W. Van der Aalst, A. Adriansyah, B. van Dongen, “Replaying history on 
process models for conformance checking and performance analysis,” 
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 
vol. 2, no. 2, pp. 182–192, 2012.

[3] A. Adriansyah, B. F. van Dongen, W. M. van der Aalst, “Memory-efficient 
alignment of observed and modeled behavior,” BPM Center Report, vol. 
3, 2013.

[4] A. Adriansyah, J. Munoz-Gama, J. Carmona, B. F. van Dongen, W. M. 
van der Aalst, “Alignment based precision checking,” in International 
Conference on Business Process Management, 2012, pp. 137–149, 
Springer.

[5] F. Mannhardt, M. De Leoni, H. A. Reijers, W. M. Van der Aalst, “Balanced 
multi-perspective checking of process conformance,” Computing, vol. 98, 
no. 4, pp. 407–437, 2016.

[6] M. De Leoni, W. M. Van Der Aalst, “Aligning event logs and process 
models for multi-perspective conformance checking: An approach based 
on integer linear programming,” in Business Process Management, 
Springer, 2013, pp. 113–129.

[7] S.-C. Cheng, J. N. Mordeson, “Fuzzy linear operators and fuzzy normed 
linear spaces,” in First International Conference on Fuzzy Theory and 
Technology Proceedings, Abstracts and Summaries, 1992, pp. 193–197.

[8] G. Müller, T. G. Koslowski, R. Accorsi, “Resilience-a new research field in 
business information systems?,” in International Conference on Business 
Information Systems, 2013, pp. 3–14, Springer.

[9] A. Rozinat, W. M. Van der Aalst, “Conformance checking of processes 
based on monitoring real behavior,” Information Systems, vol. 33, no. 1, 
pp. 64–95, 2008.

[10] A. Adriansyah, B. F. van Dongen, W. M. van der Aalst, “Towards robust 
conformance checking,” in International Conference on Business Process 
Management, 2010, pp. 122–133, Springer.

[11] M. Alizadeh, M. de Leoni, N. Zannone, “History-based construction 
of alignments for conformance checking: Formalization and 
implementation,” in International Symposium on Data-Driven Process 
Discovery and Analysis, 2014, pp. 58–78, Springer.

[12] W. Song, H.-A. Jacobsen, C. Zhang, X. Ma, “Dependence-based data-
aware process conformance checking,” IEEE Transactions on Services 
Computing, 2018.

[13] R. Bosma, U. Kaymak, J. Berg, van den, H. Udo, “Fuzzy modelling of 
farmer motivations for integrated farming in the vietnamese mekong 
delta,” in The 14th IEEE International Conference on Fuzzy Systems, 
2005. FUZZ’05, United States, 2005, pp. 827–832, Institute of Electrical 



Special Issue on Artificial Intelligence, Paving the Way to the Future

- 141 -

and Electronics Engineers.
[14] E. S. Pane, A. D. Wibawa, M. H. Purnomo, “Event log-based fraud rating 

using interval type-2 fuzzy sets in fuzzy ahp,” in 2016 IEEE region 10 
conference (TENCON), 2016, pp. 1965–1968, IEEE.

[15] Z. Hao, Z. Xu, H. Zhao, H. Fujita, “A dynamic weight determination 
approach based on the intuitionistic fuzzy bayesian network and its 
application to emer-gency decision making,” IEEE Transactions on Fuzzy 
Systems, vol. 26, no. 4, pp. 1893–1907, 2017.

[16] J. Li, L. Luo, X. Wu, C. Liao, H. Liao, W. Shen, “Prioritizing the elective 
surgery patient admission in a chinese public tertiary hospital using the 
hesitant fuzzy linguistic oreste method”, Applied Soft Computing, vol. 
78, pp. 407–419, 2019.

[17] S. Bragaglia, F. Chesani, P. Mello, M. Montali, D. Sottara, “Fuzzy 
conformance checking of observed behaviour with expectations,” in 
Congress of the Italian Association for Artificial Intelligence, 2011, pp. 
80–91, Springer.

[18] K. Ganesha, S. Dhanush, S. S. Raj, “An approach to fuzzy process 
mining to reduce patient waiting time in a hospital,” in 2017 
International Conference on Innovations in Information, Embedded and 
Communication Systems (ICIIECS), 2017, pp. 1–6, IEEE.

[19] A. Adriansyah, J. M. Buijs, “Mining process performance from event logs: 
The bpi challenge 2012,” in Case Study. BPM Center Report BPM-12-15, 
BPM-center. org, 2012, Citeseer.

[20] L. Genga, M. Alizadeh, D. Potena, C. Diamantini, N. Zannone, 
“Discovering anomalous frequent patterns from partially ordered event 
logs,” Journal of Intelligent Information Systems, vol. 51, no. 2, pp. 257–
300, 2018.

[21] J.-S. R. Jang, C.-T. Sun, E. Mizutani, “Neuro-fuzzy and soft computing-a 
computational approach to learning and machine intelligence [book 
review],” IEEE Transactions on Automatic Control, vol. 42, no. 10, pp. 
1482–1484, 1997.

[22] G. J. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications. 
Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1995.

[23] A. Cornelissen, J. Berg, van den, W. Koops, U. Kaymak, “Elicitation 
of expert knowledge for fuzzy evaluation of agricultural production 
systems,” Agriculture, Ecosystems & Environment, vol. 95, no. 1, pp. 
1–18, 2003.

[24] J. M. da Costa Sousa, U. Kaymak, Fuzzy Decision Making in Modeling 
and Control, vol. 27 of World Scientific Series in Robotics and Intelligent 
Systems. New Jersey: World Scientific, 2002.

[25] G. Beliakov, A. Pradera, T. Calvo, Aggregation Functions: A Guide for 
Practitioners. Berlin: Springer, 2007.

[26] S. Zhang, L. Genga, L. Dekker, H. Nie, X. Lu, H. Duan, U. Kaymak, 
“Towards multi-perspective conformance checking with aggregation 
operations,” in Information Processing and Management of Uncertainty 
in Knowledge-Based Systems, Cham, 2020, pp. 215–229, Springer 
International Publishing.

[27] R. Dechter, J. Pearl, “Generalized best-first search strategies and the 
optimality of a,” Journal of the ACM (JACM), vol. 32, no. 3, pp. 505–536, 
1985.

[28] H. Yan, P. Van Gorp, U. Kaymak, X. Lu, L. Ji, C. C. Chiau, H. H. Korsten, 
H. Duan, “Aligning event logs to task-time matrix clinical pathways 
in bpmn for variance analysis,” IEEE Journal of Biomedical and Health 
Informatics, vol. 22, no. 2, pp. 311–317, 2017.

[29] L. Genga, C. Di Francescomarino, C. Ghidini, N. Zannone, “Predicting 
critical behaviors in business process executions: when evidence counts,” 
in International Conference on Business Process Management, 2019, pp. 
72–90, Springer.

Sicui Zhang

Sicui Zhang is a Ph.D. candidate at Department of 
Biomedical Engineering of Zhejiang University, China, 
and Department of Industrial Engineering, Eindhoven 
University of Technology, the Netherlands. Her research 
focuses on clinical decision support systems, business 
process management, conformance checking, and decision 
making processes.

Hongchao Nie

Hongchao Nie obtained the Ph.D. degree from Zhejiang 
University, China, in 2014 . He is currently a research 
scientist at Philips Research Eindhoven, the Netherlands. 
His academic activities have covered image processing, 
health IT, interoperability and process management. At 
Philips Research, his active research areas include process 
analysis, clinical informatics, machine learning and 

operation research.

Laura Genga

Laura Genga, received her Ph.D. in science of engineering 
at the Università Politecnica delle Marche, Italy, in 2016. 
Since January 2019, she has been an assistant professor in 
the Information Systems Group at the Eindhoven University 
of Technology, the Netherlands. Her core topics involve 
automated discovery and analysis of flexible pro-cesses, 
compliance analysis, and on-line process monitoring and 

prediction to support human analysts in detecting potential threats and in taking 
decisions regarding current process executions. 

Xudong Lu

Xudong Lu received the M.Sc. degree and Ph.D. degree in 
Biomedical Engineering from Zhejiang University in 1998 
and 2001. He is a full professor in Biomedical Informatics 
Laboratory, Department of Biomedical Engineering, 
Zhejiang University. He is an openEHR Foundation 
Management Board Member, member of American 
Medical Informatics Association, and Hospital Information 

Management Sys-tem Society since 2007. He achieved several contributions 
on Business Process Management with Medical Intelli-gence, Guideline-based 
Clinical Decision Support Systems, Integrated EMR-S in China, and Integrated 
Physiology Information System through Knowledge Transfer.

Hui Yan

Hui Yan received the first Ph.D. degree in biomedical 
engineering from Zhejiang University, China, in 2019 
and second Ph.D. degree in industrial engineering from 
Eindhoven University of Technology, the Netherlands, 
in 2020. She is now working in Hainan University as an 
assistant professor. Her research interests include care 
pathway analysis, conformance checking, business process 

management.

Uzay Kaymak

Uzay Kaymak received the M.Sc. degree in electrical 
engineering, the degree of chartered designer in information 
technology, and the Ph.D. degree in control engineering 
from the Delft University of Technology, Delft, The 
Netherlands, in 1992, 1995, and 1998, respectively. From 
1997 to 2000, he was a Reservoir Engineer with Shell 
International Exploration and Production. He is currently a 

Full Professor with the School of Industrial Engineering, Eindhoven University 
of Technology, Eindhoven, the Netherlands. He has co-authored more than 
250 academic publications in the fields of intelligent decision support systems, 
computational intelligence, data mining, and computational modeling methods. 
His current research interests include fuzzy decision support, interpretable 
fuzzy modeling, computational intelligence, and intelligent systems design. Dr. 
Kaymak is an Associate Editor for the IEEE TRANSACTIONS ON FUZZY 
SYSTEMS and is member of the Editorial Board of multiple journals. He is a 
Past Chair of the Fuzzy Systems Technical Committee and the Computational 
Finance and Economics Technical Committee of the IEEE Computational 
Intelligence Society. He is also a board member of DSC/e (Data Science Centre 
Eindhoven) and of the Clinical Informatics study program (two-year post-
master PDEng study) of TU/e and a member of the program and/or organization 
committee of multiple international conferences. Dr. Kaymak also holds a 
visiting professor position at the Zhejiang University, China.


