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Abstract

Data scientists aim to provide techniques and tools to the clinicians to manage the new coronavirus disease. 
Nowadays, new emerging tools based on Artificial Intelligence (AI), Image Processing (IP) and Machine 
Learning (ML) are contributing to the improvement of healthcare and treatments of different diseases. This 
paper reviews the most recent research efforts and approaches related to these new data driven techniques 
and tools in combination with the exploitation of the already available COVID-19 datasets. The tools can assist 
clinicians and nurses in efficient decision making with complex and heavily heterogeneous data, even in hectic 
and overburdened Intensive Care Units (ICU) scenarios. The datasets and techniques underlying these tools 
can help finding a more correct diagnosis. The paper also describes how these innovative AI+IP+ML-based 
methods (e.g., conventional X-ray imaging, clinical laboratory data, respiratory monitoring and automatic 
adjustments, etc.) can assist in the process of easing both the care of infected patients in ICUs and Emergency 
Rooms and the discovery of new treatments (drugs). 
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I. Introduction

BY the end of 2019, doctors in the city of Wuhan (China, province 
of Hubei) began to detect evidence of the expansion of a new type 

of severe acute respiratory syndrome (SARS) among the population 
of the aforementioned city. This event, although different from, had 
strong similarities to the SARS coronavirus (CoV) outbreak that 
took place there during 2002-2004, hence the name SARS-CoV-2 
or CoVID-19, for short. This new coronavirus is considered to be a 
strain from the 2002 one and has, by the time of this writing, brought 
about a novel global pandemic with potentially lethal consequences 
for infected people. The new disease, COVID-19, was considered as a 
public health emergency by the World Health Organization (WHO) on 
January 30, 2020. In March 11, its condition was raised to the status of 
global pandemic [1].

As the original SARS-CoV coronavirus, SARS-CoV-2 is transmitted 
through respiratory droplets from person to person and the condition’s 
symptoms appear after an incubation period that lasts from 2 to 14 
days [2]. The great expansion rate of the disease has led to a shortage 
in intensive care equipment and to a greatly increased demand for 
technical resources (e.g. mechanical ventilation, Personal Protective 
Equipment (PPE), drug treatments, etc.). In many situations, the health 
care systems have risked or even surpassed the point of collapse. 

This pandemic has also had a huge impact on the generation of 
clinical and research data. Of course, part of this dataset has been 
generated in the Intensive Care Units (ICUs) and Emergency Rooms 
(ERs). However, the exploitation of this information is complex due 

to the stressful situations that clinicians experience in ICUs. Some 
pieces of this data may turn out to be too complex and too varied 
for obtaining practical and correct diagnoses. In this context, Artificial 
Intelligence (AI), Image Processing (IP) and Machine Learning (ML) 
techniques can contribute to manage this problem of information 
overload. The information flow is represented in Fig. 1, where AI has 
a pivotal role in the fight against COVID-19 in intensive care units [3].

Epidemiological Data

Clinical Data

Genetic Data

Data
Collection

Data
Collection

Data
management

and processing
Apps

Hospital
Operation

Prevention

Therapeutics

Diagnosis

Fig. 1. Areas of interest where artificial intelligence and machine learning 
could play a key role in the fight against COVID-19 (e.g., biochemistry and 
clinical data of COVID-19 patients can be studied by ML techniques to focus 
not only in risk prediction, but also for disease treatment). Model adapted          
from the figure published [3].

The rest of this paper is organized as follows. First, we review the 
COVID-19 outbreak, its complexity, symptoms and how healthcare 
professionals are dealing with ICU patients. Then, we provide a broad 
prospective on the utility of machine learning in data science. Next 
we explain how ML is applied in medicine with some examples and 
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applications. The next aim is to contextualize the applicability of 
AI+IM+ML in COVID-19 focusing on its critical areas of interest. 
Specifically, this review covers mechanical ventilation, medical 
imaging and clinical data. Finally, we outline the most important 
findings and prospective future research lines. 

II. The COVID-19 Outbreak

Dr. Tedros Adhanom Ghebreyesus1, the World Health Organization 
(WHO) Director-General, reported on February 11, 2020 the new 
Coronavirus Disease SARS-CoV-2 or COVID-19 intensive epidemic in 
Wuhan. This is the third identified type of dangerous acute respiratory 
syndrome from coronavirus (SARS-CoV-2) in the last twenty years, 
but the one with the lowest level mortality rate [4], as evinced in Table 
I. Until July 13, there were a total of 12,859,834 confirmed cases, and 
more than 567.957 deaths in 188 countries and territories around the 
world2. The countries in which the outbreak has had the most severe 
impact in terms of cases are in Table II: United Stated of America, 
Brazil, India, Russian Federation, Peru, Chile, Mexico, The United 
Kingdom, South Africa, Iran, Spain and Pakistan. 

TABLE I. CoV Mortality Rate

CoV Year Origin Mortality Rate
SARS 2002 Guandong province, China 10%
MERS 2013 Saudi Arabia 34%

COVID-19 2019 Wuhan, China 3.4%

Mortality rate comparing different coronavirus outbreaks from 2002 to present

TABLE II. Situation By Country

Country Cases  Deaths
Death Rate (%) of 

cases

United Stated of America 3,163,581 133,486 4.2
Brazil 1,800,827 70,398 3.9
India 849,553 8,196 0.9

Russian Federation 727,162 11,335 1.5
Peru 319,646 11,500 3,6
Chile 312,029 6,881 2.2

Mexico 289,174 34,191 11.8
The United Kingdom 288,957 44,798 15.5

South Africa 264,184 3,971 1.5
Iran 255,117 12,635 4.9

Spain 253,908 28,403 11,2
Pakistan 248,872 5,197 2

Globally, as of 4:49 pm CEST, 12 July 2020, there have been 12.552.765 
confirmed cases of COVID-19, including 561.617 deaths, reported by the WHO 
in https://covid19.who.int. 

Scientists think that COVID-19 made a leap from animals to humans 
as a new zoonotic [5] human disease at the Huanan Seafood Market 
in Wuhan. In this place, bats, snakes and other wild animals are sold 
as culinary delicacies. As the Fig. 2 shows, even though the zoonotic 
root of SARS-CoV-2 has not been corroborated, the series-based 
analysis indicates that the virus jumped from bats (as this species is 
an important coronavirus reservoir) to humans perhaps through an 
intermediate host, the pangolin [6]. Once the virus had the capability 
of infecting humans, it rapidly spread up to 109 countries in November 
and December 2019.

1 World Health Organization. Coronavirus press conference 11 February 2020
2 Johns Hopkins Coronavirus Resource Center https://coronavirus.jhu.edu/
map.html
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Fig. 2. Representation of the transmission of SARS-CoV-2. Model adapted from 
the figure published [6].

Direct transmission [7] requires direct physical contact between 
the infected and predisposed individuals, via bites and handling of 
infected animal tissue. Direct contact and bites involve the formation 
of skin rash and ulcerations, whereas the ingestion of infected meat/
water involves digestive tract problems and diseases transmitted 
through the intake of inhalation of contaminated particles could cause 
pneumonia. 

After a massive outbreak, now driven by human-to-human 
transmission, the infection continued its expansion thanks to 
national and migratory movements and global tourism, starting with 
the Chinese New Year holidays.  SARS-CoV-2 is a highly diffusible 
virus, carried by airborne droplets, direct contact or contact with 
contaminated objects. Major risk factors are:

• Age greater than 60 (increasing with age).

• Male gender.

• Subjacent non-communicable diseases (NCDs): diabetes, 
hypertension, cardiac disease, chronic lung disease, cerebrovascular 
disease, chronic kidney disease, immunosuppression and cancer.

In many cases, the most common symptoms at inception of 
COVID-19 disease could include [8] –[9]: 

• Fever experienced by 83–99% of the patients [10].

• Neurological manifestations [11] such as anosmia (loss of sense of 
smell) and dysgeusia (perception of altered taste).

• Dyspnea or shortness of breath (31–40%).

• Dry cough (59–82%).

• Fatigue (44–70%).

• Myalgia (11–35%).

• Diarrhea.

Moreover the “Massachusetts General Hospital treatment guidance 
for critically ill patients with COVID-19” [12] reported that it would 
be expected that a percentage of these patients (5%) would need ICU 
admissions due to bilateral pneumonia, acute respiratory distress 
syndrome (ARDS), hypoxemia, respiratory failure, shock and multiple 
organ dysfunction syndrome (MODS). As Fig. 3 discloses,  critically 
events lead to further complications [13]. In the most severe cases, a 
cytokine storm syndrome is triggered that involves an overall hyper-
inflammation that leads to sepsis and septic shock, thromboembolism, 
and/or multiorgan failure, that includes in many cases acute 
kidney injury and cardiac injury. When these events take place, the 
mortality rate is in the range of 20% to 60% after ICU admission. In 
Wuhan [14], between January 10 and February 29, 2020 at least a 
median(interquartile range) of 429(25-1143)  patients with COVID-19 
were reported and admitted in the ICU while 1521 (111-7202) patients 
were diagnosed with severe sickness each day. During the epidemic 
peak, 19,425 patients (24.5 per 10,000 adults) were hospitalized, 9,689 
(12.2 per 10 000 adults) were considered in severe illness, and 2,087 
(2.6 per 10,000 adults) needed critical care per day. After the first 7-8 
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days in the ICU, patients required massive intensive care management 
(lung protective ventilation, avoidance of fluid overload and support 
of organ function) as well as the application and intervention by a 
wide spectrum of medical technologies and therapies such as:

• ventilators in most cases, 

• RT-PCR tests,

• aerosol generating therapies,

• laboratory equipment,

• X-ray and CT Imaging, and

• other healing therapies previously used for SARS and MERS.
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Fig. 3. Severe and abnormal symptoms caused by critical disease complications. 
e.g. respiratory failure. Model adapted from the figure published [13].

Regarding the use of therapies, even when different drugs have in 
vitro activity against different coronaviruses, until today there has 
been no clinical evidence that argues the efficacy and safety of these 
treatments for coronavirus infection, including SARS-CoV-2. What 
is more, compassionate treatments that have not been previously 
approved for clinical purposes could involve serious harmful 
consequences when taking into account that many patients suffer from 
previous disorders such as cardiac arrhythmias. In these circumstances, 
taking into consideration that nonproven specific therapies (NPTs) are 
available, a large number of patients have received compassionate use 
therapies such as Remdesivir [15], which had been previously targeted 
at fighting against the Ebola virus, Lopinavir–Ritonavir (an HIV type 
1 aspartate protease inhibitor [16]), chloroquine (generally-used anti-
malarial and autoimmune disease drug [17]) and hydroxychloroquine 
(an analogue of chloroquine  [15]) among other therapies. 

Bearing in mind all these concerns, a significant number of doubts 
still need to be addressed. In summary, until a vaccine or effective 
treatment is available, the most efficient measure for reducing person-
to-person transmission of COVID-19 needs to focus on the use of 
masks, social distancing and hand washing.

III. Machine Learning 

In 1959, Arthur Samuel defined machine learning as a “field of 
study that gives computers the ability to learn without being explicitly 
programmed” [18]. We might say, very broadly, that machine learning 
refers to the changes in systems regarding all those tasks associated 
with AI. These tasks have a wide range of functions, from recognition, 
to diagnosis and prevention. Many techniques in machine learning 
arrive from the efforts of psychologist to find similarities to biological 
learning. But psychologists are not the only ones who have contributed 
to the study and evolution of ML. Other disciplines have also made 
relevant contributions, such as:

• Brain modeling, which tries to interpret learning phenomena in 
terms of artificial neural networks.

• Statistical machine learning, which can be considered another 
instance of artificial learning.

• Adaptive control, which manages processing in real time by the 
use of mathematical estimations in real time.

• Artificial intelligence, which has been associated with ML from 
the very beginning, since past actions have a direct effect on the 
future. 

• Evolutionary algorithms, which have proposed certain aspects 
of biological evolution as learning methods. Genetic algorithms 
are the most representative of these algorithms.

Traditionally, the training of a ML algorithm has been classified 
into the three broad categories shown in Fig. 4, which depend on the 
available data [19].

• Supervised learning, which teaches the computer how to do 
something and then lets it use its new knowledge to do the task.

• Unsupervised learning, by which the computer learns without 
instruction and uses this knowledge to structure and find patterns 
in the dataset.

• Reinforcement learning, by which the computer interacts with 
a changing ecosystem where it needs to perform a specific action 
or objective, such as driving an autonomous vehicle.
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Fig. 4. The major learning approaches in ML. Examples of algorithms of the 
corresponding type are shown under each branch. Model adapted from the 
figure published [19].

ML has had an impact on different applied disciplines such as 
physics, chemistry, engineering, as well as medicine. These techniques 
can be applied to problems of prediction, classification or control in 
a wide spectrum of medical fields from the assessment of a patient’s 
state to the prognosis of disease outcome from genetic information.

IV. Machine Learning in Medicine 

The next sections survey machine learning applied to medicine and 
then focus on its prospective applications for addressing COVID-19, 
medical imaging, clinical data and the automatic monitoring of 
ventilators. Until today, experience and heuristics have been the gold 
standard in medicine, whereby knowledge is acquired through daily 
practice in self-learning, considering the high variable healthcare 
environments. Computational resources development as well as 
data storage capacity has become the big enabler in automatic or 
semi-automatic data-driven and evidence-based medical decisions. 
The use of ML in this context relies on the collection and analysis of 
huge and complex datasets to recognize and learn patterns, limit false 
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classifications and make the following decisions related to:

• Diagnosis. Errors in diagnosis happen on a daily basis and this 
problem is not limited to complex situations. In this scenario, ML 
could reduce the uncertainty by helping clinicians make better 
decisions and at the same time reduce errors. In this context, 
computer-based medical IP (e.g. electrocardiogram, topographies, 
etc.) enables the non-intrusive identification and medical 
assessment of the level of damage in different regions of the body. 

• Prognosis. ML applications can learn patterns from a vast number 
of patients. Using data belonging to laboratories for classification 
of biomarkers, clinicians can anticipate future events going beyond 
the individual physician’s clinical experience and reducing bias.

• Treatment. In a large health care system, there could exist tens 
of thousands of physicians, and a huge number of patients with 
related conditions. ML could help clinicians automate, program 
and at the same time customize treatment in order to apply better 
treatment pathways. A clear field of application is the assessment 
of genomic attributes to find personalized treatments.

V. Artificial Intelligence Applied to Covid-19

COVID-19 has rapidly become a global concern that needs faster, 
more sensitive, and at the same time customizable support. Currently, 
artificial intelligence, in particular ML, can help dealing with the key 
challenges associated with the SARS-CoV-2 outbreak, which are: 

• Diagnostic Capacity. The huge number of cases overwhelms 
diagnostic potential, accenting the need for an agile pipeline for 
sample processing and diagnosis.

• Diagnosis Specificity. SARS-CoV-2 is nearly connected to other 
significant coronavirus subspecies and species, so diagnostic 
assays can produce false positives if they are not finely specific 
to SARS-CoV-2.

• Pathogen Characterization. Presumed SARS-CoV-2 patients 
sometimes suffer from a dissimilar respiratory viral infection and 
in worst cases have co-infections with SARS-CoV-2 and other 
respiratory viruses. Consequently, it is important to identify 
these other pathogens, for both patient diagnostics and pandemic 
response. For these reasons, the authors in [20] identify (in Table 
III) an inherent COVID-19 virus genomic signature and compare 
the performance of their propose algorithm with six machine 
learning algorithms (Linear Discriminant, Linear SVM, Quadratic 
SVM, Fine KNN, Subspace Discriminant, and Subspace KNN) for 
an ultra-rapid adaptable, and extremely accurate classification of 
whole COVID-19 virus genomes. Table III shows the effectiveness 
of these approaches.

Taking into account the previously mentioned difficulties, 
clinicians and nurses need to deal with a vast amount of data, work 
with multidimensional problems or identify patterns based on a huge 
dataset. To face this problem, the combination of AI techniques and 
high-performance computing networks will be the new clinician’s 
tools for health care provision. This new data-driven approach enables 
decision-taking processes that involve high complexity, are more 
accurate and with a quicker response, to cure more people when 
dealing with a lack of resources.

Considering COVID-19 unique circumstances, AI efforts have been 
mainly focused on ICU activity. Fundamentally, the spotlight has been 
put on diagnosis, monitoring, prognosis and drug discovery. At the 
same time, the fast spread of COVID-19 and the lack of resources 
in all countries have made possible the development of a myriad of 
applications based on AI to deal with the following clinical problems:

• Patient diagnoses and severity status. Clinical asset restrictions 

(ICU equipment, etc.) imply that the treatments depend on the 
seriousness of the patient’s status. Since asymptomatic patients 
could become seriously or even critically ill very fast, it is critical to 
identify them as soon as possible and administer the right treatment 
in order to reduce mortality. AI techniques can help to support 
the analysis, prediction and treatment of COVID-19 infections. 
Until now, AI applications based on COVID-19 clinical needs have 
been focused on diagnosis relying on medical imaging to analyze 
computer tomography (CT) and scans [21]. Authors in [22] and 
[23] have demonstrated that ML+CT or ML+X-ray combinations 
give extra time to radiologists for COVID-19 diagnoses, as shown 
in Fig. 5. Results from this research demonstrate, that ML+CT 
combinations are quicker and less expensive than the Reverse 
Transcription Polymerase Chain Reaction (RT-PCR or) test; the 
current gold standard for COVID-19 diagnosis. This approach 
makes more sense due to test global shortage and expense of 
the PCRs. However, not all ICUs have X-ray equipment (or even 
CT scanners). With the assistance of deep learning techniques, 
authors in [23] propose classifying the patient status as either 
negative or positive for COVID-19. This research has reported a 
94.92% sensibility and 92.00% specificity in COVID-19 detection. 
These results demonstrate the utility of deep learning models to 
classify COVID-19 medical imaging.

• Patient’s health progress. Patients’ clinical data and blood tests 
contain many analyzable features that help doctors in recognizing 
high-risk patients [24], as explained in the flowchart in Fig. 6. The 
sooner the patient is tested, the sooner the prognosis improves. 
Taking into account this premise, a patient’s health status can 
improve, and the mortality can decline for people seriously sick. 
So far, this methodology facilitates the interpretability of the 
most remarkable elements regarding the physiological progress 
of COVID-19, specifically in cell injury, cell immunity, and tissue 
inflammation.

TABLE III. Classification Accuracy Scores of Betacoronavirus

Dataset Clusters
Nº 
Seq

Classification
Model

Acc. 

Test-4: Embecovirus 49 LinearDiscriminant 97.6

BetaCV; Merbecovirus 18 LinearSVM 98.4

124 seq.; Nobecovirus 10 QuadraticSVM 98.4

MaxL:31526 Sarbecovirus 47 FineKNN 97.6

MinL:29107 SubspaceDiscriminant 98.4

MdL:30155 SubspaceKNN 97.2

MnL:30300 AverageAccuracy 97.6

Tes-5: Embecovirus 49 LinearDiscriminant 98.6

Beta&CV19 Merbecovirus 18 LinearSVM 97.4

152 seq. Nobecovirus 10 QuadraticSVM 97.4

MaxL:31526 Sarbecovirus 47 FineKNN 97.4

MinL:29107 COVID-19 29 SubspaceDiscriminant 98.7

MdL:29891 SubspaceKNN 96.1

MnL:30217 AverageAccuracy 97.5

Test-6: Sarbecovirus 47 LinearDiscriminant 100

Sarb&CV19 COVID-19 29 LinearSVM 100

76 seq.; QuadraticSVM 100

MaxL:30309 FineKNN 100

MinL:29452 SubspaceDiscriminant 100

MdL:29478 SubspaceKNN 100

MnL:29772 AverageAccuracy 100

Relationship between viral sequences, taking into account different levels of 
taxonomies and the score of Classification’s accuracy.



- 12 -

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 6, Nº4

Input

Model

Block1

BlockL1
BlockL2

BlockLN

Block2
Output

Fig. 5. Deep learning algorithm framework. For each patient’s computed 
tomography scan, ROI (regions of interest) have been randomly selected and 
used in the inception network to extract features and then make a prediction. 
Model adapted from the figure published [21].
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Fig. 6. The flow chart represents  different concepts involved in a typical 
supervised ML process. “E” means experience (data); “R”, is related to the task; 
“T”, the classifying task; “M”, represents the ML Model (the ML algorithm or 
the classifier); “O”, is the optimization phase; “P”, is related to metrics; “Ev”, is 
in charge of the evaluation, here represented as a “loss function” L(t, y). The 
final feedback involves the “learning” by the machine. Model adapted from the 
figure published [24].

• Computational biology and drug discovery. This approach 
is based on disease dynamic modeling [25]. It includes the use 
of data analytics, mathematical modeling and computational 
simulation procedures to study the COVID-19 biology. Authors in 
[26] propose a new pathway that contributes to the understanding 
of the effect of parameters that govern the proliferation of the 
disease. The results, as Fig. 7 shows, put the focus on a new AI 
algorithm that has been designed for identifying drugs that might 
block the viral infection process. In this way, Baricitinib [26] could 
decrease the potential of the virus to cause infection in lung cells.

Taking into account this enormous number of combinations, the 
scenario of COVID-19 gets more complex especially in ICUs with 
COVID-19 patients. Electronic health records from patients admitted 
at ICUs has been growing exponentially during the past months. 

Clear examples of this new scenario are common ICU equipment 
such as pressure and flow transducers, infusion pumps, pulse 

oximeters, cardiac output monitors, and mechanical ventilators. This 
medical equipment stores data records and includes interoperable 
interfaces that allow for their interconnection using standards such 
as the Health Level Seven3 (HL7). Through HL7, ICU medical devices 
communicate with a hub of electronic systems through busses and 
interchangeable, hot pluggable interfaces.

A. Adaptive Ventilation Settings
In this section, we focus on ventilation, medical imaging and 

clinical data topics that seem to be the most relevant areas where the 
combination of AI and COVID-19 promises better results.

Mechanical ventilation has saved many lives since it was 
implemented in the 1950s to tackle poliomyelitis. From that time, the 
use of ventilation support has been intensified with the past of the 
years. This increase has been directly associated with the evolution 
of critical care units [27]. The most important goal of mechanical 
ventilation (Table IV) is to enhance alveolar gas exchange. Taking 
into consideration this purpose, the ventilation system is composed 
of three elements:

• the ventilator together with its inspiratory and expiratory circuits,

• the patient, 

• the interface between these two that controls the gas exchange.

TABLE IV. Objectives of Mechanical Ventilation

Make better pulmonary gas 
Exchange

Reverse hypoxemia

Improve acute respiratory acidosis

Alleviate respiratory distress Reduce oxygen cost of breathing

Revoke respiratory-muscle fatigue

Modify pressure-volume relations Prevent and reverse atelectasis

Improve Compliance

Prevent further injury

Allow lung and airway healing

Avoid complications

Main and secondary targets

The ventilation process is simple. In fact, it is the product of the 
respiratory frequency and the lung volume. This process is defined as 
the units of ventilation with gas inhaled or exhaled from a person’s 
lungs per minute. Even when it is an apparently simple relationship, 
ventilation is related with a biological process and for this reason there 
are always complexities. For instance, the changes in the inspiratory 
and expiratory dynamics change the mean inspiratory output in 

3  https://www.hl7.org

Binds viral infection

reduce

ACE2 Receptor

AT2 lung cell

reduce
Viral entry Baricitinib Inflama�ion

Pneumonia

Fig. 7. The receptor ACE2 might be used by 2019-nCoV to infect lung AT2 
alveolar epithelial cells. Baricitinib could be appropriate for patients with 
2019-nCoV acute respiratory disease in order  to reduce both the viral entry 
and the inflammation in patients caused by cytokines. Model adapted from the 
figure published [26]. 
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volume-preset ventilators, the time for filling the alveolus with gas, 
the presence of airflow difficulties and finally expiratory volume. 
Moreover, mechanical ventilation without spontaneous breathing 
leads to respiratory muscle atrophy. For this reason, clinicians prefer 
assisted modes initiated by patients’ respiratory activity. The most 
usual procedures are:

• Assist-control ventilation: the ventilator provides a breath 
independently when triggered by a patient’s respiratory activity 
or not.

• Intermittent mandatory ventilation: the patient gets regular 
positive pressure breaths from the ventilator at a preset volume 
and rate. Spontaneous breath is also allowed.

• Pressure-support ventilation: the clinician sets an initial level 
of pressure (instead of volume) to increase the spontaneous 
breathing activity by the patient. Airway pressure is preserved at 
a preset level until the patient’s inspiratory flow descends below 
a certain level.

As indicated in chapter II of this review, COVID-19 disease involves, 
in many cases, ICU admissions due to bilateral pneumonia, ARDS, 
hypoxemia, respiratory failure, shock and MODS. These situations 
require in most cases mechanical ventilation and intubation for helping 
the patient. Recent studies based on public data from COVID-19 
patients from England, Wales, and Northern Ireland, reported that until 
March 24, 2020, two thirds of patients (i.e., 132 people) admitted at ICU 
required mechanical ventilation [28]. In most cases, with the shortage 
of advanced ventilators, the ventilation process needs a manual setup 
process before they can operate. In this situation, the patient’s healing 
depends on the clinician’s ability to modify the patient’s respiration. 
Therefore, it is important to take into consideration the following 
questions for optimally managing the ventilation support:

• What are the clinical aims?

• Is there a complete comprehension of the foundations and 
functional limitations of the medical devices?

• What is the medical intention in changing the patient’s 
prescription?

In many cases, there aren’t any homogenous treatments, and 
ventilation involves a huge degree of personalization, so clinical bias 
takes place. Even when ventilators work in a proper way in delivering 
air to the lungs, the design of this equipment is based (in many cases) on 
an open loop flow system, which implies patient having to adapt to the 
machine. This means that the input ventilation does not depend on the 
outflow so the patient’s response to the flow and the delivered breath 
can’t be assessed. The Fig. 8 represents this open loop flow process.

Ventilator

Ventilator
Se�ings

Respiratory
support Patient

Clinician

Physiological
Measurement

Control
Target

Fig. 8. Open Loop Ventilators Systems.

In order to avoid this issue, automated closed-loop systems (with 
feedback control) allow doctors to keep a patient at a specified clinical 
target without permanent clinical interaction. This means that a 
centralized module, the controller, takes the control over the task of 
adapting ventilator settings. Fig. 9 represents the closed loop flow.
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Fig. 9. Closed Loop Ventilators Systems.

From this point of view, machine learning plays a key role in 
automatic adaptation to customized patient ventilation. Gutierrez 
[19] mentions various applications regarding the development of AI 
artifacts that could help with the design of autonomous ventilators, 
making feasible the continuous monitoring of the ventilation process 
feasible. These artifacts could adjust some parameters automatically, 
such as asynchrony in breathing, which is one of the main problems 
with patient intubation. These techniques could improve advanced 
modes of closed loop ventilation systems, which imply sharing 
of information between the ventilator and the patient. For this 
purpose, the authors of [28] have described one of the most advanced 
algorithms. This research has compared ML predictions by working 
with a 1024 breaths’ selection based on random criteria that take into 
account 16 patients. The results were compared to those made by five 
experts. The assessment reported very good results with sensitivity of 
91.5%, specificity of 91.7%, positive predictive value (PPV) of 80.3% and 
negative predictive value (NPV) of 96.7%. Additionally, 1,378 breath 
cycles from 11 mechanically ventilated critical care patients took 
part on studies related to patient ventilator asynchrony [29]. In this 
paper, the use of random forest algorithms permitted the detection of 
the presence or absence of cycling asynchrony with valuable results. 
In this way, three different situations such as delayed termination,  
premature termination and no cycling asynchrony were analyzed. 
The sensitivity (specificity) was respectively of 89% (99%), 94% (98%), 
and 97% (93%) . The authors of this research work also include a 
variable kappa, a statistical metric that compares the assessment of the 
alignment between ML and clinicians’ results. The kappa coefficient 
ranges from 0.90 to 0.91, which means an almost perfect model.

Other research related to ventilation carried out by authors in [30] 
have pointed out the need for developing promising methods based 
on machine learning techniques for prolonged mechanical ventilation 
situations and potential complications. Research was focused on 
reaching improvements in areas such as:

• prediction of arterial blood gases,
• successful extubation,
• spontaneous breathing trails, and
• development of autonomous ventilator setting adjustments. 

A common difficulty for all this research work is the lack of 
data sources necessary for reducing bias and getting better results 
supported by more clinical cases.  This fact has become more acute 
when considering the COVID-19 crisis.

B. Image Processing For the Diagnosis of COVID-19
ML has been used for the detection, segmentation and classification 

of medical imaging. Some examples of it are:

• The analysis of histological sections of tumors for detecting the 
presence or absence of metastases, 

• the application on radiological images in order to segment 
different areas, and 

• the categorization of diagnostics based on the classification of images. 

In regard to COVID-19 and IP, one of the main problems is the 
similarity of symptoms related to bacterial and viral pneumonia in chest 
radiographies. In this way, deep learning can be applied to detect and 
differentiate clinical nuances. According to the Treatment Guidance 
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for Critically Ill Patients with COVID-19 from Massachusetts General 
Hospital [12], one of the clinical futures that characterizes this condition 
is chest abnormalities, including bilateral opacities. These abnormalities 
are due in many cases to bacteria that were acquired during pneumonia 
and viral pneumonia outbreaks. In fact, both conditions can generate 
confusion, particularly in those with severe illness requiring admission 
to ICU and mechanical ventilation. In order to differentiate between 
COVID-19 induced pneumonia and other types of pneumonias, there 
are some distinctive  trends and distribution of CTs (Table V) evidences 
that could be taken into account [31] in order to apply ML techniques 
for isolating COVID-19 diagnosis:

• Ground glass opacification (GGO) (88.0%), 
• Bilateral involvement (87.5%), 
• peripheral distribution (76.0%), 
• and multilobar (more than one lobe) involvement (78.8%).

TABLE V. Patterns and Distribution of CT Studies

Imaging Insights
Nº 

Studies
 Nº(%) of registered cases/ 

total nº of patients

Bilateral involvement 12 435/407(87.5)

Peripheral distribution 12 92/121(76.0)

Posterior involvement 1 41/51(80.4)

Multilobar involvement 5 108/137(78.8)

Ground-glass opacification 22 346/393(88.0)

Consolidation 10 65/204(31.8)

Most usual patterns and distribution on initial CT Studies of 919 Patients with 
Coronavirus Disease (COVID-19). 

Nevertheless, authors in [32] suggest that daily chest X-rays have 
no positive effect over the outcome in the ICUs once COVID-19 has 
been diagnosed. These scientific study results are aligned with the IP 
and AI diagnostic techniques results. Medical images reduce the over 
exposure to radiation and are more predictive during the first stages 
of the condition.

X-ray Chest Images

Load Pre Trained
Models

Covid-19
Pneumonia

Other Bacterial
PneumoniaTraining Phase

Inception V3
ResNet50

Inception ResNetV2

GlobalAveragePooling2D

FCL with Relu (1024)

FCL with So�max (2)

Fig. 10. Schematic representation of the pre-trained models to predict 
COVID-19 by comparing patients with and without the disease. Model adapted 
from the figure published [22].

In this way authors in [22] have recently detected COVID-19 by 
applying IP and convolutional neural networks (CNNs) techniques to 
the patients’ X-ray images. Moreover, this approach is more relevant 
if we consider that results are more accurate than the “gold standard” 
for COVID-19 diagnosis, and that the RT-PCR does not have enough 
sensitivity for diagnosis purposes. This means that many patients 

could not receive adequate treatment. Authors in [22] propose using 
a pre-trained neural network (ResNet50, InceptionV3 and Inception-
ResNetV2) processing applied to X-ray images as these are faster and 
get accurate diagnoses with better outcomes than PCR. Fig. 10 shows a 
schematic representation of this network comparing X-rays of patients 
with COVID-19 and those of patients without the disease. The images 
dataset available is small (100 images in total) so the results should 
be interpreted with caution. The results of the study show that with 
this dataset the ResNet50 network has the best performance, with an 
accuracy of 98%.

Fig. 11 shows the accuracy results coming from the implementation 
of ResNet50, InceptionV3 and Inception-ResNetV2, which try to make 
predictions about patients with COVID-19 based on X-ray images. The 
best accuracy curve model has been obtained by ResNet50.
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Fig. 11. Authors have used three pre-trained models (ResNet50, InceptionV3 
and Inception resNetV2) to make predictions of coronavirus patients based 
on chest X-ray images. This figure shows the accuracy curve for each model. 
In this case, the highest accuracy has been reached with ResNet50. Model 
adapted from the figure published in [22].

Authors in [33] applied a deep learning system to diagnose 
pneumonia in COVID-19 patients. However, in this case, the research 
was conducted with CT images used for diagnostic purposes. The 
research work follows the same argument that authors in [32] made, 
which is that there is a low positive rate in early stages of COVID-19 
obtained from PCR. In this case, the dataset was bigger than the one 
used in [22], which sum a total of 618 CTs from 110 patients with 
COVID-19 and 224 patients with Influenza-A pneumonia. In this 
case, the accuracy was 86.7%. Even with these promising results, this 
technique is relatively questionable due to use of CTs for routine 
diagnostic purposes. In terms of health care system efficiency, CTs are 
not a kind of medical equipment that could be used in situation of ICU 
and ER collapse. Moreover, CT rooms could lead to a high percentage 
of viral transmission if these rooms are crowded.

Authors in [4] published in March 2020 a COVID-19 study applying 
a combination of deep learning architectures (AlexNet, VGG16, 
VGG19, GoogleNet, ResNet18, ResNet50, ResNet101, InceptionV3, 
InceptionResNetV2, DenseNet201 and XceptionNet) for extracting 
relevant features that were used for feeding an SVM classifier. In 
this study, authors have considered not only patients suffering from 
COVID-19 but also SARS and MERS. This approach involves similar 
diseases but with some specific characteristics that present differences 
among groups. The comparative study (see Table VI) shows that 
ResNet50 model had the best result, compared to the others. However, 
the dataset with X-ray images is relatively small to be able to conclude 
that this system can work properly in real time.

A different approach used the COVID-Net convolutional neural 
network model [34]. This research project has been proposed as a 
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chest X-Ray image screening method. This ML tool can be considered 
as a faster alternative to PCR or at least, as a complement to this in 
vitro diagnosis method. Moreover, this network has been pre-trained 
with the ImageNet dataset [35] in order to get better results. After this 
pre-trained process, the network has been trained with a new dataset 
COVIDx that comprises 16,756 chest images from 13,645 COVID-19 
patients. The COVIDx dataset groups:

• the COVID-19 image dataset [36]. This dataset  contains frontal 
view X-rays images and is the greatest public database for 
COVID-19 image and prognostic data, and 

• the Radiological Society of North America (RSNA) Pneumonia 
Detection Challenge Dataset [37] is a subset of  30,000 chest 
radiograph (CXR) exams taken from the NIH CXR14 dataset [38]. 
In accordance with the whole group of exams, 15,000 exams had 
positive results for pneumonia or similar pathological conditions 
such as consolidation and infiltrate.

TABLE VI. The Same Letter(s) Within A column Means That Results 
Are Not Statically Significant (P=0.05) According to Duncan’s 

Multiple Range Test (SPSS Version 26)

Classification Model Accuracy Sensitivity Specificity

AlexNet .933235d .934117b,c .932352c

DenseNet201 .938823d .943529c,d .934117c

GoogleNet .914411b,c .898235a .930588b,c

Inceptionv3 .910882b .911176a,b .910588b,c

ResNet18 .910882b .911176a,b .910588b,c

ResNet50 .953823c .972941d,c .934705c

ResNet101 .892647a .912352a,b .872941a

VGG16 .927647c,d .970745c .880588a

VGG19 .929117d .951176c,d,c .907058b

XceptionNet .939117d .947647c,d,c .930588b,c

Inceptionresnetv2 .933235d .852941c,d,c .913529b,c

Statistical analysis for SVM models based on features extracted from different 
CNN models

COVID-Net’s results offer three possibilities: non-infection, 
COVID-19 viral infection and other non-COVID-19 infection. This 
methodology helps clinicians to stratify patients in an easy way and 
decide which is the most adequate treatment for each patient. COVID-
Net has achieved a 92.6% of accuracy. This percentage is very relevant 
for taking into consideration the complexity of the ICUs. At the same 
time, results regarding its sensitivity (Table VII) are quite good with 
respect to epidemiological requirements such as the limitation over 
missed COVID-19 cases.

TABLE VII. COVID-Net Sensitivity (%)

Normal Non-COVID19 COVID-19
97.0 90.0 87.1

Sensitivity effectiveness related to COVID-Net results 

C. ML Biomarker Processing For COVID-19
The COVID-19 pandemic has been a one in a century event, whose 

symptoms are fever, cough, dyspnea, and viral pneumonia. For this 
reason, diagnostic tests have become very useful for confirming 
suspected cases, screening patients, and conducting virus surveillance. 
Currently, the gold standard technique that is used to detect COVID-19 
is the PCR test, which is based on the diagnostic protocol provided by 

the WHO on 13 January 2020 [39]. Fig. 12 shows the steps that are 
part of the process [40] for identifying active COVID-19 infection in a 
patient. The whole process consists in three steps:

1. The first one consists in taking a sample from the patient’s nose 
or mouth.

2. After that, the second step continues with a RNA isolation from a 
patient’s sample.

3. The third and final step is the conversion of the RNA into 
complementary DNA (cDNA) using  an enzyme called reverse 
transcriptase. This component is then re-loaded into a plate and 
place in a PCR machine. After that the results from the PCR 
machine are evaluated in a computer. If the level of COVID-19 RNA 
in the sample is over the threshold, the diagnosis is confirmed, and 
the patient is positive for COVID-19.

However, COVID-19 patients frequently present additional findings 
in laboratory testing, which are carried out before ICU admission. 
ML has been commonly used for the interpretation of data in 
different fields of biomedicine such as genomics, transcriptomics and 
proteomics pathways [16]-[17]. At the same time, it has also been used 
in biological materials in clinical laboratory medicine for identifying 
biomarkers. Typically, the ML approach is based on rules that are 
learned by the machine. In general terms, a discussion of rules is not 
appropriate because predictions are based on non-linear parameters 
that hide decision-making around the data.

Obtain sample Extract RNA

Converto cDNA and amplify

Analyze Results

4

3

21

COVID-19 Test Flow

Fig. 12. Workflow for identifying patients with active COVID-19 infection. 
Model adapted from the figure published [40].

In reference to COVID-19, authors in [41] have found some clinical 
biomarkers that present abnormal values in the white blood cell and 
absolute lymphocyte count. In order to isolate which of them should 
be considered as survival predictors, AI algorithms analyze all these 
biomarkers, in combination with other clinical findings that can 
be analyzed. In this way, authors in [42], have applied ML models 
(XGBoost) by selecting three biomarkers from the Electronic Health 
Record System EHRS: Lactic Dehydrogenase (LDH), Lymphocyte and 
High-sensitivity C-Reactive Protein (hs-CRP).

The training and test datasets are composed of 1,523 blood samples 
with complete measures coming from 375 patients. Additionally, 
the project adds 228 more blood samples for the validation set of 29 
patients. Survival prediction has been about 90%. From the point of 
view of clinical decisions, the biomarkers selected by the algorithm 
described in Fig. 13 make sense because:

• The increase in Serum LDH is associated with a prognostic marker 
of lung injury.

• hsCRP could identify risk of death since its increase is associated 
with ARDS prognosis and inflammation.

• Lymphocyte associated Lymphopenia is common in COVID-19 
patients with severity and mortality.  
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Fig. 13. Based on Yan et al. results, the best performing tree based discover 
three (LDH, hs-CRP and Lymphocyte) key features and their thresholds values 
over a population of 351 patients with the aim of being able to identify high 
risk patients before an irreversible lesion occur. Model adapted from the figure 
published [42].
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adapted from the figure published [43].

Authors in [43] have developed a tool to triage suspected 
COVID-19 patients. The accuracy has been 97.95% and 96,97% for 
the cross-validation set and test set, respectively. However, the 
model has been also assessed with an external validation obtaining 
sensitivity, specificity, and overall accuracy of 95.12%, 96,97% and 
95.95%, respectively. The predictive model has been conducted based 
on Random Forest algorithm (RF), which has been able to identify 11 
laboratory parameters: Total Proteins, Glucose, Calcium, Creatine 
Kinase Isoenzyme, Magnesium, Basophil, Total bilirubin, Creatinine, 
Lactate Dehydrogenase, Kalium and Platelet Distribution. These 
results (see Fig. 14) could simplify the laboratory blood processes and 
at the same time, reduce the time scope for applying treatments in 
COVID-19 patients and improve the disease monitoring.

VI. Conclusions 

COVID-19 has shown the need for new clinical pathways focused 
on prevention, as well as a need for improvements in methods and 
processes for diagnosis, prognosis and treatment. This pandemic 
has also had a huge impact on the generation of associated clinical 
and research data. An important part of these datasets has been 
generated in ICU and ER rooms. The new illness in many countries 
has led to or surpassed the collapse in health care systems, due to a 
shortage of intensive care professionals and a high demand for ICU 

equipment. Similar situations have been related to compassionate use 
of drugs that had not been previously approved for specific COVID-19 
clinical use. This unprecedented scenario requires a cross clinical and 
technical disciplinary approach to tackle the pandemic. Moreover, 
when it is necessary to take into account patient data, its automatic 
and centralized management is beneficial. For this reason, COVID-19 
patient care will require even more automatic integration and analysis 
of multiple parameters and data sources.

In this situation computational clinical tools based on AI systems 
have a huge impact on improvements for dealing with COVID-19 
patients. The next goals will focus on respiratory status monitoring in 
real time, the design of new therapeutic treatments for SARS-CoV-2, 
hemodynamic management, imaging and laboratory research, as well 
as reducing possible delays in patient admission and optimizing the 
clinician’s time. Notwithstanding, we must not forget and remember 
that ML systems are in place to support and not replace the clinician. 
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