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I.	 Introduction

SMARTPHONES have become an open source platform for running 
different types of applications (apps) such as banking, lifestyles, 

gaming, education, etc. According to the site-worldwide mobile 
application, download of apps reached 205.4 billion in year 2018 and 
will increase continuously [1]. The fast growth in the smartphone 
industry has made lot of users to use smartphones to consume multiple 
services and access the Internet. The Android apps bring lot of comfort 
for our life by supporting persistent communication everywhere and 
also providing diverse functionalities. The expansion of Android apps 
plays a vital role for the progress of upcoming economy and mobile 
Internet.

The smartphones usually store user’s private data such as messages, 
pictures and personal information etc. As a result, these smartphones 
become the target of attackers [2], [3]. Nowadays in smartphone 
industry, Android operating system (OS) has gained the highest 
position throughout the world. In 2018, the wide use of Android apps 
has resulted in an increase of Android malware (approximately 2.84 
million) [4]. According to the report of McAfee, 31 million Android 
malware were found in 2018 and also shows that approximate 1.9 

million new samples are identified every year [5]. As a result, it has 
become complicated to manually process large amount of Android 
malware samples. Thus, it becomes a most challenging task for 
antivirus companies to detect and classify malware. To evade the 
problem of handling large amount of malware samples manually 
and the malware obfuscation, the researchers start finding efficient 
techniques of Android malware detection and family classification.

The researchers are making use of several methods for detection of 
Android malicious apps. The traditional method to identify Android 
malware is relying on a signature based technique in which the 
signature of an app is matched with the already existing signatures 
present in the database. The major limitation of this technique is that it 
cannot identify unfamiliar malware. The ongoing research for detection 
and classification of malware is based on two methods i.e. static 
and dynamic malware analysis [2]. Static malware analysis method 
examines the code of the app to detect the malicious patterns without 
running the code [6]. It provides fast detection and high efficiency. 
But this method fails to identify the Android apps which make use 
of code obfuscation techniques [7]. The dynamic malware analysis 
method investigates the behavior of app while executing in a virtual 
environment. It is more efficient but this method is resource and time 
intensive. Moreover, this type of analysis is incapable to investigate all 
the execution paths. In order to strengthen the accuracy, the features 
acquired from both static and dynamic analysis can be integrated [8]. 
Moreover, there exists only limited benchmark datasets available 
publically to evaluate the proposed machine learning techniques.
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In this paper, we have worked on both detection and family 
classification of Android malware. Here detection relates to 
a binary classification problem which consists of two classes 
“malware” and “benign” and family classification relates to the 
multiclass classification problem which consists of 13 malicious 
families. Android malware family signifies a group of malicious 
programs that share common behavior and are generated from the 
same source code. We propose a hybrid approach for detection and 
classification of Android malicious apps. It depends on the fusion 
of static and dynamic malware analysis. Initially, we perform static 
malware analysis for extracting static features based on API calls, 
command strings, permissions and intents. Then, we performed 
dynamic malware analysis to extract features using CuckooDroid 
[9]. CuckooDroid is an extension of cuckoo sandbox which is used 
for automatic analysis of Android suspicious files [10]. The features 
considered for dynamic malware analysis are based on cryptographic 
operations, dynamic permissions, information leaks and system calls. 
In order to strengthen the accuracy, we integrate the features acquired 
from both static and dynamic malware analysis. Considering the 
presence of irrelevant, noisy and redundant features, an information 
gain ranking algorithm is applied to extract the relevant features. 

A.	Research Contributions
The major contributions of the paper are as follows:

1.	 Two datasets i.e. binary and multiclass (family) classification 
datasets are created (using static and dynamic malware analysis) 
and shared publically on GitHub and Kaggle.

2.	 Feature selection method is used to choose the appropriate set of 
features for both the datasets.

3.	 The relevant features selected for both static and dynamic malware 
analysis are integrated.

4.	 Machine learning (ML) algorithms belonging to different 
categories are employed and evaluated on both the datasets for 
static, dynamic and integrated features.

B.	Organization
The rest of the paper is structured as follows: section II summarizes 

the related work on classification and identification of Android 
malware. Section III describes the proposed methodology. Section IV 
demonstrates the experimental outcomes based on different evaluation 
parameters. Section V concludes the paper and provides future scope.

II.	 Related Work 

In the literature, researchers have developed various novel 
techniques for identification and classification of Android malware 
using ML methods. Current malware identification methods fall under 
two categories i.e. static and dynamic malware analysis [11]. This 
section discusses the work associated with malware detection and 
classification based on static and dynamic malware analysis using ML 
methods.

A.	Static Malware Analysis
The static malware analysis is the way to discover the malicious 

patterns in app by examining its code. In order to find out the malicious 
patterns [12], it uses disassemble techniques to decompile the app 
source code [13]. This subsection includes the research papers related 
to static malware analysis which focuses on detection and classification 
of Android malware.

Li et al. [14] suggested a malware identification system known 
as significant Permission Identification (SigPID). They build 3 
levels of pruning by extracting permission data to determine the 
relevant permissions that can be to distinguish between malware 

and benign apps. The authors employed ML methods to classify 
the Android apps. The experimental results show that SigPID 
performs better with 93.62% of accuracy as compared to existing 
approaches. In [15], the authors suggested a highly efficient method 
to extract API calls, permission-rate, surveillance system events 
and permissions as features. They constructed a model based on 
ensemble Rotation Forest to identify whether an app is malicious 
or benign. The results demonstrate that the proposed approach 
obtained highest precision of 88.16% with 88.26% accuracy at the 
sensitivity of 88.40%. Yerima and Sezer [16] introduced a novel 
fusion technique (DroidFusion) which includes amalgamation of 
various ML techniques for improving accuracy. The DroidFusion 
creates a model by training classifiers and then they employed a 
feature ranking algorithm on the predictive accuracies in order 
to acquire a final classifier. The results indicate that DroidFusion 
is more superior than stacking ensemble method. In [17], the 
authors presented a multimodal deep learning based framework 
for the identification of Android malware. They extracted diverse 
features and refined these using similarity based or existence-
based method. The results show that the accuracy obtained by the 
multimodal deep learning framework is 98%. Feizollah et al. [18] 
presented an analysis of the usefulness of intents for classifying 
the malicious apps. They reported that intents are more important 
feature than permissions for classification of malware. The results 
demonstrate that detection rate of intent and permission is 91% 
and 83% respectively. The authors also indicate that the detection 
accuracy of combined features is 95.5% which is higher than the 
individual features. In [19], the authors explored the risk based 
on permissions in Android apps. They applied T-test, correlation 
coefficient and mutual information to rank the specific permission 
according to their risk. Principal component analysis and sequential 
forward selection are employed to determine the subsets of risky 
permission. They evaluated the effectiveness of risky permission 
for detection of malapp with Decision Tree (DT) Support Vector 
Machine (SVM) and Random Forest (RF). The results indicate that 
the detection accuracy of malapp detector is 94.62% with 0.6 False 
Positive Rate (FPR). Dhalaria et al. [20] performed a comparative 
analysis between different base classifiers such as SVM, Logistic 
Regression (LR), Naive Bayes (NB) K-Nearest Neighbor (K-
NN), DT, RF and ensemble techniques (Bagging, Stacking and 
Boosting). The experimental results demonstrate that the stacking 
ensemble technique found to be more superior then the base 
classifiers. Dhalaria et al. [21] employed a convolutional neural 
network (CNN) to classify Android malicious apps. The grayscale 
images of classes.dex and AndroidManifest.xml are created which 
are extracted from the Android package. The experimental results 
indicate that the classes.dex file performs better in comparison to 
AndroidManifest.xml. 

The static malware analysis is quicker in analyzing the code but 
it fails against code obfuscation techniques and morphed malware. 
The dynamic malware analysis overwhelms the constraints of static 
malware analysis.

B.	Dynamic Malware Analysis
It executes the samples in runtime environment such as an emulator 

and a virtual machine to track the behavior of the app. This section 
includes the literature on detection and classification of Android 
malware using dynamic malware analysis.

Cai et al. [22] presented a novel classification approach 
(DroidCat) which is based on dynamic analysis. The authors used 
a set of dynamic features such as method calls, app resources and 
Inter-Component Communication. The experimental outcomes 
indicate that DroidCat obtained 97% accuracy and F-measure 
for classifying the Android malicious apps. In [23], the authors 
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proposed a dynamic analysis framework i.e. EnDroid which used 
different types of dynamic features for the identification of malware. 
They employed a chi-square algorithm to select the relevant features 
and applied an ensemble learning technique to differentiate between 
malware and benign apps. Das et al. [24] proposed the model 
named as frequency centric for feature construction using system 
calls to effectively identify the malware. The authors build a ML 
method using Multilayer Perceptron (MLP) in FPGA in order to 
train a classifier. They found that the proposed approach obtained 
low power consumption, fast detection and high accuracy. In [25], 
the authors addressed TaintDroid, a dynamic taint tracking which is 
proficient of continuously tracking various source of sensitive data. 
As a result, it provides security service firms seeking and essential 
input for Android users to identify malicious apps. Chen et al. [26] 
presented a framework which uses a classification scheme named as 
Model-Based Semi-Supervised (MBSS). The authors also compared 
their proposed approach with the existing approach such as K-NN, 
Linear Discriminant Analysis (LDA) and SVM. The results indicate 
that the proposed approach achieves 98% accuracy at very low FPR. 
In [27], the authors designed and implemented a dynamic analysis 
method named as DroidTrace. It examined the system calls which 
are executed in dynamic payloads. DroidTrace also carried out 
physical alteration to trigger numerous dynamic loading behaviors 
within an app.

The dynamic malware analysis can detect the unfamiliar malware 
that a static analysis cannot but it takes more time and resources. 
Moreover, it explores only a single execution path.

C.	Hybrid Malware Analysis 
Gandotra et al. [8] suggested that single approach either dynamic 

or static is not sufficient for accurately classifying the malware due 
to the obfuscation and execution stalling. To overcome this problem, 
the researchers have started to make use of a hybrid analysis 
approach. This section includes the work done in the field of hybrid 
malware analysis which focuses on detection and classification of 
Android malware.

Yuan et al. [28] introduced an engine named as DroidDetector which 
automatically characterized the app as either malware or benign. The 
authors extracted the features using static and dynamic analysis. The 
experimental results demonstrate that DroidDetector obtained highest 
accuracy 96.76% when compared with conventional ML techniques. 
In [29], the authors proposed the hybrid approach for identification 
of malware using static and dynamic analysis. They created the 
normal and malicious pattern sets by matching the pattern of benign 
and malware apps with each other. To determine the unknown app, 
the authors also compared these with both normal and malicious 
pattern sets offline. The results demonstrate that the proposed 
approach obtained better detection rate. Martin et al. [30] presented 
an OmniDroid dataset consisting of 22,000 malware and benign 
samples. They developed a framework for static and dynamic analysis 
of apps and applied ensemble learning classifiers for identification of 
malicious apps. In [31], the authors presented an Android Application 
Sandbox (AASandbox) which is capable to carry out both dynamic 
and static analysis to identify malicious apps. For providing distributed 
and fast detection, they deployed the detection algorithm and sandbox 
in the cloud. The results show that AASandbox is more efficient than 
antivirus apps available for Android OS.

From the literature survey, it is found that the hybrid approach 
is capable to classify the Android apps more accurately. Though, a 
lot of work has been reported in the literature on detection (binary 
classification) of Android apps using hybrid approach but the least 
focus has been paid on family classification of Android malware. 
Moreover, there exist only two benchmark datasets i.e. Malgenome 

[3] and Derbin [32] which have been made public over past few 
years. These datasets include old Android apps and were created 
in the years 2012 and 2014 respectively. But nowadays, evolving 
malwares are so sophisticated and complex that they cannot be 
recognized easily. This paper presents the approach used for creating 
our own datasets. These consist of recent Android apps and we 
have made these publically available on GitHub and Kaggle. These 
would help the research community to evaluate their proposed ML 
techniques for malware classification. Different machine learning 
algorithms are employed on these two datasets to perform binary 
and family classification of Android apps when both static and 
dynamic features are integrated.

III.	Proposed Methodology

This section discusses the proposed methodology for detection and 
family classification of Android apps. It consists of three phases i.e. 
data collection, data preparation and detection & family classification. 
In the first phase, data is collected from various sources such as 
virusshare [33], apkmirror [34] and apkpure [35]. In the second phase, 
MD5 hash is applied to remove the duplicate apps and then these 
apps are examined using Avira Antivirus (AV) tool [36]. The static 
and dynamic malware analysis is performed to extract features from 
the Android apps. Static features are extracted using self-developed 
python script which uses multiple automated tools such as Baksmali 
Diassembler [37], String [38] and AXMLPrinter2 [39]. The features 
extracted using static malware analysis includes API calls, command 
string, permissions and intents. Dynamic features are extracted 
using CuckooDroid [9] which analyzes the behavior of app during 
runtime. The features extracted using dynamic malware analysis 
include dynamic permissions, cryptographic operations, information 
leaks and system calls. After feature extraction, an information gain 
feature ranking algorithm is employed in order to remove the noisy, 
irrelevant and redundant features. Various ML classifiers such as 
SVM, DT, RF, NB, K-NN PART and MLP are employed to identify 
and classify the Android apps. Fig. 1 shows the workflow of the 
proposed methodology.

A.	Data Collection (Phase-I)
The initial phase of the proposed methodology is data collection. 

The Android apps are collected from multiple sources such as apkpure, 
apkmirror and virusshare. These apps are stored in Android application 
packages (.apk) file format. A total of 4400 recent Android apps are 
downloaded from these sources. The malicious apps are downloaded 
from virusshare after getting registered with their website and also 
getting permission from the administrator. The benign apps are 
collected from apkpure and apkmirror.

B.	Data Preparation (Phase-II)
This subsection discusses various steps used for data preparation. 

These include removing duplicate applications, labelling, feature 
extraction and feature selection.

1.	 Removing Duplicate Applications
MD5 hash algorithm is employed on the collected Android apps to 

eliminate the duplicate ones. After removing the duplicates, we are left 
with 3547 Android apps.

2.	 Labelling
The unique Android apps obtained from the previous step are 

scanned using Avira Antivirus (AV) tool for labelling. After labelling, 
out of 3547 apps, 1747 are malicious and 1800 are benign. Furthermore, 
1747 malicious apps are further labelled as 13 malware families as 
shown in Fig. 2.
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Fig. 2. Graphical representation of Android malware families.

3.	 Feature Extraction
Various features are extracted using static and dynamic malware 

analysis. In static malware analysis, we have extracted four different 
types of static features i.e. API calls, intents, permissions and command 
strings using self-developed python script which uses several 
automated tools such as Baksmali Disassembler, AXMLPrinter2 and 
string. In dynamic malware analysis, we have extracted four different 
types of dynamic features i.e. cryptographic operations, dynamic 
permissions, information leaks and system calls using CuckooDroid 
(Android malware analysis tool). The detailed description related 
to feature extraction using static and dynamic malware analysis is 
explained below.

a)	Using Static Malware Analysis
It is performed without executing the code. It uses various 

disassemble techniques to decompile the app source code. To extract 
the static features, we developed a python script which uses various 

automated tools i.e. Baksmali Disassembler, AXMLPrinter2 and 
string. The features extracted for analysis using these tools are 
API calls, permissions, intents and command strings. The process 
of extracting features is shown in Fig. 3. The .apk file is saved in 
compressed zip format. To view the content of .apk file, we first need 
to unzip or unpack it. The .apk file consists of classes. dex file, Android 
Manifest file, res, lib and assets folder. Through this, we extracted four 
different types of static features using different static tools. Classes.
dex file contains information about API calls, Android Manifest file 
contains information about permission and intents and the rest contains 
information about command strings. These features are selected on 
the basis of existing literature and the official site of Android which 
says that these specific features are more prominent in malicious 
applications [16], [40].
•	 API calls: It is used to interact with the device. These contain the 

method, classes and packages to help developers to build apps. 
The Android is based on java programming language and Java 
compiler converts the source code into java bytecode. It uses 
Dalvik Virtual Machine (DVM) after disassembling java bytecode, 
it gives information about packages, methods and classes. A total 
of 47 API calls are extracted using a self-developed python script 
after decompiling classes.dex with Baksmali Disassembler. 

•	 Permissions: The main purpose of permissions is to secure the 
privacy of the users. The apps must request permission to access 
user sensitive information and system features. The system 
sometimes gives permission itself or could provoke users to accept 
the request. Permission is mainly declared in the AndroidManifest.
xml. A total of 277 permissions are extracted using a self-
developed python script after decompiling AndroidManifest.xml 
with AXMLPrinter2.

•	 Command strings: It is one of the static features which is used for 
identification of Android malware. It analyzes the command string 
which is present in lib, res, assets folder. A total of 6 command 
strings are extracted using a self-developed python script after 

Fig. 1. Workflow of the proposed methodology.
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decompiling lib, res and assets with string. 
•	 Intents: Intents are found in Manifest.xml. It infers the intentions 

of apps e.g. pick a contact, dial a number etc. Intents are extracted 
from manifest.xml after decompiling with AXMLPrinter2. A total 
of 22 intents are extracted using a self-developed python script 
after decompiling AndroidManifest.xml with AXMLPrinter2. 
Table I lists some of the examples of static features considered 
under these four categories.

Fig. 3. Process of extracting static features.

b)	Using Dynamic Malware Analysis
It is performed while executing the code in the runtime environment. 

The runtime behavior information of the apps is obtained using the 
open source dynamic analysis tool named as CuckooDroid. It is an 
extension of cuckoo sandbox, the open source software for executing 
and analyzing the apps. It automatically executes and analyzes files 
and collects the information of the file at runtime. CuckooDroid 
is liable for handling the Android emulator and produce report at 
the termination of analysis. Cuckoo’s infrastructure consists of a 
guest machine (i.e. the virtual machine that carry out analysis) and 
the host machine (i.e. the management software). The host runs the 
main components of the sandbox that controls the whole analysis 
process, whereas the guest machine is the isolated environment where 
the Android malware samples are carried out. The guest machine 
consists of Linux virtual machines that run Android emulator, which 
is monitored by the machinery module. The main work of Android 
emulator is to carry out the execution of apps, collect information and 
report it back to CuckooDroid. Every Android malicious file is run 
until all processes are finished or a timeout of 180 seconds is reached 
which means an Android sample is given a maximum of 180 seconds 
for analysis. After the analysis of particular sample is over, the results 
are compiled in JSON format. We need a guest machine which is to 
be rooted Android Virtual Device (AVD) with xposed framework [41] 
and with its two module i.e. Emulator Anti-Detection and Droidmon. 
Python 2.7 is used to run the analyzer code and python agent on guest 
machine. The role of the python agent is for analysing code, receiving 
APK file, and carrying out the analysis. The python analyzer executes 
apps, send screenshots back to host, send dropped files back to host. 
It is liable for terminating the analysis and sending back some log file 
to host. After the complete procedure, the log reports are collected 
which is in the Java Script Object Notation (JSON) format. The reports 
produced by Cuckoo Droid for different apps are then parsed and saved 
to the database in CSV format using Python script. Afterwards, these 
are used for detection and classification of malware. The process of 
extracting dynamic features is shown in Fig. 4. The features extracted 
for analysis are cryptographic operations, information leaks, dynamic 
permissions and system calls.

These features are selected on the basis of existing literature and 
the official site of Android which says that these specific features are 
more prominent in malicious applications [22], [40], [42]. The detailed 
description of these four features is explained as follows:

•	 Cryptographic operations: Malware accepts these operations 
to target premium sms number, encrypt root exploits, malicious 
payload etc. To distinguish various cryptographic behaviors, these 
features are formed as <action>_<algorithm >. Here <action> 
includes various operations like key generation, decryption and 
encryption and the <algorithm> includes various cryptographic 
algorithms. A total of 79 cryptographic operations are extracted 
using CuckooDroid.

•	 Dynamic permissions: It is considered as one of the important 
dynamic features to analyze the behavior of apps. Dynamic 
permissions are those permissions which are executed at the 
runtime environment. A total of 71 dynamic permissions are 
extracted at runtime using CuckooDroid.

•	 Information leaks: Confidential and personal data has newly 
gained more attention. Malware usually vigorously harvests 
numerous data on contagious devices, such as contact information, 
IMEI, SMS contents, credential information related to social 
network and banking etc. The collected data may be used to make 
profits, keep track on users and acquire authorized account etc. 
These features are defined as <source>_<sink>. Here <source> 
includes operations gaining confidential data and the <sink> 
includes operations leaking confidential data. A total of 123 
information leaks are extracted at runtime using CuckooDroid.

•	 System Calls: It is one of the most important dynamic features 
of Android app. It is an efficient feature for intrusion detection 
in a mobile device. Through system calls, Android apps take 
services of the kernel. The kernel offers useful functions to apps 
such as device security, process related to operations and power 
management etc. These malware usually invokes sigprocmask, 
getuid, ptrance to affect the execution of other apps. A total of 50 
system calls are extracted at runtime using CuckooDroid. Table II 
lists some of the examples of dynamic features considered under 
these four categories.

After performing static and dynamic malware analysis, a total of 352 
static and 323 dynamic features are extracted from all the Android apps 
considered in this work. Thus, we have come up with two datasets. First 
is a binary classification dataset consisting of 1747 malicious and 1800 
benign apps. Second is a multiclass classification dataset consisting 
of 1747 malicious apps belonging to 13 malware families. Both these 
datasets are made public on GitHub and Kaggle (Link: https://github.
com/Meghna-Dhalaria/Android-malware-dataset) and (Link: https://
www.kaggle.com/meghnadhalaria/android-malware-detection-and-
classification) respectively.

4.	 Feature Selection
It is also known as attribute selection. It is used for dimensionality 

reduction which helps in choosing relevant features. Irrelevant and 
redundant features can decrease the quality of the classification model 

Fig. 4. Process of extracting dynamic features.
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and the accuracy. Higher dimensional datasets required more space 
and computation time [43]. Selecting the relevant features will help 
in reducing the space and time complexity and also help in increasing 
the accuracy. In this work, we have employed an information gain 
feature ranking algorithm [44] to select the relevant features for better 
detection and classification of Android malware. Information gain 
calculates the quantity of information provided about the class. It 
makes use of entropy to compute the homogeneity of samples. The 
entropy H(X) of the dataset (having c number of classes) is calculated 
as given in equation (1).

	 (1)

Where pi is the probability of class i in the dataset X. The dataset is 
then split on the different attributes A. The entropy for a dataset with 
respect to attribute A i.e. H(X, A) is calculated using equation (2).

	 (2)

Here k represents the possible values of the attribute A. 
Information gain achieved by an attribute is expressed as shown in 

equation (3). Greater the Information Gain (IG) of a particular feature, 
more important the feature is.

	 (3)

The information gain method assigns rank and weight to each 
feature. We have not considered the attributes with zero weight. Thus 

out of 352 features, we are left with 110 static features for binary 
classification dataset (named as Dataset-1) and 47 static features for 
family classification dataset (named as Dataset-2). Fig. 5 and Fig. 6 
show the top 20 selected attributes for detection (Dataset-1) and family 
classification (Dataset-2) datasets respectively.

The datasets created using dynamic malware analysis consist of 323 
features. Out of 323 features, we are left with 99 dynamic features 
in Dataset-1 and 35 features in Dataset-2. Fig. 7 and Fig. 8 show the 
top 20 selected dynamic features for detection (Dataset-1) and family 
classification (Dataset-2) datasets respectively.

The summary of both the datasets i.e. Dataset-1 and Dataset-2 
before and after feature selection is given in table III. Fig. 9 shows the 
various steps for preparing these two datasets.

TABLE III. Description of Dataset (Where, # Stands for Number of)

Dataset 
Name

#Benign 
apps

#Malicious 
apps

#Feature 
extracted #Feature selected

Static Dynamic Static Dynamic

Dataset-1 1800     1747 352 323 110 99

Dataset-2  ----- 1747 (with 13 
families) 352 323 47 35

TABLE I. Examples of Static Features Considered 

Features Number of 
features Examples Feature value

API Calls 47
onserviceConnected, Ljavax.crypto.spec.SecretKeySpec,  getBinder, 
android.os.Binder, Ljava.net.URLDecoder, ServiceConnection, 
KeySpec, Ljava.lang.Class.getMethods

If an API call (out of 47) is existing in the 
classes.dex then the value of that feature is set 
to 1 otherwise 0.

Permissions 277
GET_TASKS,  READ_PHONE_STATE, WRITE_EXTERNAL_
STORAGE, RECEIVE_BOOT_COMPLETE, READ_SMS, SYSTEM_
ALERT_WINDOW, RECEIVE_SMS, ACCESS_NETWORK_STATE

If a permission (out of 277) is existing in the 
Manifest.xml file then the value of that feature 
is set to 1 otherwise 0.

Command 
Strings 6 Chown, /system/bin, mount, /system/app, remount

If a command string (out of 6) is existing in 
the res, lib, assets folder then the value of that 
feature is set to 1 otherwise 0.

Intents 22
CALL_BUTTON, SET_WALLPAPER, NEW_OUTGOING_CALL, 
SCREEN_OFF, PACKAGE_CHANGED, ACTION_SHUTDOWN, 
BATTERY_LOW

If an intent (out of 22) is existing in the 
Manifest.xml file then the value of that feature 
is set to 1 otherwise 0.

TABLE II. Examples of Dynamic Features Considered

Features Number of 
features Examples Feature value

Cryptographic 
Operations 79 Decryption_AES, encryption_AES, keyalgo_AES

If a cryptographic operation (out of 79) is 
present in JSON file then the value of that 
feature is set to 1 otherwise 0.

Dynamic   
Permissions 71 AUDIO_FILE_ACCESS, ACCESS_ GOOGLE_ PASSWORDS, 

WRITE_CONTACT_DATA, READ_CONTACT_DATA

If a dynamic permission (out of 71) is present 
in JSON file then the value of that feature is 
set to 1 otherwise 0.

Information 
Leaks 123 IMEI_File, IMSI_Network, IMSI_File, PHONE_NUMBER_File, 

IMEI_Network

If an information leak (out of 123) is present in 
JSON file then the value of that feature is set 
to 1 otherwise 0.

System Calls 50 ptrace, recvfrom, sigprocmask, write, wait4, sendto, getpid, read, 
recvmsg, chmod,  sendmsg

If a system call (out of 50) is present in JSON 
file then the value of that feature is set to 1 
otherwise 0.
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Fig. 5. Top 20 selected static features for detection dataset (Dataset-1).
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Fig. 6. Top 20 selected static features for family classification dataset (Dataset-2). 
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Fig. 9. Process of Data Preparation. 

C.	Detection and Family Classification (Phase-III)
Various ML algorithms i.e. SVM, RF, DT, NB, K-NN, PART 

and MLP are used to build models for detection and classification 
of Android malware. These models are trained using 5-fold cross 
validation, in which the whole dataset is divided into 5 equal parts. 
Four parts are used to train the model and the remaining part is used 
for testing at every run. This section provides the brief introduction of 
ML algorithms and the evaluation parameters used for evaluating these 
algorithms.

1.	 Machine Learning Algorithms
The various ML algorithms used in this work are as follows:

•	 K-NN is one of the easiest supervised learning methods. It is also 
called as lazy learner [45]. This method does not depend upon 
the structure of data, whenever the new instance arises; it finds 
the closest training samples to the new instance by using distance 
measures such as Euclidean distance, Manhattan distance. At the 
end, by using the majority voting concepts it finds the class of the 
new instance. 

•	 SVM is a method [46] which divides the data using a hyperplane. 
It acts like a decision boundary. It randomly draws the hyperplane 
and then computes the distance between the hyperplane and the 
closest data points (also called as support vector). It attempts to 
identify the optimal hyperplane that maximizes the margin.

•	 RF is an ensemble learning technique which involves a large 
number of individual decision trees that act as an ensemble [47]. 
Every decision tree produces a classification for input data and 
then RF collects the classification and illustrates the result based 
on majority voting.

•	 The structure of DT is like a tree, where non-leaf or internal node 
demonstrates a test on an attribute, topmost node represents the 
root node, terminal or leaf node holds a class label and the branch 
of the tree demonstrates the results of the test. In this work, we 
have used C4.5 algorithm to classify Android malware [48].

•	 The concept of NB is based on Bayes theorem. It forecasts the 
class membership probabilities i.e. the probability that a given 
tuples relates to an individual class. It is used for both binary and 
multiclass classification problems [49].
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Fig. 8. Top 20 selected dynamic features for family classification dataset (Dataset-2).
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•	 PART is a partial decision tree algorithm. It is a separate and 
conquer rule learner. This technique produces sets of rules known 
as decision list. A new sample is compared to each rule and then the 
sample is assigned the class of the first matching rule [50].

•	 Multilayer Perceptron (MLP) is also called as Multilayer Neural 
Networks [51]. It consists of an input layer, an output layer and the 
hidden layer. It has various output units. The units of the hidden 
layer become input for the next layer. Semwal et al. [52], [53] 
worked in the field of different classification problems using deep 
learning techniques such as DNN based classifier and ANN. In 
[54], the authors [54] worked in the Extreme Machine Learning 
(ELM) for classification and prediction of gait data. In our work, we 
applied MLP for detection and classification of Android malware. 
We run the MLP for hidden layer h=3 and h=5 for Dataset-1 and 
Dataset-2 respectively. The activation function used for Dataset-1 
and Dataset-2 are sigmoid and Softmax respectively. The learning 
rate is considered to be as 0.3. Fig. 10 shows the general framework 
of backpropagation based on neural network [53]. 
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Fig. 10. General framework of backpropagation based on neural network [53].

 The algorithm first initializes the weights to all nodes and then 
calculates the net input and output. It calculates the error rate and 
propagates it back. At the end, it updates the bias and weights and run 
the loop until the error becomes below the threshold.

2.	 Evaluation Parameters
The performances of the classifiers are assessed on the basis of 

various metrics such as precision, true positive rate (TPR), F-measure, 
false positive rate (FPR), Matthews correlation coefficient (MCC) and 
Area under curve (AUC) [55]. These performance metrics are defined 
using true negative (TN), false positive (FP), false negative (FN) and 
true positive (TP).
•	 TPR: It is also known as recall or sensitivity. It is defined as the 

ratio of true positive cases divided by the total number of actual 
positive cases. It is computed as shown in equation (4).

	 (4)

•	 FPR: It is the ratio of false positive cases divided by total number 
of actual negative cases. It is computed as given in equation (5).

	 (5)

•	 Precision: It is defined as the ratio of actual true predictive 
instances divided by the total number of true cases. It is computed 
as shown in equation (6).

	 (6)

•	 F-measure: It signifies the harmonic mean of recall and precision. 
It is calculated as shown in equation (7).

	 (7)

•	 Accuracy: It is the ratio of true positive and true negative instances 
divided by the total number of instances. It is calculated as shown 
in equation (8).

	 (8) 

•	 MCC: It is used to measure the quality of binary classification 
algorithms. Its value lies between -1 to +1. Here -1 means inverse 
prediction and +1 means a perfect prediction. It is calculated as 
shown in equation (9).

	 (9)

•	 AUC curve: It is one of the most significant parameters to measure 
the performance of classification models. It represents the measure 
of the separability.

IV.	Experimental Results

This section describes the experimental results based on static, 
dynamic and the hybrid features. Seven different ML technique are 
used which are run on python 3.7 under Intel Core i5 processor, 64 
bit with 8GB RAM. We conducted the experiments using 5-fold cross 
validation method and evaluated the ML techniques on the basis of 
various evaluation parameters like TPR, F-measure, Accuracy, FPR, 
Precision, AUC and MCC. 

A.	Classification Results Based on Static Features
Seven ML algorithms are used to detect and classify malware on 

detection (Dataset-1) and family classification (Dataset-2). These 
algorithms are carried out in python script through sklearn [56] library.

Table IV demonstrates the evaluation results of ML techniques on 
static malware analysis for Dataset-1. It shows that RF gives the best 
accuracy of 96.50% followed by K-NN and MLP with accuracy as 
95.74% and 95.71% respectively.

Fig. 11 shows the comparison of different classifiers based on 
accuracy and MCC of static features for Dataset-1. It indicates that RF 
performs better in comparison to other classifiers. The accuracy and 
MCC obtained by RF is 96.50% and 0.933 respectively.

Table V shows the evaluation results of ML techniques using static 
features for family classification on Dataset-2. It is found that RF 
algorithm gives better accuracy i.e. 86.72% followed by SVM and DT 
which gives and accuracy of 85.86% and 84.77% respectively. The 
TPR, precision and F-measure obtained by RF is 0.867, 0.870 and 
0.866 respectively which are better results than those obtained by other 
classifiers.

Fig. 12 shows the comparative analysis of different classifiers 
based on accuracy for Dataset-2. The maximum accuracy of 86.72% 
is obtained by RF. This value is much smaller than the results obtained 
in static malware analysis for detection of malware in case of binary 
classification.
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TABLE IV. Classification Results Using Static Features for Dataset-1

Classifiers TPR FPR Precision F-measure MCC AUC Accuracy (%)

SVM 0.943 0.057 0.943 0.943 0.887 0.943 94.33

DT 0.950 0.050 0.950 0.950 0.901 0.970 95.03

NB 0.874 0.124 0.878 0.874 0.752 0.948 87.42

RF 0.965 0.035 0.965 0.965 0.933 0.990 96.50

K-NN 0.957 0.042 0.958 0.957 0.915 0.989 95.74

PART 0.950 0.050 0.950 0.950 0.900 0.975 94.98

MLP 0.957 0.043 0.957 0.957 0.914 0.986 95.71

TABLE V. Classification Results Using Static Features for Dataset-2

Classifier TPR FPR Precision F-measure AUC Accuracy (%)

SVM 0.859 0.023 0.863 0.857 0.962 85.86

DT 0.848 0.023 0.852 0.847 0.949 84.77

NB 0.751 0.032 0.792 0.756 0.967 75.10

RF 0.867 0.024 0.870 0.866 0.982 86.72

K-NN 0.845 0.024 0.847 0.843 0.966 84.48

PART 0.840 0.024 0.842 0.839 0.947 84.02

MLP 0.830 0.026 0.832 0.830 0.964 82.99
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Fig. 11. Comparison of different classifiers based on (a) Accuracy (b) MCC using static features for Dataset-1.
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Fig. 12. Comparison of different classifiers based on accuracy using static 
features for Dataset-2.

B.	Classification Results Based on Dynamic Features
The static malware analysis is quicker in analyzing the code but it 

fails against code obfuscation techniques and morphed malware. So to 
overcome this problem, we considered the dynamic features for better 

detection and classification of malware. Seven ML algorithms are used 
to detect and classify malware on detection (Dataset-1) and family 
classification (Dataset-2) datasets.

Table VI shows the evaluation results of ML techniques on dynamic 
malware analysis for malware detection (binary classification) 
on Dataset-1. Among all these classifiers, RF is found to be more 
superior and accurate than other classifiers. The accuracy acquired by 
RF is 97.01% followed by SVM and MLP with 96.53% and 96.53% 
respectively.

Fig. 13 shows the comparative analysis of different classifiers 
based on accuracy and MCC using dynamic features for Dataset-1. It 
indicates that RF performs better in comparison to other classifiers. The 
accuracy and MCC obtained by RF is 97.01% and 0.940 respectively.

Table VII shows the evaluation results of ML techniques on dynamic 
malware analysis for family classification on Dataset-2. Among all 
these classifiers, RF is found to be more superior and accurate than 
other classifiers. The accuracy obtained by RF is 88.60% followed 
by SVM and DT with 86.85% and 84.25% respectively. The TPR, 
precision and F-measure obtained by RF is 0.886, 0.888 and 0.885 
respectively which are better values than those obtained by other 
classifiers.

Fig. 14 shows the comparative analysis of different classifiers based 
on accuracy using dynamic features for Dataset-2. The maximum 
accuracy of 88.60% is obtained by RF. This value is much smaller 
than the results obtained in dynamic malware analysis for detection of 
malware (binary classification).

TABLE VI. Classification Results Using Dynamic Features for Dataset-1

Classifier TPR FPR Precision F-measure MCC AUC Accuracy (%)

SVM 0.965 0.035 0.965 0.965 0.931 0.965 96.53

DT 0.953 0.048 0.953 0.953 0.905 0.973 95.26

NB 0.942 0.057 0.943 0.942 0.885 0.989 94.19

RF 0.970 0.030 0.970 0.970 0.940 0.996 97.01

K-NN 0.961 0.039 0.961 0.961 0.922 0.990 96.08

PART 0.959 0.041 0.959 0.959 0.918 0.970 95.88

MLP 0.965 0.035 0.965 0.965 0.931 0.988 96.53

TABLE VII. Classification Results Using Dynamic Features for Dataset-2

Classifier TPR FPR Precision F-measure AUC Accuracy (%)

SVM 0.864 0.021 0.871 0.866 0.985 86.85

DT 0.843 0.026 0.843 0.841 0.947 84.25

NB 0.800 0.029 0.805 0.795 0.951 79.96

RF 0.886 0.018 0.888 0.885 0.991 88.60

K-NN 0.839 0.025 0.842 0.837 0.967 83.91

PART 0.841 0.026 0.838 0.836 0.950 84.08

MLP 0.829 0.027 0.828 0.825 0.947 82.88
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Fig. 14. Comparison of different classifiers based on accuracy using dynamic 
features for Dataset-2.

C.	Classification Results Based on Integrated Features
Single approach either static or dynamic is inadequate for correctly 

classifying the malware due to the obfuscation and execution stalling. 

So to overcome this problem, we make use of a hybrid analysis 
approach. We integrated the features obtained from both static and 
dynamic malware analysis. Seven ML algorithms are used to detect 
and classify malware on detection (Dataset-1) and family classification 
(Dataset-2) datasets.

Table VIII shows the evaluation results of ML techniques on 
integrated features for Dataset-1. Among all these classifiers, RF is 
found to be more superior and accurate than other classifiers. The 
accuracy acquired by RF is 98.53% followed by SVM and K-NN with 
98.30% and 98.16% respectively.

Table IX shows the evaluation results of ML techniques on 
integrated features for family classification for Dataset-2. Among all 
these classifiers, RF is found to be more superior and accurate than 
other classifiers. The accuracy acquired by RF is 90.10% followed 
by SVM and K-NN with 87.06% and 85.40% respectively. The TPR, 
precision and F-measure obtained by RF is 0.901, 0.902 and 0.901 
respectively which are better results than those of other classifiers.

Fig. 15 shows the accuracy and MCC comparison of seven classifiers 
with respect to various approaches considered in our experiment for 
Dataset-1. It is clear from table VIII that there is an improvement in the 
accuracy and MCC for all the classifiers when the static and dynamic 
features are integrated. It means that using both static and dynamic 
features together helps for better detection and classification of the 
Android malware.
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Fig. 13. Comparison of different classifiers based on (a) Accuracy (b) MCC using dynamic features for Dataset-1.

TABLE VIII. Classification Results Using Integrated Features for Dataset-1

Classifier TPR FPR Precision F-measure MCC AUC Accuracy (%)

SVM 0.983 0.017 0.983 0.983 0.966 0.983 98.30

DT 0.970 0.030 0.970 0.970 0.941 0.980 97.03

NB 0.956 0.043 0.957 0.956 0.913 0.993 95.60

RF 0.985 0.015 0.985 0.985 0.971 0.999 98.53

K-NN 0.982 0.018 0.982 0.982 0.963 0.994 98.16

PART 0.971 0.029 0.971 0.971 0.942 0.983 97.09

MLP 0.981 0.019 0.981 0.981 0.963 0.993 98.13
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Fig. 16. Comparison of different classifiers based on accuracy using static, 
dynamic and integrated features for Dataset-2.

Fig. 16 demonstrates the comparison of seven classifiers on the 
basis of accuracy with respect to various approaches considered in our 
experiments for Dataset-2. It shows that for all the classifiers except NB 
and PART, the integrated approach performs better as compared to the 
cases when the static and dynamic features are considered alone. We 
are not able to achieve a good accuracy for the malware classification 
dataset (Dataset-2). It might be due to the imbalanced number of apps 
in different families.

Table X shows the comparison of static, dynamic and integrated 
approach for the best classifier i.e. RF for both the datasets i.e. Dataset-1 
and Dataset-2. The results indicate that the integrated approach is found 
to be more appropriate for detection and classification of malware for 
both the datasets. The accuracy achieved by RF in case of Dataset-1 and 
Dataset-2 is 98.53% and 90.10% respectively. The overall performance 
shows that the integrated approach is more suitable in detection and 
classification of Android malware.
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Fig. 15. Comparison of different classifiers based on (a) Accuracy (b) MCC using static, dynamic and integrated features for Dataset-1.

TABLE IX.  Classification Results Using Integrated Features for Dataset-2

Classifier TPR FPR Precision F-measure AUC Accuracy (%)
SVM 0.870 0.020 0.875 0.871 0.987 87.06
DT 0.846 0.024 0.851 0.845 0.949 84.60
NB 0.783 0.027 0.814 0.784 0.970 78.30
RF 0.901 0.016 0.902 0.901 0.995 90.10

K-NN 0.854 0.022 0.857 0.854 0.966 85.40
PART 0.833 0.024 0.837 0.833 0.946 83.34
MLP 0.845 0.024 0.847 0.845 0.963 84.48

TABLE X. Classification Results of Best Classifier Using Static, Dynamic And Integrated Features for Dataset-1 And Dataset-2

Dataset Classifier Approach TPR FPR Precision F-measure MCC Accuracy (%)

Dataset-1 RF

Static 0.965 0.035 0.965 0.965 0.933 96.50

Dynamic 0.970 0.030 0.970 0.970 0.940 97.01

Integrated 0.985 0.015 0.985 0.985 0.971 98.53

Dataset-2 RF

Static 0.867 0.024 0.870 0.866 -- 86.72

Dynamic 0.886 0.018 0.888 0.885 -- 88.60

Integrated 0.901 0.016 0.902 0.901 -- 90.10
   * MCC -- not applicable for multiclass dataset i.e. Dataset-2.
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V.	 Conclusion and Future Work

This paper presented a hybrid approach which extracts different 
types of features using static and dynamic malware analysis to detect 
and classify Android malware. We created our own two datasets for 
detection (dataset-1) and family classification (dataset-2) of Android 
malware. Both datasets consist of 352 static features and 323 dynamic 
features. These datasets are made publically available on GitHub and 
Kaggle with the aim to help researchers and anti-malware tool creators 
for enhancing or developing new techniques and tools for detecting and 
classifying Android malware. The significance of the datasets makes 
it appropriate to be used as benchmark to test new techniques. We 
employed the information gain feature selection algorithm to eliminate 
noisy and irrelevant features. Through this algorithm, we selected 
110 and 47 static features in Dataset-1 and Dataset-2 respectively and 
99 and 35 dynamic features in Dataset-1 and Dataset-2 respectively. 
The features with zero weights are not considered here. Various ML 
classifiers are applied to detect and identify Android malware. The 
experimental results indicate that the hybrid approach obtains better 
detection and classification performance as compared to the cases 
when static and dynamic features are considered alone. For dataset-1, 
RF provides the accuracy of 96.5% when only static features are 
considered and 97.01% when only dynamic features are considered. For 
dataset-2, RF provides accuracy of 86.72% when only static features 
are considered and 88.6% when only dynamic features are considered. 
RF provides the highest accuracy in the hybrid approach (when both 
static and dynamic features are integrated) for both Dataset-1 and 
Dataset-2 i.e. 98.53% and 90.1% respectively. 

In real world scenario, the malware classification problem is a data 
imbalance problem as there exist more examples of benign applications 
as compared to the malicious ones. In future, we will focus on this 
issue while using deep learning and big data tools [57] to classify the 
Android malware applications.
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