
- 1 -Please cite this article in press as:
M. Dhalaria, E. Gandotra. A Hybrid Approach for Android Malware Detection and Family Classification, International Journal of Interactive Multimedia and
Artificial Intelligence, (2020), http://dx.doi.org/10.9781/ijimai.2020.09.001

* Corresponding author.
E-mail address: ekta.gandotra@gmail.com

DOI: 10.9781/ijimai.2020.09.001

I.	 Introduction

SMARTPHONES have become an open source platform for running
different types of applications (apps) such as banking, lifestyles,

gaming, education, etc. According to the site-worldwide mobile
application, download of apps reached 205.4 billion in year 2018 and
will increase continuously [1]. The fast growth in the smartphone
industry has made lot of users to use smartphones to consume multiple
services and access the Internet. The Android apps bring lot of comfort
for our life by supporting persistent communication everywhere and
also providing diverse functionalities. The expansion of Android apps
plays a vital role for the progress of upcoming economy and mobile
Internet.

The smartphones usually store user’s private data such as messages,
pictures and personal information etc. As a result, these smartphones
become the target of attackers [2], [3]. Nowadays in smartphone
industry, Android operating system (OS) has gained the highest
position throughout the world. In 2018, the wide use of Android apps
has resulted in an increase of Android malware (approximately 2.84
million) [4]. According to the report of McAfee, 31 million Android
malware were found in 2018 and also shows that approximate 1.9

million new samples are identified every year [5]. As a result, it has
become complicated to manually process large amount of Android
malware samples. Thus, it becomes a most challenging task for
antivirus companies to detect and classify malware. To evade the
problem of handling large amount of malware samples manually
and the malware obfuscation, the researchers start finding efficient
techniques of Android malware detection and family classification.

The researchers are making use of several methods for detection of
Android malicious apps. The traditional method to identify Android
malware is relying on a signature based technique in which the
signature of an app is matched with the already existing signatures
present in the database. The major limitation of this technique is that it
cannot identify unfamiliar malware. The ongoing research for detection
and classification of malware is based on two methods i.e. static
and dynamic malware analysis [2]. Static malware analysis method
examines the code of the app to detect the malicious patterns without
running the code [6]. It provides fast detection and high efficiency.
But this method fails to identify the Android apps which make use
of code obfuscation techniques [7]. The dynamic malware analysis
method investigates the behavior of app while executing in a virtual
environment. It is more efficient but this method is resource and time
intensive. Moreover, this type of analysis is incapable to investigate all
the execution paths. In order to strengthen the accuracy, the features
acquired from both static and dynamic analysis can be integrated [8].
Moreover, there exists only limited benchmark datasets available
publically to evaluate the proposed machine learning techniques.

Keywords

Android Malware,
Dynamic Malware
Analysis, Machine
Learning, Static Malware
Analysis.

Abstract

With the increase in the popularity of mobile devices, malicious applications targeting Android platform have
greatly increased. Malware is coded so prudently that it has become very complicated to identify. The increase in
the large amount of malware every day has made the manual approaches inadequate for detecting the malware.
Nowadays, a new malware is characterized by sophisticated and complex obfuscation techniques. Thus, the static
malware analysis alone is not enough for detecting it. However, dynamic malware analysis is appropriate to tackle
evasion techniques but incapable to investigate all the execution paths and also it is very time consuming. So, for
better detection and classification of Android malware, we propose a hybrid approach which integrates the features
obtained after performing static and dynamic malware analysis. This approach tackles the problem of analyzing,
detecting and classifying the Android malware in a more efficient manner. In this paper, we have used a robust set
of features from static and dynamic malware analysis for creating two datasets i.e. binary and multiclass (family)
classification datasets. These are made publically available on GitHub and Kaggle with the aim to help researchers
and anti-malware tool creators for enhancing or developing new techniques and tools for detecting and classifying
Android malware. Various machine learning algorithms are employed to detect and classify malware using the
features extracted after performing static and dynamic malware analysis. The experimental outcomes indicate that
hybrid approach enhances the accuracy of detection and classification of Android malware as compared to the case
when static and dynamic features are considered alone.

A Hybrid Approach for Android Malware Detection
and Family Classification
Meghna Dhalaria, Ekta Gandotra*

Department of Computer Science and Engineering, Jaypee University of Information Technology,
Waknaghat, Solan, HP (India)

Received 13 February 2020 | Accepted 29 May 2020 | Published 1 September 2020

- 2 -

International Journal of Interactive Multimedia and Artificial Intelligence

In this paper, we have worked on both detection and family
classification of Android malware. Here detection relates to
a binary classification problem which consists of two classes
“malware” and “benign” and family classification relates to the
multiclass classification problem which consists of 13 malicious
families. Android malware family signifies a group of malicious
programs that share common behavior and are generated from the
same source code. We propose a hybrid approach for detection and
classification of Android malicious apps. It depends on the fusion
of static and dynamic malware analysis. Initially, we perform static
malware analysis for extracting static features based on API calls,
command strings, permissions and intents. Then, we performed
dynamic malware analysis to extract features using CuckooDroid
[9]. CuckooDroid is an extension of cuckoo sandbox which is used
for automatic analysis of Android suspicious files [10]. The features
considered for dynamic malware analysis are based on cryptographic
operations, dynamic permissions, information leaks and system calls.
In order to strengthen the accuracy, we integrate the features acquired
from both static and dynamic malware analysis. Considering the
presence of irrelevant, noisy and redundant features, an information
gain ranking algorithm is applied to extract the relevant features.

A.	Research Contributions
The major contributions of the paper are as follows:

1.	 Two datasets i.e. binary and multiclass (family) classification
datasets are created (using static and dynamic malware analysis)
and shared publically on GitHub and Kaggle.

2.	 Feature selection method is used to choose the appropriate set of
features for both the datasets.

3.	 The relevant features selected for both static and dynamic malware
analysis are integrated.

4.	 Machine learning (ML) algorithms belonging to different
categories are employed and evaluated on both the datasets for
static, dynamic and integrated features.

B.	Organization
The rest of the paper is structured as follows: section II summarizes

the related work on classification and identification of Android
malware. Section III describes the proposed methodology. Section IV
demonstrates the experimental outcomes based on different evaluation
parameters. Section V concludes the paper and provides future scope.

II.	 Related Work

In the literature, researchers have developed various novel
techniques for identification and classification of Android malware
using ML methods. Current malware identification methods fall under
two categories i.e. static and dynamic malware analysis [11]. This
section discusses the work associated with malware detection and
classification based on static and dynamic malware analysis using ML
methods.

A.	Static Malware Analysis
The static malware analysis is the way to discover the malicious

patterns in app by examining its code. In order to find out the malicious
patterns [12], it uses disassemble techniques to decompile the app
source code [13]. This subsection includes the research papers related
to static malware analysis which focuses on detection and classification
of Android malware.

Li et al. [14] suggested a malware identification system known
as significant Permission Identification (SigPID). They build 3
levels of pruning by extracting permission data to determine the
relevant permissions that can be to distinguish between malware

and benign apps. The authors employed ML methods to classify
the Android apps. The experimental results show that SigPID
performs better with 93.62% of accuracy as compared to existing
approaches. In [15], the authors suggested a highly efficient method
to extract API calls, permission-rate, surveillance system events
and permissions as features. They constructed a model based on
ensemble Rotation Forest to identify whether an app is malicious
or benign. The results demonstrate that the proposed approach
obtained highest precision of 88.16% with 88.26% accuracy at the
sensitivity of 88.40%. Yerima and Sezer [16] introduced a novel
fusion technique (DroidFusion) which includes amalgamation of
various ML techniques for improving accuracy. The DroidFusion
creates a model by training classifiers and then they employed a
feature ranking algorithm on the predictive accuracies in order
to acquire a final classifier. The results indicate that DroidFusion
is more superior than stacking ensemble method. In [17], the
authors presented a multimodal deep learning based framework
for the identification of Android malware. They extracted diverse
features and refined these using similarity based or existence-
based method. The results show that the accuracy obtained by the
multimodal deep learning framework is 98%. Feizollah et al. [18]
presented an analysis of the usefulness of intents for classifying
the malicious apps. They reported that intents are more important
feature than permissions for classification of malware. The results
demonstrate that detection rate of intent and permission is 91%
and 83% respectively. The authors also indicate that the detection
accuracy of combined features is 95.5% which is higher than the
individual features. In [19], the authors explored the risk based
on permissions in Android apps. They applied T-test, correlation
coefficient and mutual information to rank the specific permission
according to their risk. Principal component analysis and sequential
forward selection are employed to determine the subsets of risky
permission. They evaluated the effectiveness of risky permission
for detection of malapp with Decision Tree (DT) Support Vector
Machine (SVM) and Random Forest (RF). The results indicate that
the detection accuracy of malapp detector is 94.62% with 0.6 False
Positive Rate (FPR). Dhalaria et al. [20] performed a comparative
analysis between different base classifiers such as SVM, Logistic
Regression (LR), Naive Bayes (NB) K-Nearest Neighbor (K-
NN), DT, RF and ensemble techniques (Bagging, Stacking and
Boosting). The experimental results demonstrate that the stacking
ensemble technique found to be more superior then the base
classifiers. Dhalaria et al. [21] employed a convolutional neural
network (CNN) to classify Android malicious apps. The grayscale
images of classes.dex and AndroidManifest.xml are created which
are extracted from the Android package. The experimental results
indicate that the classes.dex file performs better in comparison to
AndroidManifest.xml.

The static malware analysis is quicker in analyzing the code but
it fails against code obfuscation techniques and morphed malware.
The dynamic malware analysis overwhelms the constraints of static
malware analysis.

B.	Dynamic Malware Analysis
It executes the samples in runtime environment such as an emulator

and a virtual machine to track the behavior of the app. This section
includes the literature on detection and classification of Android
malware using dynamic malware analysis.

Cai et al. [22] presented a novel classification approach
(DroidCat) which is based on dynamic analysis. The authors used
a set of dynamic features such as method calls, app resources and
Inter-Component Communication. The experimental outcomes
indicate that DroidCat obtained 97% accuracy and F-measure
for classifying the Android malicious apps. In [23], the authors

- 3 -

Article in Press

proposed a dynamic analysis framework i.e. EnDroid which used
different types of dynamic features for the identification of malware.
They employed a chi-square algorithm to select the relevant features
and applied an ensemble learning technique to differentiate between
malware and benign apps. Das et al. [24] proposed the model
named as frequency centric for feature construction using system
calls to effectively identify the malware. The authors build a ML
method using Multilayer Perceptron (MLP) in FPGA in order to
train a classifier. They found that the proposed approach obtained
low power consumption, fast detection and high accuracy. In [25],
the authors addressed TaintDroid, a dynamic taint tracking which is
proficient of continuously tracking various source of sensitive data.
As a result, it provides security service firms seeking and essential
input for Android users to identify malicious apps. Chen et al. [26]
presented a framework which uses a classification scheme named as
Model-Based Semi-Supervised (MBSS). The authors also compared
their proposed approach with the existing approach such as K-NN,
Linear Discriminant Analysis (LDA) and SVM. The results indicate
that the proposed approach achieves 98% accuracy at very low FPR.
In [27], the authors designed and implemented a dynamic analysis
method named as DroidTrace. It examined the system calls which
are executed in dynamic payloads. DroidTrace also carried out
physical alteration to trigger numerous dynamic loading behaviors
within an app.

The dynamic malware analysis can detect the unfamiliar malware
that a static analysis cannot but it takes more time and resources.
Moreover, it explores only a single execution path.

C.	Hybrid Malware Analysis
Gandotra et al. [8] suggested that single approach either dynamic

or static is not sufficient for accurately classifying the malware due
to the obfuscation and execution stalling. To overcome this problem,
the researchers have started to make use of a hybrid analysis
approach. This section includes the work done in the field of hybrid
malware analysis which focuses on detection and classification of
Android malware.

Yuan et al. [28] introduced an engine named as DroidDetector which
automatically characterized the app as either malware or benign. The
authors extracted the features using static and dynamic analysis. The
experimental results demonstrate that DroidDetector obtained highest
accuracy 96.76% when compared with conventional ML techniques.
In [29], the authors proposed the hybrid approach for identification
of malware using static and dynamic analysis. They created the
normal and malicious pattern sets by matching the pattern of benign
and malware apps with each other. To determine the unknown app,
the authors also compared these with both normal and malicious
pattern sets offline. The results demonstrate that the proposed
approach obtained better detection rate. Martin et al. [30] presented
an OmniDroid dataset consisting of 22,000 malware and benign
samples. They developed a framework for static and dynamic analysis
of apps and applied ensemble learning classifiers for identification of
malicious apps. In [31], the authors presented an Android Application
Sandbox (AASandbox) which is capable to carry out both dynamic
and static analysis to identify malicious apps. For providing distributed
and fast detection, they deployed the detection algorithm and sandbox
in the cloud. The results show that AASandbox is more efficient than
antivirus apps available for Android OS.

From the literature survey, it is found that the hybrid approach
is capable to classify the Android apps more accurately. Though, a
lot of work has been reported in the literature on detection (binary
classification) of Android apps using hybrid approach but the least
focus has been paid on family classification of Android malware.
Moreover, there exist only two benchmark datasets i.e. Malgenome

[3] and Derbin [32] which have been made public over past few
years. These datasets include old Android apps and were created
in the years 2012 and 2014 respectively. But nowadays, evolving
malwares are so sophisticated and complex that they cannot be
recognized easily. This paper presents the approach used for creating
our own datasets. These consist of recent Android apps and we
have made these publically available on GitHub and Kaggle. These
would help the research community to evaluate their proposed ML
techniques for malware classification. Different machine learning
algorithms are employed on these two datasets to perform binary
and family classification of Android apps when both static and
dynamic features are integrated.

III.	Proposed Methodology

This section discusses the proposed methodology for detection and
family classification of Android apps. It consists of three phases i.e.
data collection, data preparation and detection & family classification.
In the first phase, data is collected from various sources such as
virusshare [33], apkmirror [34] and apkpure [35]. In the second phase,
MD5 hash is applied to remove the duplicate apps and then these
apps are examined using Avira Antivirus (AV) tool [36]. The static
and dynamic malware analysis is performed to extract features from
the Android apps. Static features are extracted using self-developed
python script which uses multiple automated tools such as Baksmali
Diassembler [37], String [38] and AXMLPrinter2 [39]. The features
extracted using static malware analysis includes API calls, command
string, permissions and intents. Dynamic features are extracted
using CuckooDroid [9] which analyzes the behavior of app during
runtime. The features extracted using dynamic malware analysis
include dynamic permissions, cryptographic operations, information
leaks and system calls. After feature extraction, an information gain
feature ranking algorithm is employed in order to remove the noisy,
irrelevant and redundant features. Various ML classifiers such as
SVM, DT, RF, NB, K-NN PART and MLP are employed to identify
and classify the Android apps. Fig. 1 shows the workflow of the
proposed methodology.

A.	Data Collection (Phase-I)
The initial phase of the proposed methodology is data collection.

The Android apps are collected from multiple sources such as apkpure,
apkmirror and virusshare. These apps are stored in Android application
packages (.apk) file format. A total of 4400 recent Android apps are
downloaded from these sources. The malicious apps are downloaded
from virusshare after getting registered with their website and also
getting permission from the administrator. The benign apps are
collected from apkpure and apkmirror.

B.	Data Preparation (Phase-II)
This subsection discusses various steps used for data preparation.

These include removing duplicate applications, labelling, feature
extraction and feature selection.

1.	 Removing Duplicate Applications
MD5 hash algorithm is employed on the collected Android apps to

eliminate the duplicate ones. After removing the duplicates, we are left
with 3547 Android apps.

2.	 Labelling
The unique Android apps obtained from the previous step are

scanned using Avira Antivirus (AV) tool for labelling. After labelling,
out of 3547 apps, 1747 are malicious and 1800 are benign. Furthermore,
1747 malicious apps are further labelled as 13 malware families as
shown in Fig. 2.

- 4 -

International Journal of Interactive Multimedia and Artificial Intelligence

Adware/ANDR.Fengvi.B.Gen

Adware/ANDR.Dianjin.A.Gen

Adware/ANDR.Waps.I.Gen

Android/TrojanSMS.Boxer.B.Gen

Android/SmsAgent.AAV.Gen

Android/Plankton.C.Gen

Android/MTK.F.Gen

Android/Mseg.E.Gen

Adware/ANDR.Mobwin.A.Gen

Adware/ANDR.Kuguo.K.Gen

Adware/ANDR.AdsWo.CG.Gen

Adware/ANDR.AdsMogo.FAN.Gen

Android/AdLoad.A.Gen

Number of Aplications
0 50 100 150 200 250 300 350 400 450

Fig. 2. Graphical representation of Android malware families.

3.	 Feature Extraction
Various features are extracted using static and dynamic malware

analysis. In static malware analysis, we have extracted four different
types of static features i.e. API calls, intents, permissions and command
strings using self-developed python script which uses several
automated tools such as Baksmali Disassembler, AXMLPrinter2 and
string. In dynamic malware analysis, we have extracted four different
types of dynamic features i.e. cryptographic operations, dynamic
permissions, information leaks and system calls using CuckooDroid
(Android malware analysis tool). The detailed description related
to feature extraction using static and dynamic malware analysis is
explained below.

a)	Using Static Malware Analysis
It is performed without executing the code. It uses various

disassemble techniques to decompile the app source code. To extract
the static features, we developed a python script which uses various

automated tools i.e. Baksmali Disassembler, AXMLPrinter2 and
string. The features extracted for analysis using these tools are
API calls, permissions, intents and command strings. The process
of extracting features is shown in Fig. 3. The .apk file is saved in
compressed zip format. To view the content of .apk file, we first need
to unzip or unpack it. The .apk file consists of classes. dex file, Android
Manifest file, res, lib and assets folder. Through this, we extracted four
different types of static features using different static tools. Classes.
dex file contains information about API calls, Android Manifest file
contains information about permission and intents and the rest contains
information about command strings. These features are selected on
the basis of existing literature and the official site of Android which
says that these specific features are more prominent in malicious
applications [16], [40].
•	 API calls: It is used to interact with the device. These contain the

method, classes and packages to help developers to build apps.
The Android is based on java programming language and Java
compiler converts the source code into java bytecode. It uses
Dalvik Virtual Machine (DVM) after disassembling java bytecode,
it gives information about packages, methods and classes. A total
of 47 API calls are extracted using a self-developed python script
after decompiling classes.dex with Baksmali Disassembler.

•	 Permissions: The main purpose of permissions is to secure the
privacy of the users. The apps must request permission to access
user sensitive information and system features. The system
sometimes gives permission itself or could provoke users to accept
the request. Permission is mainly declared in the AndroidManifest.
xml. A total of 277 permissions are extracted using a self-
developed python script after decompiling AndroidManifest.xml
with AXMLPrinter2.

•	 Command strings: It is one of the static features which is used for
identification of Android malware. It analyzes the command string
which is present in lib, res, assets folder. A total of 6 command
strings are extracted using a self-developed python script after

Fig. 1. Workflow of the proposed methodology.

- 5 -

Article in Press

decompiling lib, res and assets with string.
•	 Intents: Intents are found in Manifest.xml. It infers the intentions

of apps e.g. pick a contact, dial a number etc. Intents are extracted
from manifest.xml after decompiling with AXMLPrinter2. A total
of 22 intents are extracted using a self-developed python script
after decompiling AndroidManifest.xml with AXMLPrinter2.
Table I lists some of the examples of static features considered
under these four categories.

Fig. 3. Process of extracting static features.

b)	Using Dynamic Malware Analysis
It is performed while executing the code in the runtime environment.

The runtime behavior information of the apps is obtained using the
open source dynamic analysis tool named as CuckooDroid. It is an
extension of cuckoo sandbox, the open source software for executing
and analyzing the apps. It automatically executes and analyzes files
and collects the information of the file at runtime. CuckooDroid
is liable for handling the Android emulator and produce report at
the termination of analysis. Cuckoo’s infrastructure consists of a
guest machine (i.e. the virtual machine that carry out analysis) and
the host machine (i.e. the management software). The host runs the
main components of the sandbox that controls the whole analysis
process, whereas the guest machine is the isolated environment where
the Android malware samples are carried out. The guest machine
consists of Linux virtual machines that run Android emulator, which
is monitored by the machinery module. The main work of Android
emulator is to carry out the execution of apps, collect information and
report it back to CuckooDroid. Every Android malicious file is run
until all processes are finished or a timeout of 180 seconds is reached
which means an Android sample is given a maximum of 180 seconds
for analysis. After the analysis of particular sample is over, the results
are compiled in JSON format. We need a guest machine which is to
be rooted Android Virtual Device (AVD) with xposed framework [41]
and with its two module i.e. Emulator Anti-Detection and Droidmon.
Python 2.7 is used to run the analyzer code and python agent on guest
machine. The role of the python agent is for analysing code, receiving
APK file, and carrying out the analysis. The python analyzer executes
apps, send screenshots back to host, send dropped files back to host.
It is liable for terminating the analysis and sending back some log file
to host. After the complete procedure, the log reports are collected
which is in the Java Script Object Notation (JSON) format. The reports
produced by Cuckoo Droid for different apps are then parsed and saved
to the database in CSV format using Python script. Afterwards, these
are used for detection and classification of malware. The process of
extracting dynamic features is shown in Fig. 4. The features extracted
for analysis are cryptographic operations, information leaks, dynamic
permissions and system calls.

These features are selected on the basis of existing literature and
the official site of Android which says that these specific features are
more prominent in malicious applications [22], [40], [42]. The detailed
description of these four features is explained as follows:

•	 Cryptographic operations: Malware accepts these operations
to target premium sms number, encrypt root exploits, malicious
payload etc. To distinguish various cryptographic behaviors, these
features are formed as <action>_<algorithm >. Here <action>
includes various operations like key generation, decryption and
encryption and the <algorithm> includes various cryptographic
algorithms. A total of 79 cryptographic operations are extracted
using CuckooDroid.

•	 Dynamic permissions: It is considered as one of the important
dynamic features to analyze the behavior of apps. Dynamic
permissions are those permissions which are executed at the
runtime environment. A total of 71 dynamic permissions are
extracted at runtime using CuckooDroid.

•	 Information leaks: Confidential and personal data has newly
gained more attention. Malware usually vigorously harvests
numerous data on contagious devices, such as contact information,
IMEI, SMS contents, credential information related to social
network and banking etc. The collected data may be used to make
profits, keep track on users and acquire authorized account etc.
These features are defined as <source>_<sink>. Here <source>
includes operations gaining confidential data and the <sink>
includes operations leaking confidential data. A total of 123
information leaks are extracted at runtime using CuckooDroid.

•	 System Calls: It is one of the most important dynamic features
of Android app. It is an efficient feature for intrusion detection
in a mobile device. Through system calls, Android apps take
services of the kernel. The kernel offers useful functions to apps
such as device security, process related to operations and power
management etc. These malware usually invokes sigprocmask,
getuid, ptrance to affect the execution of other apps. A total of 50
system calls are extracted at runtime using CuckooDroid. Table II
lists some of the examples of dynamic features considered under
these four categories.

After performing static and dynamic malware analysis, a total of 352
static and 323 dynamic features are extracted from all the Android apps
considered in this work. Thus, we have come up with two datasets. First
is a binary classification dataset consisting of 1747 malicious and 1800
benign apps. Second is a multiclass classification dataset consisting
of 1747 malicious apps belonging to 13 malware families. Both these
datasets are made public on GitHub and Kaggle (Link: https://github.
com/Meghna-Dhalaria/Android-malware-dataset) and (Link: https://
www.kaggle.com/meghnadhalaria/android-malware-detection-and-
classification) respectively.

4.	 Feature Selection
It is also known as attribute selection. It is used for dimensionality

reduction which helps in choosing relevant features. Irrelevant and
redundant features can decrease the quality of the classification model

Fig. 4. Process of extracting dynamic features.

- 6 -

International Journal of Interactive Multimedia and Artificial Intelligence

and the accuracy. Higher dimensional datasets required more space
and computation time [43]. Selecting the relevant features will help
in reducing the space and time complexity and also help in increasing
the accuracy. In this work, we have employed an information gain
feature ranking algorithm [44] to select the relevant features for better
detection and classification of Android malware. Information gain
calculates the quantity of information provided about the class. It
makes use of entropy to compute the homogeneity of samples. The
entropy H(X) of the dataset (having c number of classes) is calculated
as given in equation (1).

	 (1)

Where pi is the probability of class i in the dataset X. The dataset is
then split on the different attributes A. The entropy for a dataset with
respect to attribute A i.e. H(X, A) is calculated using equation (2).

	 (2)

Here k represents the possible values of the attribute A.
Information gain achieved by an attribute is expressed as shown in

equation (3). Greater the Information Gain (IG) of a particular feature,
more important the feature is.

	 (3)

The information gain method assigns rank and weight to each
feature. We have not considered the attributes with zero weight. Thus

out of 352 features, we are left with 110 static features for binary
classification dataset (named as Dataset-1) and 47 static features for
family classification dataset (named as Dataset-2). Fig. 5 and Fig. 6
show the top 20 selected attributes for detection (Dataset-1) and family
classification (Dataset-2) datasets respectively.

The datasets created using dynamic malware analysis consist of 323
features. Out of 323 features, we are left with 99 dynamic features
in Dataset-1 and 35 features in Dataset-2. Fig. 7 and Fig. 8 show the
top 20 selected dynamic features for detection (Dataset-1) and family
classification (Dataset-2) datasets respectively.

The summary of both the datasets i.e. Dataset-1 and Dataset-2
before and after feature selection is given in table III. Fig. 9 shows the
various steps for preparing these two datasets.

TABLE III. Description of Dataset (Where, # Stands for Number of)

Dataset
Name

#Benign
apps

#Malicious
apps

#Feature
extracted #Feature selected

Static Dynamic Static Dynamic

Dataset-1 1800 1747 352 323 110 99

Dataset-2 ----- 1747 (with 13
families) 352 323 47 35

TABLE I. Examples of Static Features Considered

Features Number of
features Examples Feature value

API Calls 47
onserviceConnected, Ljavax.crypto.spec.SecretKeySpec, getBinder,
android.os.Binder, Ljava.net.URLDecoder, ServiceConnection,
KeySpec, Ljava.lang.Class.getMethods

If an API call (out of 47) is existing in the
classes.dex then the value of that feature is set
to 1 otherwise 0.

Permissions 277
GET_TASKS, READ_PHONE_STATE, WRITE_EXTERNAL_
STORAGE, RECEIVE_BOOT_COMPLETE, READ_SMS, SYSTEM_
ALERT_WINDOW, RECEIVE_SMS, ACCESS_NETWORK_STATE

If a permission (out of 277) is existing in the
Manifest.xml file then the value of that feature
is set to 1 otherwise 0.

Command
Strings 6 Chown, /system/bin, mount, /system/app, remount

If a command string (out of 6) is existing in
the res, lib, assets folder then the value of that
feature is set to 1 otherwise 0.

Intents 22
CALL_BUTTON, SET_WALLPAPER, NEW_OUTGOING_CALL,
SCREEN_OFF, PACKAGE_CHANGED, ACTION_SHUTDOWN,
BATTERY_LOW

If an intent (out of 22) is existing in the
Manifest.xml file then the value of that feature
is set to 1 otherwise 0.

TABLE II. Examples of Dynamic Features Considered

Features Number of
features Examples Feature value

Cryptographic
Operations 79 Decryption_AES, encryption_AES, keyalgo_AES

If a cryptographic operation (out of 79) is
present in JSON file then the value of that
feature is set to 1 otherwise 0.

Dynamic
Permissions 71 AUDIO_FILE_ACCESS, ACCESS_ GOOGLE_ PASSWORDS,

WRITE_CONTACT_DATA, READ_CONTACT_DATA

If a dynamic permission (out of 71) is present
in JSON file then the value of that feature is
set to 1 otherwise 0.

Information
Leaks 123 IMEI_File, IMSI_Network, IMSI_File, PHONE_NUMBER_File,

IMEI_Network

If an information leak (out of 123) is present in
JSON file then the value of that feature is set
to 1 otherwise 0.

System Calls 50 ptrace, recvfrom, sigprocmask, write, wait4, sendto, getpid, read,
recvmsg, chmod, sendmsg

If a system call (out of 50) is present in JSON
file then the value of that feature is set to 1
otherwise 0.

- 7 -

Article in Press

tra
ns

ac
t

W
ei

gh
ts

Serv
ice

Con
ne

cti
on

att
ac

hIn
ter

fac
e

an
dro

id.
pe

rm
iss

ion
.BIN

D_J
O...

Lja
va

.la
ng

.C
las

s.g
etC

an
on

ica
l...

Lja
va

.ne
t.U

RLD
ec

od
er

ge
tBind

er

an
dro

id.
os

.Bind
er

on
Serv

ice
Con

ne
cte

d

bin
dS

erv
ice

La
nd

roi
d.c

on
ten

t.C
on

tex
t.u

nre
...

Lja
va

.la
ng

.C
las

s.g
etD

ec
lar

ed
Fi...

an
dro

d.p
erm

iss
ion

.G
ET_T

ASKS

Lja
va

.la
ng

.C
las

s.g
etM

eth
od

s

an
dro

id.
int

en
t.a

cti
on

.BOOT_C
...

La
nd

roi
d.c

on
ten

t.C
on

tex
t.re

gis
...

Te
lep

ho
ny

Man
ag

er.
ge

tLi
ne

1N
...

an
dro

id.
pe

rm
iss

ion
.M

OUNT

tra
ns

ac
t

Serv
ice

Con
ne

cti
on

Features

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35

Fig. 5. Top 20 selected static features for detection dataset (Dataset-1).

W
ei

gh
ts

an
dro

id.
pe

rm
iss

ion
.ACCESS_..

.

an
dro

id.
pe

rm
iss

ion
.G

ETS_T
ASKS

an
dro

id.
pe

rm
iss

ion
.ACCESS_..

.

an
dro

id.
int

en
t.a

cti
on

.SENDTO

an
dro

id.
pe

rm
iss

ion
.SYSTEM_..

.

an
dro

id.
pe

rm
iss

ion
.R

ECEIVE...

an
dro

id.
pe

rm
iss

ion
.C

HANGE_..
.

an
dro

id.
pe

rm
iss

ion
.SET_W

AL..
.

on
Serv

ice
Con

ne
cte

d

bin
dS

erv
ice

an
dro

id.
pe

rm
iss

ion
.M

OUNT_

an
dro

id.
int

en
t.a

cti
on

.C
ALL

an
dro

id.
os

.Bind
er

an
dro

id.
pe

rm
iss

ion
.VIBRATE

an
dro

id.
pe

rm
iss

ion
.R

EAD_L
O...

Lja
va

.la
ng

.C
las

s.g
etM

eth
od

s

an
dro

id.
pe

rm
iss

ion
.ACCESS_

int
en

t.a
cti

on
.R

UN

Lja
va

.la
ng

.C
las

s.g
etF

iel
d

an
dro

id.
pe

rm
iss

ion
.M

ODIFY_..
.

Features

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Fig. 6. Top 20 selected static features for family classification dataset (Dataset-2).

ge
tpi

d

W
ei

gh
ts

rec
vfr

om

da
tal

ea
ks

|op
era

tio
n=

write
|pa

th.
..

write
so

ck
et

ge
tui

d3
2

ptr
ac

e

sig
pro

cm
as

k
rea

d

en
cry

pti
on

_D
ES/ECB/N

oP
ad

d..
.

ch
mod

de
cry

pti
on

_A
ES

mkd
ir

FORMAT_E
XTERNAL_

...

ACCESS_G
OOGLE

_..
.

da
tal

ea
ks

|op
era

tio
n=

write
|pa

th.
..

READ_P
HONE_S

TA
TE

da
tal

ea
ks

|de
sth

os
t|d

es
tpo

rt=
80

...

da
tal

ea
ks

|de
sth

os
t|d

es
tpo

rt=
91

...

an
dro

id.
ac

co
un

ts.
Acc

ou
ntA

uth
...

Features

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Fig. 7. Top 20 selected dynamic features for detection dataset (Dataset-1).

- 8 -

International Journal of Interactive Multimedia and Artificial Intelligence

Fig. 9. Process of Data Preparation.

C.	Detection and Family Classification (Phase-III)
Various ML algorithms i.e. SVM, RF, DT, NB, K-NN, PART

and MLP are used to build models for detection and classification
of Android malware. These models are trained using 5-fold cross
validation, in which the whole dataset is divided into 5 equal parts.
Four parts are used to train the model and the remaining part is used
for testing at every run. This section provides the brief introduction of
ML algorithms and the evaluation parameters used for evaluating these
algorithms.

1.	 Machine Learning Algorithms
The various ML algorithms used in this work are as follows:

•	 K-NN is one of the easiest supervised learning methods. It is also
called as lazy learner [45]. This method does not depend upon
the structure of data, whenever the new instance arises; it finds
the closest training samples to the new instance by using distance
measures such as Euclidean distance, Manhattan distance. At the
end, by using the majority voting concepts it finds the class of the
new instance.

•	 SVM is a method [46] which divides the data using a hyperplane.
It acts like a decision boundary. It randomly draws the hyperplane
and then computes the distance between the hyperplane and the
closest data points (also called as support vector). It attempts to
identify the optimal hyperplane that maximizes the margin.

•	 RF is an ensemble learning technique which involves a large
number of individual decision trees that act as an ensemble [47].
Every decision tree produces a classification for input data and
then RF collects the classification and illustrates the result based
on majority voting.

•	 The structure of DT is like a tree, where non-leaf or internal node
demonstrates a test on an attribute, topmost node represents the
root node, terminal or leaf node holds a class label and the branch
of the tree demonstrates the results of the test. In this work, we
have used C4.5 algorithm to classify Android malware [48].

•	 The concept of NB is based on Bayes theorem. It forecasts the
class membership probabilities i.e. the probability that a given
tuples relates to an individual class. It is used for both binary and
multiclass classification problems [49].

W
ei

gh
ts

se
nd

msg

de
cry

pti
on

_A
ES

rec
vm

sg

da
tal

ea
ks

|op
era

tio
n=

write
|pa

th.
..

da
tal

ea
ks

|de
sth

os
t|d

es
tpo

rt=
88

|...

da
tal

ea
ks

|de
sth

os
t|d

es
tpo

rt=
71

...

SET_T
IM

E

da
tal

ea
ks

|de
sth

os
t|d

es
tpo

rt=
80

|...

da
tal

ea
ks

|op
era

tio
n=

write
|pa

th.
..

da
tal

ea
ks

|de
sth

os
t|d

es
tpo

rt=
80

...

da
tal

ea
ks

|de
sth

os
t|d

es
tpo

rt=
52

...

de
cry

pti
on

_D
ESed

e/C
BC/PK...

pre
ad

de
cry

pti
on

_R
SA/ECB/PKCS1..

.

ACTIO
N_R

ECORD

en
cry

pti
on

_D
ES/ECB/N

oP
ad

d..
.

de
cry

pti
on

_D
ESed

e/C
BC/PK...

Star
t_I

M_S
erv

ice

de
cry

pti
on

_A
ES/C

BC/N
oP

ad
...

da
tal

ea
ks

|op
era

tio
n=

write
|pa

th.
..

Features

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Fig. 8. Top 20 selected dynamic features for family classification dataset (Dataset-2).

- 9 -

Article in Press

•	 PART is a partial decision tree algorithm. It is a separate and
conquer rule learner. This technique produces sets of rules known
as decision list. A new sample is compared to each rule and then the
sample is assigned the class of the first matching rule [50].

•	 Multilayer Perceptron (MLP) is also called as Multilayer Neural
Networks [51]. It consists of an input layer, an output layer and the
hidden layer. It has various output units. The units of the hidden
layer become input for the next layer. Semwal et al. [52], [53]
worked in the field of different classification problems using deep
learning techniques such as DNN based classifier and ANN. In
[54], the authors [54] worked in the Extreme Machine Learning
(ELM) for classification and prediction of gait data. In our work, we
applied MLP for detection and classification of Android malware.
We run the MLP for hidden layer h=3 and h=5 for Dataset-1 and
Dataset-2 respectively. The activation function used for Dataset-1
and Dataset-2 are sigmoid and Softmax respectively. The learning
rate is considered to be as 0.3. Fig. 10 shows the general framework
of backpropagation based on neural network [53].

Connections with weighted Wij

Input 1 I1

O1

H11

Θ11

Θ12

Θ13

Θ1n

Θo1

H12

H13

H1n

I2

In

Input 2

Input n

Input layer Hidden layer Output layer

Output

Fig. 10. General framework of backpropagation based on neural network [53].

 The algorithm first initializes the weights to all nodes and then
calculates the net input and output. It calculates the error rate and
propagates it back. At the end, it updates the bias and weights and run
the loop until the error becomes below the threshold.

2.	 Evaluation Parameters
The performances of the classifiers are assessed on the basis of

various metrics such as precision, true positive rate (TPR), F-measure,
false positive rate (FPR), Matthews correlation coefficient (MCC) and
Area under curve (AUC) [55]. These performance metrics are defined
using true negative (TN), false positive (FP), false negative (FN) and
true positive (TP).
•	 TPR: It is also known as recall or sensitivity. It is defined as the

ratio of true positive cases divided by the total number of actual
positive cases. It is computed as shown in equation (4).

	 (4)

•	 FPR: It is the ratio of false positive cases divided by total number
of actual negative cases. It is computed as given in equation (5).

	 (5)

•	 Precision: It is defined as the ratio of actual true predictive
instances divided by the total number of true cases. It is computed
as shown in equation (6).

	 (6)

•	 F-measure: It signifies the harmonic mean of recall and precision.
It is calculated as shown in equation (7).

	 (7)

•	 Accuracy: It is the ratio of true positive and true negative instances
divided by the total number of instances. It is calculated as shown
in equation (8).

	 (8)

•	 MCC: It is used to measure the quality of binary classification
algorithms. Its value lies between -1 to +1. Here -1 means inverse
prediction and +1 means a perfect prediction. It is calculated as
shown in equation (9).

	 (9)

•	 AUC curve: It is one of the most significant parameters to measure
the performance of classification models. It represents the measure
of the separability.

IV.	Experimental Results

This section describes the experimental results based on static,
dynamic and the hybrid features. Seven different ML technique are
used which are run on python 3.7 under Intel Core i5 processor, 64
bit with 8GB RAM. We conducted the experiments using 5-fold cross
validation method and evaluated the ML techniques on the basis of
various evaluation parameters like TPR, F-measure, Accuracy, FPR,
Precision, AUC and MCC.

A.	Classification Results Based on Static Features
Seven ML algorithms are used to detect and classify malware on

detection (Dataset-1) and family classification (Dataset-2). These
algorithms are carried out in python script through sklearn [56] library.

Table IV demonstrates the evaluation results of ML techniques on
static malware analysis for Dataset-1. It shows that RF gives the best
accuracy of 96.50% followed by K-NN and MLP with accuracy as
95.74% and 95.71% respectively.

Fig. 11 shows the comparison of different classifiers based on
accuracy and MCC of static features for Dataset-1. It indicates that RF
performs better in comparison to other classifiers. The accuracy and
MCC obtained by RF is 96.50% and 0.933 respectively.

Table V shows the evaluation results of ML techniques using static
features for family classification on Dataset-2. It is found that RF
algorithm gives better accuracy i.e. 86.72% followed by SVM and DT
which gives and accuracy of 85.86% and 84.77% respectively. The
TPR, precision and F-measure obtained by RF is 0.867, 0.870 and
0.866 respectively which are better results than those obtained by other
classifiers.

Fig. 12 shows the comparative analysis of different classifiers
based on accuracy for Dataset-2. The maximum accuracy of 86.72%
is obtained by RF. This value is much smaller than the results obtained
in static malware analysis for detection of malware in case of binary
classification.

- 10 -

International Journal of Interactive Multimedia and Artificial Intelligence

TABLE IV. Classification Results Using Static Features for Dataset-1

Classifiers TPR FPR Precision F-measure MCC AUC Accuracy (%)

SVM 0.943 0.057 0.943 0.943 0.887 0.943 94.33

DT 0.950 0.050 0.950 0.950 0.901 0.970 95.03

NB 0.874 0.124 0.878 0.874 0.752 0.948 87.42

RF 0.965 0.035 0.965 0.965 0.933 0.990 96.50

K-NN 0.957 0.042 0.958 0.957 0.915 0.989 95.74

PART 0.950 0.050 0.950 0.950 0.900 0.975 94.98

MLP 0.957 0.043 0.957 0.957 0.914 0.986 95.71

TABLE V. Classification Results Using Static Features for Dataset-2

Classifier TPR FPR Precision F-measure AUC Accuracy (%)

SVM 0.859 0.023 0.863 0.857 0.962 85.86

DT 0.848 0.023 0.852 0.847 0.949 84.77

NB 0.751 0.032 0.792 0.756 0.967 75.10

RF 0.867 0.024 0.870 0.866 0.982 86.72

K-NN 0.845 0.024 0.847 0.843 0.966 84.48

PART 0.840 0.024 0.842 0.839 0.947 84.02

MLP 0.830 0.026 0.832 0.830 0.964 82.99

Classifers

MC
C

SVM
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

DT NB RF K-NN PART MLP

(b)

Classifers

Ac
cu

ra
cy

(%
)

SVM
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98

100

DT NB RF K-NN PART MLP

(a)
Fig. 11. Comparison of different classifiers based on (a) Accuracy (b) MCC using static features for Dataset-1.

- 11 -

Article in Press

Classifers

Ac
cu

ra
cy

(%
)

SVM
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98

100

DT NB RF K-NN PART MLP

Fig. 12. Comparison of different classifiers based on accuracy using static
features for Dataset-2.

B.	Classification Results Based on Dynamic Features
The static malware analysis is quicker in analyzing the code but it

fails against code obfuscation techniques and morphed malware. So to
overcome this problem, we considered the dynamic features for better

detection and classification of malware. Seven ML algorithms are used
to detect and classify malware on detection (Dataset-1) and family
classification (Dataset-2) datasets.

Table VI shows the evaluation results of ML techniques on dynamic
malware analysis for malware detection (binary classification)
on Dataset-1. Among all these classifiers, RF is found to be more
superior and accurate than other classifiers. The accuracy acquired by
RF is 97.01% followed by SVM and MLP with 96.53% and 96.53%
respectively.

Fig. 13 shows the comparative analysis of different classifiers
based on accuracy and MCC using dynamic features for Dataset-1. It
indicates that RF performs better in comparison to other classifiers. The
accuracy and MCC obtained by RF is 97.01% and 0.940 respectively.

Table VII shows the evaluation results of ML techniques on dynamic
malware analysis for family classification on Dataset-2. Among all
these classifiers, RF is found to be more superior and accurate than
other classifiers. The accuracy obtained by RF is 88.60% followed
by SVM and DT with 86.85% and 84.25% respectively. The TPR,
precision and F-measure obtained by RF is 0.886, 0.888 and 0.885
respectively which are better values than those obtained by other
classifiers.

Fig. 14 shows the comparative analysis of different classifiers based
on accuracy using dynamic features for Dataset-2. The maximum
accuracy of 88.60% is obtained by RF. This value is much smaller
than the results obtained in dynamic malware analysis for detection of
malware (binary classification).

TABLE VI. Classification Results Using Dynamic Features for Dataset-1

Classifier TPR FPR Precision F-measure MCC AUC Accuracy (%)

SVM 0.965 0.035 0.965 0.965 0.931 0.965 96.53

DT 0.953 0.048 0.953 0.953 0.905 0.973 95.26

NB 0.942 0.057 0.943 0.942 0.885 0.989 94.19

RF 0.970 0.030 0.970 0.970 0.940 0.996 97.01

K-NN 0.961 0.039 0.961 0.961 0.922 0.990 96.08

PART 0.959 0.041 0.959 0.959 0.918 0.970 95.88

MLP 0.965 0.035 0.965 0.965 0.931 0.988 96.53

TABLE VII. Classification Results Using Dynamic Features for Dataset-2

Classifier TPR FPR Precision F-measure AUC Accuracy (%)

SVM 0.864 0.021 0.871 0.866 0.985 86.85

DT 0.843 0.026 0.843 0.841 0.947 84.25

NB 0.800 0.029 0.805 0.795 0.951 79.96

RF 0.886 0.018 0.888 0.885 0.991 88.60

K-NN 0.839 0.025 0.842 0.837 0.967 83.91

PART 0.841 0.026 0.838 0.836 0.950 84.08

MLP 0.829 0.027 0.828 0.825 0.947 82.88

- 12 -

International Journal of Interactive Multimedia and Artificial Intelligence

Classifers

Ac
cu

ra
cy

(%
)

SVM
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98

100

DT NB RF K-NN PART MLP

Fig. 14. Comparison of different classifiers based on accuracy using dynamic
features for Dataset-2.

C.	Classification Results Based on Integrated Features
Single approach either static or dynamic is inadequate for correctly

classifying the malware due to the obfuscation and execution stalling.

So to overcome this problem, we make use of a hybrid analysis
approach. We integrated the features obtained from both static and
dynamic malware analysis. Seven ML algorithms are used to detect
and classify malware on detection (Dataset-1) and family classification
(Dataset-2) datasets.

Table VIII shows the evaluation results of ML techniques on
integrated features for Dataset-1. Among all these classifiers, RF is
found to be more superior and accurate than other classifiers. The
accuracy acquired by RF is 98.53% followed by SVM and K-NN with
98.30% and 98.16% respectively.

Table IX shows the evaluation results of ML techniques on
integrated features for family classification for Dataset-2. Among all
these classifiers, RF is found to be more superior and accurate than
other classifiers. The accuracy acquired by RF is 90.10% followed
by SVM and K-NN with 87.06% and 85.40% respectively. The TPR,
precision and F-measure obtained by RF is 0.901, 0.902 and 0.901
respectively which are better results than those of other classifiers.

Fig. 15 shows the accuracy and MCC comparison of seven classifiers
with respect to various approaches considered in our experiment for
Dataset-1. It is clear from table VIII that there is an improvement in the
accuracy and MCC for all the classifiers when the static and dynamic
features are integrated. It means that using both static and dynamic
features together helps for better detection and classification of the
Android malware.

Classifers

M
C

C

SVM
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

DT NB RF K-NN PART MLP

(b)

Classifers

Ac
cu

ra
cy

(%
)

SVM
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98

100

DT NB RF K-NN PART MLP

(a)
Fig. 13. Comparison of different classifiers based on (a) Accuracy (b) MCC using dynamic features for Dataset-1.

TABLE VIII. Classification Results Using Integrated Features for Dataset-1

Classifier TPR FPR Precision F-measure MCC AUC Accuracy (%)

SVM 0.983 0.017 0.983 0.983 0.966 0.983 98.30

DT 0.970 0.030 0.970 0.970 0.941 0.980 97.03

NB 0.956 0.043 0.957 0.956 0.913 0.993 95.60

RF 0.985 0.015 0.985 0.985 0.971 0.999 98.53

K-NN 0.982 0.018 0.982 0.982 0.963 0.994 98.16

PART 0.971 0.029 0.971 0.971 0.942 0.983 97.09

MLP 0.981 0.019 0.981 0.981 0.963 0.993 98.13

- 13 -

Article in Press

Classifers

Ac
cu

ra
cy

(%
)

SVM
70

75

80

85

90

95

100

DT NB RF K-NN PART MLP

Static
Dynamic
Integrated

Fig. 16. Comparison of different classifiers based on accuracy using static,
dynamic and integrated features for Dataset-2.

Fig. 16 demonstrates the comparison of seven classifiers on the
basis of accuracy with respect to various approaches considered in our
experiments for Dataset-2. It shows that for all the classifiers except NB
and PART, the integrated approach performs better as compared to the
cases when the static and dynamic features are considered alone. We
are not able to achieve a good accuracy for the malware classification
dataset (Dataset-2). It might be due to the imbalanced number of apps
in different families.

Table X shows the comparison of static, dynamic and integrated
approach for the best classifier i.e. RF for both the datasets i.e. Dataset-1
and Dataset-2. The results indicate that the integrated approach is found
to be more appropriate for detection and classification of malware for
both the datasets. The accuracy achieved by RF in case of Dataset-1 and
Dataset-2 is 98.53% and 90.10% respectively. The overall performance
shows that the integrated approach is more suitable in detection and
classification of Android malware.

Classifers

M
C

C

SVM
0.7

0.75

0.8

0.9

0.95

1

0.85

DT NB RF K-NN PART MLP

Static
Dynamic
Integrated

(b)

Classifers

Ac
cu

ra
cy

(%
)

SVM
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98

100

DT NB RF K-NN PART MLP

Static
Dynamic

Integrated

(a)
Fig. 15. Comparison of different classifiers based on (a) Accuracy (b) MCC using static, dynamic and integrated features for Dataset-1.

TABLE IX. Classification Results Using Integrated Features for Dataset-2

Classifier TPR FPR Precision F-measure AUC Accuracy (%)
SVM 0.870 0.020 0.875 0.871 0.987 87.06
DT 0.846 0.024 0.851 0.845 0.949 84.60
NB 0.783 0.027 0.814 0.784 0.970 78.30
RF 0.901 0.016 0.902 0.901 0.995 90.10

K-NN 0.854 0.022 0.857 0.854 0.966 85.40
PART 0.833 0.024 0.837 0.833 0.946 83.34
MLP 0.845 0.024 0.847 0.845 0.963 84.48

TABLE X. Classification Results of Best Classifier Using Static, Dynamic And Integrated Features for Dataset-1 And Dataset-2

Dataset Classifier Approach TPR FPR Precision F-measure MCC Accuracy (%)

Dataset-1 RF

Static 0.965 0.035 0.965 0.965 0.933 96.50

Dynamic 0.970 0.030 0.970 0.970 0.940 97.01

Integrated 0.985 0.015 0.985 0.985 0.971 98.53

Dataset-2 RF

Static 0.867 0.024 0.870 0.866 -- 86.72

Dynamic 0.886 0.018 0.888 0.885 -- 88.60

Integrated 0.901 0.016 0.902 0.901 -- 90.10
 * MCC -- not applicable for multiclass dataset i.e. Dataset-2.

- 14 -

International Journal of Interactive Multimedia and Artificial Intelligence

V.	 Conclusion and Future Work

This paper presented a hybrid approach which extracts different
types of features using static and dynamic malware analysis to detect
and classify Android malware. We created our own two datasets for
detection (dataset-1) and family classification (dataset-2) of Android
malware. Both datasets consist of 352 static features and 323 dynamic
features. These datasets are made publically available on GitHub and
Kaggle with the aim to help researchers and anti-malware tool creators
for enhancing or developing new techniques and tools for detecting and
classifying Android malware. The significance of the datasets makes
it appropriate to be used as benchmark to test new techniques. We
employed the information gain feature selection algorithm to eliminate
noisy and irrelevant features. Through this algorithm, we selected
110 and 47 static features in Dataset-1 and Dataset-2 respectively and
99 and 35 dynamic features in Dataset-1 and Dataset-2 respectively.
The features with zero weights are not considered here. Various ML
classifiers are applied to detect and identify Android malware. The
experimental results indicate that the hybrid approach obtains better
detection and classification performance as compared to the cases
when static and dynamic features are considered alone. For dataset-1,
RF provides the accuracy of 96.5% when only static features are
considered and 97.01% when only dynamic features are considered. For
dataset-2, RF provides accuracy of 86.72% when only static features
are considered and 88.6% when only dynamic features are considered.
RF provides the highest accuracy in the hybrid approach (when both
static and dynamic features are integrated) for both Dataset-1 and
Dataset-2 i.e. 98.53% and 90.1% respectively.

In real world scenario, the malware classification problem is a data
imbalance problem as there exist more examples of benign applications
as compared to the malicious ones. In future, we will focus on this
issue while using deep learning and big data tools [57] to classify the
Android malware applications.

References

[1]	 StatistaReport. Accessed: December. 2019. [Online]. Available: http://
www.statista.com/statistics/266488/forecast-of-mobile-appdownloads/.

[2]	 A. M. Memon, and A. Anwar, “Colluding apps: tomorrow’s mobile
malware threat,” IEEE Security & Privacy, vol. 13 no. 6, pp. 77–81, 2015.

[3]	 Y. Zhou, and X. Jiang, “Dissecting Android malware: characterization
and evolution,” in IEEE Symposium in Security and Privacy, 2012, pp.
95–109.

[4]	 Future-Trends-of-Android-Malware-Growth. Accessed: December. 2019.
[Online]. Available: https://www.researchgate.net/figure/Future-Trends-
of-Android- Malware-Growth.

[5]	 McAfee Labs. (2018) Threat Predictions Report, McAfee Labs, Santa
Clara, CA, USA.

[6]	 D. Barrera, H. G. Kayacik, P. C. V. Oorschot, and A. Somayaji, “A
methodology for empirical analysis of permission-based security models
and its application to Android,” in Proc. of 17th ACM Conf. Computer and
Communications Security, CCS 10, 2010, pp. 73–84.

[7]	 S. Singla, E. Gandotra, D. Bansal, and S. Sofat, “Detecting and classifying
morphed malwares: A survey,” International Journal of Computer
Applications, vol. 122, no. 10, 2015.

[8]	 E. Gandotra, D. Bansal, and S. Sofat, “Malware analysis and classification:
A survey,” Journal of Information Security, vol. 5, no. 02, p. 56, 2014.

[9]	 CuckooDroid. Accessed: October. 2019. [Online]. Available: https://
cuckoo-droid.readthedocs.io/en/latest/installation/.

[10]	 E. Gandotra, D. Bansal, and S. Sofat, “Malware intelligence: beyond
malware analysis,” International Journal of Advanced Intelligence
Paradigms, vol. 13, no. 1-2, pp. 80-100, 2019.

[11]	 G. Suarez-Tangil, J. Tapiador, P. Peris-Lopez, and A. Ribagorda,
“Evolution, detection and analysis of malware for smart devices,” IEEE
Communications Surveys & Tutorials, vol. 16, no. 2, pp. 961–987, 2013.

[12]	 S. Moghaddam, and M. Abbaspour, “Sensitivity analysis of static features

for Android malware detection,” in Electrical Engineering (ICEE), Tehran,
Iran, 2014, pp. 920–924.

[13]	 Q. Li, and X. Li, “Android malware detection based on static analysis
of characteristic tree,” in Cyber-Enabled Distributed Computing and
Knowledge Discovery (CyberC), Xian, China, 2015, pp. 84-91.

[14]	 J. Li, L. Sun, Q. Yan, Z. Li, W. Srisaan, and Y. Heng, “Significant
permission identification for machine-learning-based android malware
detection,” IEEE Transactions on Industrial Informatics, vol. 14, no. 7,
pp. 3216-3225, 2018.

[15]	 H. J. Zhu, Z. H. You, Z. X. Zhu, W. L. Shi, X. Chen, and L. Cheng,
“DroidDet: effective and robust detection of android malware using static
analysis along with rotation forest model,” Neurocomputing, vol. 272, pp.
638-646, 2018.

[16]	 S. Y. Yerima, and S. Sezer, “Droidfusion: A novel multilevel classifier
fusion approach for android malware detection,” IEEE transactions on
cybernetic, vol. 49, no. 2, pp. 453-466, 2018.

[17]	 T. Kim, B. Kang, M. Rho, S. Sezer, and E. G. Im, “A multimodal deep
learning method for Android malware detection using various features,”
IEEE Transactions on Information Forensics and Security, vol. 14, no. 3,
pp. 773-788, 2018.

[18]	 A. Feizollah, N. B. Anuar, R. Salleh, G. S. Tangil, and S. Furnell,
“Androdialysis: Analysis of android intent effectiveness in malware
detection,” Computers & Security, vol. 65, pp. 121-134, 2017.

[19]	 W. Wang, X. Wang, D. Feng, J. Liu, Z. Han, and X. Zhang, “Exploring
permission-induced risk in android applications for malicious application
detection,” IEEE Transactions on Information Forensics and Security, vol.
9, no. 11, pp. 1869-1882, 2014.

[20]	 M. Dhalaria, E. Gandotra, and S. Saha, “Comparative Analysis of
Ensemble Methods for Classification of Android Malicious Applications,”
in advances in Computing and Data Sciences, M. Singh, P. K. Gupta,
V. Tyagi, J. Flusser, T. Oren and R. Kashyap, Eds. Singapore: Springer
International Publishing, 2019, pp. 370-380.

[21]	 M. Dhalaria and E. Gandotra, “Convolutional Neural Network for
Classification of Android Applications Represented as Grayscale Images,”
International Journal of Innovative Technology and Exploring Engineering
(IJITEE), vol. 8, no. 12S, pp. 835-843, 2019.

[22]	 H. Cai, N. Meng, B. Ryder, and D. Yao, “Droidcat: Effective android
malware detection and categorization via app-level profiling,” IEEE
Transactions on Information Forensics and Security, vol. 14, no. 6, pp.
1455-1470, 2018.

[23]	 P. Feng, J. Ma, C. Sun, X. Xu, and Y. Ma, “A Novel Dynamic Android
Malware Detection System With Ensemble Learning,” IEEE Access, vol.
6, pp. 30996-31011, 2018.

[24]	 S. Das, Y. Liu, W. Zhang, and M. Chandramohan, “Semantics-based
online malware detection: Towards efficient real-time protection against
malware,” IEEE transactions on information forensics and security, vol.
11, no. 2, pp. 289-302, 2015.

[25]	 W. Enck, P. Gilbert, S. Han, V. Tendulkar, B. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth, “TaintDroid: an information-flow
tracking system for real-time privacy monitoring on smartphones,” ACM
Transactions on Computer Systems (TOCS), vol. 32, no. 2, p. 5, 2014.

[26]	 L. Chen, M. Zhang, C. Y. Yang, and R. Sahita, “Semi-supervised
classification for dynamic Android malware detection,” arXiv preprint
arXiv: 1704.05948, 2017.

[27]	 M. Zheng, M. Sun, and J. C. S. Lui, “DroidTrace: A ptrace based
Android dynamic analysis system with forward execution capability,” in
international wireless communications and mobile computing conference
(IWCMC), Nicosia, Cyprus, 2014, pp. 128-133.

[28]	 Z. Yuan, Y. Lu, and Y. Xue, “Droiddetector: android malware
characterization and detection using deep learning,” Tsinghua Science and
Technology, vol. 21, no. 1, pp. 114-123, 2016.

[29]	 F. Tong, and Z. Yan, “A hybrid approach of mobile malware detection
in Android,” Journal of Parallel and Distributed computing, vol. 103, pp.
22-31, 2017.

[30]	 A. Martín, R. L. Cabrera, and D. Camacho, “Android malware detection
through hybrid features fusion and ensemble classifiers: The AndroPyTool
framework and the OmniDroid dataset,” Information Fusion, vol. 52, pp.
128-142, 2019.

[31]	 T. Bläsing, L. Batyuk, A. D.Schmidt, S. A. Camtepe, and S. Albayrak, “An
android application sandbox system for suspicious software detection,”
in 5th International Conference on Malicious and Unwanted Software,

- 15 -

Article in Press

Nancy, Lorraine, France, 2010, pp. 55-62.
[32]	 D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and C. E.

R. T. Siemens, “Drebin: Effective and explainable detection of android
malware in your pocket,” In Ndss, vol. 14, pp. 23-26, 2014.

[33]	 Virusshare. Accessed: March. 2019. [Online]. Available: https://virusshare.
com/.

[34]	 APKMirror. Accessed: March. 2019. [Online]. Available: https://www.
apkmirror.com/.

[35]	 Apkpure. Accessed: March. 2019. [Online]. Available: https://apkpure.
com/.

[36]	 Avira. Accessed: April. 2019. [Online]. Available: https://www.avira.com/.
[37]	 W. Enck, D. Octeau, P. D. McDaniel, and S. Chaudhuri, “A study of

android application security,” In USENIX security symposium, vol. 2, p.
2, 2011.

[38]	 E. Gandotra, D. Bansal, and S. Sofat, “Tools & Techniques for Malware
Analysis and Classification,” International Journal of Next-Generation
Computing, vol. 7, no. 3, 2016.

[39]	 Android4me: J2ME port of Google’s Android (2011) https://code.google.
com/p/android4me/downloads/list.

[40]	 Android Developers. Accessed: May. 2019. [Online]: Available: https://
developer.android.com/guide/topics/manifest/permissionelement.

[41]	 Xposed module repository. Accessed: May. 2019. [Online]. Available:
http://repo.xposed.info/module/de.robv.android.xposed.installer.

[42]	 S. Malik, and K. Khatter, “System call analysis of android malware
families,” Indian Journal of Science and Technology, vol. 9, no. 21, 2016.

[43]	 B. Chizi, and O. Maimon, “Dimension reduction and feature selection,”
in Data mining and knowledge discovery handbook, O. Maimon and L.
Rokach, Eds. Boston MA: Springer, 2009, pp. 83-100.

[44]	 J. Han, J. Pei, and M. Kamber, “Data mining: concepts and techniques,”
Elsevier, 2011.

[45]	 G. Shakhnarovish, T. Darrell, and P. Indyk, “Nearest-neighbor methods in
learning and vision,” In MIT Press, 2005, p. 262.

[46]	 Keerthi, S. Sathiya, and E. G. Gilbert, “Convergence of a generalized
SMO algorithm for SVM classifier design,” Machine Learning, vol. 46,
no. 1-3, pp. 351-360, 2002.

[47]	 A. Liaw, and M. Wiener, “Classification and regression by
randomForest,” R news, vol. 2, no. 3, 2002, pp. 18-22.

[48]	 J. R. Quinlan, “The Morgan Kaufmann Series in Machine Learning,” San
Mateo, 1993.

[49]	 P. Domingos, and M. Pazzani, “On the optimality of the simple Bayesian
classifier under zero-one loss,” Machine learning, vol. 29, no. 2-3, pp. 103-
130, 1997.

[50]	 F. Eibe, and I. H. Witten, “Generating Accurate Rule Sets Without
Global Optimization,” In: Fifteenth International Conference on Machine
Learning, 1998, pp. 144-151.

[51]	 S. B. Joo, S. E. Oh, T. Sim, H. Kim, C. H. Choi, H. Koo, and J. H. Mun,
“Prediction of gait speed from plantar pressure using artificial neural
networks,” Expert Systems with Applications, vol. 41, no. 16, pp. 7398-
7405, 2014.

[52]	 V. B. Semwal, K. Mondal, and G. C. Nandi, “Robust and accurate feature
selection for humanoid push recovery and classification: deep learning
approach,” Neural Computing and Applications, vol. 28, no. 3, pp. 565-
574, 2017.

[53]	 V. B. Semwal, M. Raj, and G. C. Nandi, “Biometric gait identification
based on a multilayer perceptron,” Robotics and Autonomous Systems
vol. 65, pp. 65-75, 2015.

[54]	 V. B. Semwal, N. Gaud, and G. C. Nandi, “Human gait state prediction
using cellular automata and classification using ELM,” in machine
intelligence and signal analysis, M.Tanveer and R. B. Pachori, Eds.
Singapore: Springer, 2019, pp. 135-145.

[55]	 D. Gupta, and R. Rani, “Big Data Framework for Zero-Day Malware
Detection,” Cybernetics and Systems, vol. 49, no. 2, pp. 103-121, 2018.

[56]	 Scikit-Learn Machine Learning in Python. Accessed: June. 2019. [Online].
Available: https://scikit-learn.org/stable/.

[57]	 D. Gupta, and R. Rani, “A study of big data evolution and research
challenges,” Journal of Information Science, vol. 45, no. 3, pp. 322-340,
2019.

Meghna Dhalaria

Meghna Dhalaria is pursuing Ph.D. in Computer Science
and Engineering Department at Jaypee University of
Information and Technology, India. She has completed her
Master’s degree in Computer Science & Engineering from
Thapar Institute of Engineering and Technology, Patiala.
Her current research areas include the applications of
machine learning and deep learning.

Ekta Gandotra

Ekta Gandotra is currently working as Assistant Professor
in the Department of Computer Science and Engineering at
Jaypee University of Information Technology, Waknaghat,
India. She has around 12 years of teaching and research
experience. She has completed her Ph.D. in Computer
Science and Engineering from PEC University of
Technology, Chandigarh, India. Her research areas include

network & cyber security, malware threat profiling, cyber threat intelligence,
machine learning and big data analytics.

