
International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 6, Nº 3

- 32 -

* Corresponding author.
E-mail addresses: mohamed.elghazouani63@gmail.com (M. El
Ghazouani), kiram@uca.ac.ma (M. A. El Kiram), errajy.latifa@
gmail.com (L. Er-Rajy), elkhanboubi.yassine@gmail.com (Y. El
Khanboubi).

I. Introduction

CLOUD computing is defined by the National Institute of
Standards and Technology (NIST) as “a model for enabling

ubiquitous, convenient, on-demand network access to a shared pool
of configurable Computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and released
with minimal management effort or service provider interaction” [1].
Cloud computing provides a number of opportunities, such as enabling
services to be used without any understanding of their infrastructure,
and that data and services are stored remotely but are accessible from
anywhere. This way of remote storage is the most important cloud
service because it allows cloud users to store their data from local
storage systems to the cloud. According to the NIST’s classification,
the four major patterns of cloud deployment are the private cloud,
community cloud, public cloud, and hybrid cloud [1]. Cloud service
models are classified as software as a service (SaaS), platform as a
service (PaaS) or infrastructure as a service (IaaS).

Once the data is stored on the cloud service platform, the data
owners lose control over it. Although this technology offers many
advantages, it also introduces new security challenges, especially those
related to the integrity of the data. Data integrity is one of the most
critical elements in any system. To ensure the integrity of outsourced
data, a data owner should enable auditing mechanisms. Auditing is

a process of analysis and verification, performed by an internal or
external auditor, with the aim of identifying the security vulnerabilities
of a system. In our paper, we use the auditing process to check the data
integrity of the outsourced data.

The second important requirement when storing user data is storage
efficiency. Data deduplication is the best choice for ensuring data storage
efficiency. Data deduplication (also called intelligent compression
or single-instance storage) eliminates redundant data and keeps just
one copy of each file before the transfer of the data to be saved in the
cloud server (deduplication on the client side is called source-based
deduplication), or after it is transferred (deduplication on the server side
is also called target-based deduplication). This technique means that
multiple copies of the same data are not stored, which allows a reduction
in data volumes and thereby reduces storage overhead.

Several cloud data integrity auditing protocols have been proposed
in the last few years. In these protocols, the basic system model
describes the various entities and their participation in the system, and
the threat model highlights threats to an owner’s data.

A. System Model: Private and Public Auditing
Several schemes are based on a private auditing system, which

means that the data owner who audits the integrity of his data. In this
type of auditing system, there are just two entities; the data owner and
the cloud storage service (CSS):
• Data owner: the proprietor of the data; he is dependent on the cloud

service provider for the proper maintenance of the data.
• Cloud Storage Server (CSS): the cloud service provider, who

provides space to store an owner’s data.
Fig. 1 shows a private auditing system. This system model provides

the data owner with authority only to interact with the CSS to audit

Efficient Method Based on Blockchain Ensuring Data
Integrity Auditing with Deduplication in Cloud
Mohamed El Ghazouani1, My Ahmed El Kiram1, Latifa Er-Rajy1, Yassine El Khanboubi2

1 Cadi Ayyad University, Marrakesh (Morocco)
2 Hassan II University, Casablanca (Morocco)

Received 30 April 2020 | Accepted 20 July 2020 | Published 6 August 2020

Keywords

Auditing, Blockchain,
Cloud Computing,
Deduplication, Integrity.

Abstract

With the rapid development of cloud storage, more and more cloud clients can store and access their data
anytime, from anywhere and using any device. Data deduplication may be considered an excellent choice
to ensure data storage efficiency. Although cloud technology offers many advantages for storage service, it
also introduces security challenges, especially with regards to data integrity, which is one of the most critical
elements in any system. A data owner should thus enable data integrity auditing mechanisms. Much research
has recently been undertaken to deal with these issues. In this paper, we propose a novel blockchain-based
method, which can preserve cloud data integrity checking with data deduplication. In our method, a mediator
performs data deduplication on the client side, which permits a reduction in the amount of outsourced data and a
decrease in the computation time and the bandwidth used between the enterprise and the cloud service provider.
This method supports private and public auditability. Our method also ensures the confidentiality of a client's
data against auditors during the auditing process.

DOI: 10.9781/ijimai.2020.08.001

- 33 -

Special Issue on Artificial Intelligence and Blockchain

data integrity and conduct data structure operations on outsourced data,
whilst the readers only have the authority to read data.

Data Owner
(Writer)

Storing data

Reader 1 Reader 2

Cloud Storage
Server (CSS)

Reader 3

Auditing Data Integrity

Fig. 1. Basic private auditing system.

Public auditing allows a third party to audit data integrity rather
than the data owner. There are three entities in this type of system:
the data owner, cloud storage server and a third party auditor (TPA).
The TPA has the ability to access the services afforded by the CSS,
and therefore, the data owner requests them to check the integrity of
their data.

Fig. 2 shows a public auditing system. This system model provides
authority only to a TPA to interact with the CSS to audit data integrity.
The TPA can significantly alleviate the auditing costs of users.

Data Owner
Third Party Auditor

(TPA)

Cloud Storage
Server (CSS)

1.
St

or
e d

at
a

2. Auditing request

5. Auditing report

4. Proof3. Challenge

Fig. 2. Basic public auditing system.

B. Threat Models
A data owner assumes that a TPA is a reliable and honest entity

that will verify the integrity of their data, but the TPA may be curious
about that data. The TPA could thus be a threat for the data owner. To
ensure the correct storage of the owner’s data with the CSS, a privacy
protection mechanism, which guarantees a TPA cannot access the
owner’s data, will thus be necessary.

A CSP also cannot be fully trusted; it can pose a threat to an owner’s
data. In order to save space, a CSP may remove data that is rarely
accessed without any notification to the data owner. The outsourced
data may be tampered with or even re-outsourced without notice by
malicious a CSP. A CSP can also apply the wrong changes to an owner’s
data owing to system failure, management errors or other reasons, and
hide these mistakes to protect their image. Undiscovered strangers may
also be able to intrude on the cloud server and contaminate or erase an
owner’s data. When data is stored on a CSS and to respond to a TPA’s
query, CSS can use an authentic pair of data blocks as a substitute for
the queried data blocks just to pass out the audit. The CSS can also
retrieve the previously stored results of data that has been challenged
simply to generate proof of data possession rather than to query the
owner’s data.

C. Our Method Goals
Motivated by data integrity and deduplication, we propose a new

method for storage and auditing in cloud computing, based on the
blockchain data structure. The proposed method achieves the following
functions:
• Confidentiality: ensures the confidentiality of the owner’s data

against the TPA during the auditing process.
• Batch auditing: ensures that a mediator or TPA (depending on the

auditing type) performs multiple auditing tasks, in a simultaneously
way, received from different users.

• Client-side deduplication (storage efficiency): allows the mediator
to eliminate duplicated files and file-blocks before sending the data
to the cloud.

• Private auditing: allows only the mediator to verify the correctness
of the data stored in the cloud.

• Public auditing: allows the TPA to check the correctness of the
data stored in the cloud.

• Data integrity: ensures that the CSP cannot cheat and pass the
auditing process without having stored the data intact.

• Lightweight: provides the model with low communication and
computational overheads.
In this paper, we propose a new method that ensures both efficient

storage based on data deduplication on the client side, and preserves
data integrity auditing using blockchain technology in a cloud
computing environment. The structure of this paper as follows: Section
II outlines the various related works. Section III presents the different
concepts used in our proposed method. Section IV provides a detailed
description of our proposed method. Section V includes security
analysis and performance evaluation. Finally, a conclusion is presented
in Section VI.

II. Related Work

Many auditing protocols have been established to ensure the
correctness of data stored in the cloud. Ateniese et al. [2] proposed a
provable data possession (PDP) scheme. In this model, the third party
auditor was allowed to statically check the correctness of the outsourced
data without retrieving the data. The main goal of this model is to check
that the server has the original data. Another improved version of this
protocol is the E-PDP [3], which is 185 times faster compared to the
first protocol. Proof of retrievability (POR) is another variation of PDP,
proposed by Juels and Kaliski[4]. The main drawback of the above
protocols is that they do not allow dynamic data auditing.

Erway et al. [5] proposed the concept of dynamic provable data
possession (DPDP). According to this scheme, a data owner is allowed
to modify the stored data. The main drawback of this scheme is that
it cannot support public auditing. Wang et al. [6] resolved the above
two problems by applying a Merkle Hash Tree (MHT) and presenting
a public and dynamic auditing scheme, however, this scheme involves
more computational costs during the updating and auditing phases.

Liu et al. [7] expanded MHT to rank-based MHT (R-MHT)
with efficient verifiable fine-grained updates. Zhang and Blanton
[8] improved the MHT scheme to include a balanced update tree. To
minimize computation and communication costs, Zhu et al. [9] presented
a new auditing scheme known as index-hash table-based public auditing
(IHT-PA), however, it is inefficient for dynamic updating operations.
Tian et al. [10] introduced a new scheme based on a dynamic hash table
(DHT), which supports public and dynamic auditing. This scheme
achieves better performance in the updating phases. Tang and Zhang
[11] proposed a verifiable data possession (PVDP), which allows both
private and public verifiability simultaneously, to check the integrity of

- 34 -

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 6, Nº 3

client files stored on a cloud server without downloading all those files.
Li, Tan and Jia [12] proposed a simple efficient auditing scheme for
checking the integrity of data stored in the cloud. This scheme supports
dynamic operations and batch auditing.

Yu et al. [13] proposed an identity-based auditing scheme for
checking the integrity of cloud data, but Xu et al. revealed that this
scheme is vulnerable to data recovery attack. They thus presented a
secure and efficient identity-based public auditing scheme using the RSA
algorithm for cloud storage [14]. Lee et al. [15] presented a new data
integrity check scheme for remotely acquired and stored stream data.

Yuan and Yu [16] proposed a public and constant cost storage
integrity auditing scheme with secure deduplication (PCAD). Zhang
et al. [17] introduced a fast asymmetric extremum content-defined
chunking algorithm for data deduplication in backup storage systems.
Gaetani et al. [18] proposed a blockchain-based database to ensure
data integrity in cloud computing environments. El Khanboubi and
Hanoune [19] proposed a new scheme exploiting blockchains to
improve data upload and storage in the cloud.

III. Concepts Used in our Proposed Method

In our proposed method, we introduce the use of five concepts.
Blockchain [20] is able to effectively ensure the integrity and
authenticity of the exchanged data, and especially auditability by
providing a private layer where cloud data is treated and stored in
less time. The security of blockchain technology is enforced in a
distributed and public way rather than relying on a central party to
do so, as is the case for other databases. The blockchain has appeared
as a fascinating technology which offers compelling and imperious
properties about data integrity. A Merkle Hash Tree [21] is a binary
tree that represents the data structure used in blockchain technology.
A Third Party Auditor has the ability to check the data possession of
the Cloud. The data deduplication technique eliminates redundant data
and stores just one copy of each file or file-blocks (chunks) in order to
minimize both network traffic and storage space. A mediator performs
data deduplication to eliminate duplicated files and file-blocks.

A. Third-Party Auditor
A TPA, who has considerable computation and communication

ability, is delegated by the cloud user to check the data possessed by
the cloud. TPA is a semi-trusted entity with the expertise and ability
to check the correctness of data on behalf of the data owner. The data
owner, who employs the TPA to verify the integrity of their data, is
alleviated from the burden of expensive auditing operations. Although
the data owner has confidence in the TPA’s data checking, they can be
also a threat to the data owner. One of the most important issues in the
data audit process is thus preventing data leakage and preserving the
privacy of data.

B. Deduplication Technique
In this paper, we explore the technique of deduplication in the server

where many thin clients are connected. For instance, many users from
an enterprise-x may intend to outsource a large quantity of data to the
cloud and many of these files or file-blocks are duplicates. It is therefore
necessary to find and remove duplication within the data. Thus, we
decided to use a mediator with the ability to manage client-side data
deduplication. By transferring only a single copy of duplicate data, a
deduplication system optimizes storage and bandwidth efficiency in
cloud storage servers. Accordingly, client-side deduplication implies
low communication and computation costs between the client and
the CSP, and saves storage space. A file can be divided into many
file-blocks (chunks) that can be part of many files. Chunking is an
essential step achieving data deduplication, which permits a reduction

in the storage space and alleviates the outgoing network traffic when
uploading data to the cloud storage server.

Chunking is a challenging technique in the deduplication process,
but it can be performed within several algorithms [22]: File-Level
Chunking (FLC), Fixed-Size Chunking (FSC), Variable-Size Chunking
(VSC), Content-Aware Chunking (CAC). In our proposal, we use a
CAC algorithm, where the file is divided based on its content which
improves the file-blocks reuse probability, unlike an FSC that splits a
file into equally sized file-blocks which reduces the probability of using
the same file-block in other files. Consequently, the CAC algorithm
outperforms the FSC algorithm in terms of deduplication efficiency
and has been extensively used in various storage systems.

C. Mediator
To reduce computational operations among users and to perform

data deduplication using a central node in enterprise-x, we decided to
use the concept of a mediator. A mediator manages the deduplication
process internally in the server, so there is no security issue. The
mediator has the ability to manage the storage of a user’s data, and
even to check the integrity of this data. The mediator has two tasks to
perform:
• A client side deduplication to eliminate duplicated files and file-

blocks before storing the data in the cloud. Accordingly, the
quantity of stored data and the bandwidth used between the client
and the Cloud server are both reduced.

• Check the integrity of a user’s data stored in the cloud in the case of
private auditing, where TPA is absent. It can be seen as an internal
auditor, with the proviso that the mediator should have considerable
expertise and ability to verify the correctness of the stored data.

IV. Description of the Proposed Method

Blockchain technology brings us many reliable and convenient
services, such as preserving the integrity of data, however there are
several security issues and challenges behind this innovative technique
that should be overcome [23]. In our proposed method, each block
in the blockchain database will only store the Merkle root, and the
information of the file and the hash of the previous block. The files are
not stored in the blockchain, rather they are stored in the CSP servers.

The mediator is trusted and allowed to see the content of the files
and their hashes. It computes the file-blocks’ hashes and the Merkle
root, and then it compares them with a local database of Merkle
roots and hashes stored in the previous operations in order to identify
duplicated files/file-blocks. The TPA is semi-trusted and allowed to
verify the integrity of the files, but it is prohibited from access to the
content of the files. The CSP is semi-trusted and allowed to see the
content of data, but it is obliged to follow the steps needed for the
auditing process.

Each file gives rise to a Merkle hash tree. The Merkle hash tree
allows a digest to be made of all the file-blocks linked to that block.
File-blocks are not stored in the Merkle Tree, rather their hashes are
stored in each node. If a small bit is changed in any file-block, there
will certainly be a significant difference between the bit patterns of
the resulting Merkle roots. Each Merkle root, generated from the
hashes of file-blocks (leaf nodes) corresponding to a file, is stored in
a new block in the blockchain with other information describing the
file. The Merkle root is fundamental because it relies on the hashes
of all underlying file-blocks. It therefore allows efficient and secure
verification of data content.

In our proposed method, we use blockchain technology, where
information for a file is stored in a block. Each block contains the user
ID (Uid), the file ID (Fid), version number ν, timestamp t, the number

- 35 -

Special Issue on Artificial Intelligence and Blockchain

of file-blocks N, the Merkle root n0 and the hash of the previous block
in the chain. One block B in the blockchain may correspond to the file
F of the user U. The following block C may correspond to file L of the
user J. However, the entire tree and the file-blocks, of a file, stored in
the CSP database may correspond to one or more blocks in the chain,
and thus to one or more users. The lengths in bytes of the different
records in a block are: Uid 8, Fid 8, v 4, t 4, N 8, n0 32, HashPrev 32.
Fig. 3 displays the information stored in each block of the blockchain.

Fig. 3. Blockchain structure used in our proposal.

We decided to use MD5 hashing algorithm that generates a unique
32 chars string. Although the SHA-3 algorithms are more secure as
compared to MD5, this latter is better in terms of speed and the hash
string length produced is smaller than any other hashing algorithm.
According to Yu Sasaki and Kazumaro Aoki [24], even though there
have been many powerful collision attacks on MD5, the preimage
resistance of MD5 has not been broken yet. Nevertheless, any other
hashing algorithm may be applicable.

A. System Model for Private Auditing
In this mode of auditing, the mediator should have the ability to

perform the auditing process.

Fig. 4. System model for private auditing.

According to some statistics, more than 75% of the outsourced data
in the cloud is not unique [25], and so the manipulation of deduplication
could greatly reduce storage cost and the required space to store large
data. The use of this technique in this system model thus ensures the
maximum use of available storage space through the elimination of
redundant data, and the amount of outsourced data and the bandwidth
used between the enterprise and the CSP are also both reduced.

The main advantage of this system model is that the audit tasks are
performed by an internal entity, which is the mediator, which implies
low communication and computation costs. The mediator could
therefore perform multiple auditing tasks simultaneously, and received
from different users.

B. System Model for Public Auditing
In this mode of auditing, a third party auditor checks the integrity

of the data stored in the cloud.
The auditing tasks are delegated to a competent external entity, the

TPA, which implies more communication and computation costs. The
auditing request could be sent directly by users to the TPA. We also use,
in this system model, a technique of deduplication that reduces both
storage cost and the bandwidth used between the enterprise and the
CSP. A TPA could also perform multiple auditing tasks simultaneously,
as received from different users.

Fig. 5. System model for public auditing.

C. Storage Phase
As shown in our model (Fig. 4 and Fig. 5), when users intend to

store their files on the cloud server, the mediator checks the existence
of the entirety of each file or some of its file-blocks in the cloud storage
server. The mediator therefore initiates data information: Uid , Fid , v, t, N
corresponding to the file. Afterward, the mediator divides the file into
N file-blocks using a CAC algorithm (fb0, fb1, … fbN−1) where N=2ͩ and
d is the depth of the Merkle tree, then he calculates its hashes h(fbi)
with a secure hash function where 0 ≤ i ≤ N−1, in order to compute
the Merkle root n0. Thereafter, he computes the Merkle root n0 (for
i in N−2....0: ni = h(n2i+1‖n2i+2)) of the file. After that, the mediator
compares it with a local database of Merkle roots stored in the previous
storage operations in order to identify duplicated files.

1. Case 1: The File Has Never Been Stored
If the generated Merkle root n0 does not resemble any roots, the

mediator keeps the root locally in the Merkle roots database with the
Uid of the user in order to use them in the next storage operations.
After that, the mediator performs file-blocks level deduplication by
comparing the generated hashes with those located in the hash database
(comparing the file-blocks’ hashes will take less time than comparing
file-blocks). There are two cases:

a) Case 1.1: Storing All File-Blocks
If the mediator did not find any identical file-block hashes, he

stores the hashes of all file-blocks in the hash database, then outsources
all file-blocks to the cloud storage server. A new block is then created
in the blockchain, this block contains the file’s information and the
Merkle root that correspond to the file. After that, the CSP stores the
entire tree with the file-blocks corresponding to that file. The concerned
user thereafter maintains a pointer to the block that corresponds to his
file. So that, each user preserves a file ID list; this list contains pointers,
each pointer points directly to the particular block in the blockchain
corresponding to that file.

b) Case 1.2: Storing Some File-Blocks
If the mediator finds some identical hashes, he ignores them and

stores the other file-blocks hashes (unduplicated hashes) in the hash
database. After that, he stores the unduplicated file-blocks in the cloud
storage server. A new block is then created in the blockchain, this block
contains the file’s information and the Merkle root that correspond to
the file. After that, the CSP stores the entire tree with the uploaded
file-blocks corresponding to that file. Hereafter, the concerned user
maintains a pointer to the block that corresponds to his file. In this
case, the mediator does not need to upload all the file-blocks because
some of them have been stored previously by the same or other users,
so, the mediator ignores the duplicated file-blocks, which reduces disk
utilization.

- 36 -

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 6, Nº 3

2. Case 2: The File Has Already Been Stored
a) Case 2.1: The Same User Tries to Store the Same File

If the generated Merkle root n0 resembles a root which has already
been registered in the Merkle roots database, and if the current Uid
already exists in the user’s ID list related to this Merkle root, the
mediator informs the file owner that he has already stored this file
in a previous storage operation. In this case, the mediator does not
need to send the file to the CSP to be stored, which reduces the disk’s
utilization.

b) Case 2.2: Another User Tries to Store the Same File
If the generated Merkle root n0 resembles a root which has already

been registered in the Merkle roots database, and if the current Uid does
not exist in the users ID list related to this root, the mediator adds the
new Uid to the user’s ID list corresponding to this Merkle root, and then
stores n0 in a new block in the blockchain with the file information.
In this case, the mediator does not need to send the file to the CSP
to be stored, because it has been stored by another user in a previous
storage operation. Finally, the user maintains a pointer to the block that
corresponds to his file.

D. Execution Flow for Storage and Auditing Files
The execution flow for the storage and auditing of files is shown

in the Fig. 6.

E. Auditing Phase
For the auditing process, we follow the technique of verification

used in [26]. So to verify the integrity of a file:
• The mediator/TPA (depending on auditing type) computes the

generator seed r = hP(n0) where leaves are divided into P chunks.
• After that, the mediator/TPA derives leaf numbers in each P chunk

as: for j in 0 ... P – 1: lj = G (r, j ) with G some cryptographic pseudo-
random number generator (PRNG).

• Then, the mediator/TPA sends the leaf numbers {lj} to the CSP.
• The CSP provides the appropriate sibling information to the

mediator/TPA, which allows the mediator/TPA to compute the new
Merkle root n'0.

• The mediator/TPA verifies whether n0 = n'0 or not.
• The mediator/TPA then calculates the new generator seed

r'= hP(n'0).
• The mediator/TPA deduces the leaf numbers l'j = G (r', j ).
• Hereupon, the mediator/TPA checks whether l'j = lj for each j in 0...

P − 1, and if they match, then the file is verified.
• Finally, the mediator/TPA informs the cloud client of the results.

Fig. 6. Execution flow for storage and auditing of files.

- 37 -

Special Issue on Artificial Intelligence and Blockchain

V. Security Analysis and Performance Evaluation

Several data integrity auditing schemes have implemented data
deduplication in the cloud server side. This way of working has high
computational costs. Other schemes follow a fixed-size chunks method
which is simple and extremely fast, but this approach suffers from low
deduplication efficiency. In our method, deduplication is performed on
the client side by the mediator and using a content-aware chunking
algorithm. Instead of saving three or four copies of the same file/chunk
in the cloud, deduplication allows the elimination of all the redundant
data and stores only one copy of the file/chunk that belongs to one
or multiple cloud users. This technique decreases communication,
computation and storage costs.

Note that in our proposal, we indicate the use of two types of
auditing, private auditing and public auditing, to verify the correctness
of the data stored in the cloud. It depends on the need of the enterprise;
if the mediator has the ability to verify the accuracy of the data, in
this case, he manipulates a private auditing, or he prefers the use of an
external auditor to verify their data (public auditing).

Owing to the technique that we used during the auditing process,
the TPA will have no idea about the owner’s data, which implies that
the confidentiality of the data is ensured against auditors.

The mediator or TPA (depending on the auditing type) could
perform multiple auditing tasks simultaneously, received from different
users. In a case where the mediator/TPA receives several auditing
requests for the same file from different users, it may be ineffective to
handle them as individual tasks rather than to batch them together and
perform only one audit task by interacting with the CSP to check the
data integrity. After that, it replies all concerned users by the auditing
result. The deduplication technique is thus not only efficient for data
storage because it reduces storage cost and the required space to store a
large data, but it is also efficient for the auditing process where multiple
users want to verify the same file while reducing the communication
and computation cost between auditor and CSP.

The use of blockchain in our proposal is mainly applicable in
scenarios where the data history is very important. This method is
practical for real application scenarios, such as in the justice domain
where judgments must be stored and must not be modified. It can also
be useful for real estate agents, to register property titles for example,
where it is forbidden to modify this type of data. It could be also used
for storing medical records or even collecting taxes.

To demonstrate that our proposed method is efficient, we
performed experiments through an application developed using Java
and PHP languages, on a computer with an Ubuntu 17 OS running on
an Intel CoreTM i3 CPU with a 2.27 GHz clock and 4 GB RAM. The
remote storage was implemented using MySQL. The size of each file
is increased by 200 MB. We used large files to show the usefulness of
thededuplication technique. Fig. 7 shows a plot of computation time in
seconds against input size in MB.

We can see that the computation time for an unduplicated file is
greater than the computation time for a duplicated file, which shows
that the computation time and the bandwidth, used between the
enterprise and the CSP, are both reduced thanks to the deduplication
technique.

Several systems perform a public data integrity auditing where the
responsibility of data integrity verification is delegated to a third party
auditor as in [2]-[4],[6]-[10],[14],[15]. Other schemes manipulate
a private auditing where the data owner checks the integrity of the
externalized data as in [5]. However, in some cases, it is not practically
feasible for the data owner to verify the data integrity all the time.
Hence, our approach supports both public and private auditability
property.

Fig. 7. Comparison of the time computed in storage operations for duplicated
and unduplicated files of different sizes.

Some researches mention the use of data deduplication technique to
improve storage systems as in [16], [17]. Besides, the decentralization
and security characteristics of blockchain technology have attracted
many researchers to propose various schemes exploiting blockchain-
based databases to ensure data integrity and improve data storage
in cloud computing environments as in [18], [19]. The value-added
of our method over these methods is that our proposal permits both
data deduplication, which guarantees the storage efficiency, and data
integrity auditing that verifies the correctness of the outsourced data.

In our system, the deduplication is performed at the file level or
block level on the client side. Hashes of files or blocks are computed
and stored, and if the hash for any new file or block is found to be
present in the stored hashes, then the copy is removed, which permits
to eliminate duplicated files and file-blocks before storing the data in
the cloud. Accordingly, the quantity of stored data and the bandwidth
used between the client and the Cloud server are both reduced. The
main benefit of manipulating deduplication in our system is that
storage efficiency is increased and network efficiency is enhanced.

As with any system, it is necessary to have a fault tolerance
property that enables the system to continue its operation properly in
the event of the failure of any of its components.

VI. Conclusions

In this paper, we demonstrated the feasibility of using deduplication
and blockchain technologies to manage storage and auditing processes
for cloud data.

We proposed the concept of the mediator, who performs client-
side data deduplication to identify and remove duplicated files and
file-blocks using a content-aware chunking algorithm, which reduces
the computation costs on the user’s side, communication costs in the
channel and storage costs in CSP.

Our method relies on blockchain to perform the auditing process in
a transparent and lightweight way. The main goal of using blockchain is
that TPA can check the integrity of the outsourced data without gaining
any knowledge of the user’s data. Consequently, we can consider the
use of blockchain as a new model for trust.

References

[1] P. Mell and T. Grance, “The NIST Definition of Cloud Computing
Recommendations of the National Institute of Standards and Technology,”
Nist Spec. Publ., vol. 145, p. 7, 2011. https://doi.org/10.1136/
emj.2010.096966.

[2] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson
et al., “Provable data possession at untrusted stores,” Proc. 14th ACM
Conf. Comput. Commun. Secur. - CCS ’07, p. 598, 2007. https://doi.
org/10.1145/1315245.1315318.

- 38 -

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 6, Nº 3

[3] G. Ateniese, R. Burns, R. Curtmola, J. Herring, O. Khan, L. Kissner
et al., “Remote data checking using provable data possession,” ACM
Trans. Inf. Syst. Secur., vol. 14, no. 1, pp. 1–34, 2011. https://doi.
org/10.1145/1952982.1952994.

[4] A. . Juels and B. S. Kaliski Jr., “Pors: Proofs of retrievability for large
files,” Proc. ACM Conf. Comput. Commun. Secur., pp. 584–597, 2007.
https://doi.org/10.1145/1315245.1315317.

[5] C. C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia, “Dynamic
Provable Data Possession,” ACM Trans. Inf. Syst. Secur., vol. 17, no. 4,
pp. 1–29, 2015. https://doi.org/10.1145/2699909.

[6] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, “Enabling public auditability
and data dynamics for storage security in cloud computing,” IEEE Trans.
Parallel Distrib. Syst., vol. 22, no. 5, pp. 847–859, 2011. https://doi.
org/10.1109/TPDS.2010.183.

[7] L. Chang, J. Chen, L. T. Yang, X. Zhang, C. Yang, R. Ranjan et al.,
“Authorized public auditing of dynamic big data storage on cloud with
efficient verifiable fine-grained updates,” IEEE Trans. Parallel Distrib.
Syst., vol. 25, no. 9, pp. 2234–2244, 2014. https://doi.org/10.1109/
TPDS.2013.191.

[8] Y. Zhang and M. Blanton, “Efficient Dynamic Provable Possession of
Remote Data via Update Trees,” ACM Trans. Storage, vol. 12, no. 2, pp.
1–45, 2016. https://doi.org/10.1145/2747877.

[9] Y. Zhu, G. J. Ahn, H. Hu, S. S. Yau, H. G. An, and C. J. Hu, “Dynamic audit
services for outsourced storages in clouds,” IEEE Trans. Serv. Comput.,
vol. 6, no. 2, pp. 227–238, 2013. https://doi.org/10.1109/TSC.2011.51.

[10] T. Hui, Y. Chen, C. Chen Chang, H. Jiang, Y. Huang, Y. Chen et al.,
“Dynamic-Hash-Table Based Public Auditing for Secure Cloud Storage,”
IEEE Trans. Serv. Comput., vol. 10, no. 5, pp. 701–714, 2017. https://doi.
org/10.1109/TSC.2015.2512589.

[11] C. ming Tang and X. jun Zhang, “A new publicly verifiable data possession
on remote storage,” J. Supercomput., vol. 75, pp. 77–91, 2019. https://doi.
org/10.1007/s11227-015-1556-z.

[12] A. Li, S. Tan, and Y. Jia, “A method for achieving provable data integrity
in cloud computing,” J. Supercomput., vol. 75, pp. 92–108, 2019. https://
doi.org/10.1007/s11227-015-1598-2.

[13] Y. Yong, L. Xue, M. H. Au, W. Susilo, J. Ni, Y. Zhang et al., “Cloud
data integrity checking with an identity-based auditing mechanism from
RSA,” Futur. Gener. Comput. Syst., vol. 62, pp. 85–91, 2016. https://doi.
org/10.1016/j.future.2016.02.003.

[14] Z. Xu, L. Wu, M. K. Khan, K. K. R. Choo, and D. He, “A secure and
efficient public auditing scheme using RSA algorithm for cloud storage,”
J. Supercomput., vol. 73, no. 12, pp. 5285–5309, 2017. https://doi.
org/10.1007/s11227-017-2085-8.

[15] K. M. Lee, K. M. Lee, and S. H. Lee, “Remote data integrity check for
remotely acquired and stored stream data,” J. Supercomput., vol. 74, no. 3,
pp. 1182–1201, 2018. https://doi.org/10.1007/s11227-017-2117-4.

[16] J. Yuan and S. Yu, “Secure and constant cost public cloud storage auditing
with deduplication,” in 2013 IEEE Conference on Communications and
Network Security, CNS 2013, 2013, pp. 145–153. https://doi.org/10.1109/
CNS.2013.6682702.

[17] Z. Yucheng, D. Feng, H. Jiang, W. Xia, M. Fu, F. Huang et al., “A Fast
Asymmetric Extremum Content Defined Chunking Algorithm for Data
Deduplication in Backup Storage Systems,” IEEE Trans. Comput., vol.
66, no. 2, pp. 199–211, 2017. https://doi.org/10.1109/TC.2016.2595565.

[18] E. Gaetani, L. Aniello, R. Baldoni, F. Lombardi, A. Margheri, and V.
Sassone, “Blockchain-based database to ensure data integrity in cloud
computing environments,” CEUR Workshop Proc., vol. 1816, pp. 146–
155, 2017.

[19] Y. El Khanboubi and M. Hanoune, “Exploiting Blockchains to improve
Data Upload and Storage in the Cloud,” vol. 11, no. 3, pp. 357–364, 2019.

[20] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” Www.
Bitcoin.Org, p. 9, 2008. https://doi.org/10.1007/s10838-008-9062-0.

[21] R. C. Merkle, “I NFORMAT I ON SYSTEMS LABORATORY By,” 1979.
[22] Siva Sankar K. Venish A., “Study of Chunking Algorithm in Data

Deduplication,” Proc. Int. Conf. Soft Comput. Syst. Adv. Intell. Syst.
Comput., vol. 398, pp. 319–329, 2016. https://doi.org/10.1007/978-81-
322-2674-1.

[23] I. C. Lin and T. C. Liao, “A survey of blockchain security issues and
challenges,” Int. J. Netw. Secur., vol. 19, no. 5, pp. 653–659, 2017. https://
doi.org/10.6633/IJNS.201709.19(5).01.

[24] Sasaki Y., Aoki K. (2009) “Finding Preimages in Full MD5 Faster
Than Exhaustive Search” In: Joux A. (eds) Advances in Cryptology
- EUROCRYPT 2009. Lecture Notes in Computer Science, vol 5479.
Springer, Berlin, Heidelberg.

[25] J. Gantz and D. Reinsel, “The Digital Universe Decade – Are You Ready?,”
Idc, vol. 2009, no. May, p. 16, 2010.

[26] F. Coelho, “An (almost) constant-effort solution-verification proof-of-
work protocol based on Merkle trees,” Lect. Notes Comput. Sci. (including
Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 5023
LNCS, pp. 80–93, 2008. https://doi.org/10.1007/978-3-540-68164-9_6.

Mohamed El Ghazouani

He is a Doctor at the Computer Science Department of Cadi
Ayyad University in Marrakesh, Morocco. He received his
Master’s degree in Information Systems Engineering from
the same university in 2015. His research interests are
Computer Science, Cloud Computing Security, Big Data
and Blockchains.

My Ahmed El Kiram

He is a full Professor of Computer Science at the Department
of Computer Science, Faculty of Science Semlalia, Cadi
Ayyad University, Morocco. He writes and presents widely
on issues of IT Security, Cryptographic Systems and Cloud
Computing. He is the author of numerous publications
related to his research interests.

Latifa Er-Rajy

She is a Doctor at the Computer Science Department of Cadi
Ayyad University in Marrakesh, Morocco. Her research
interests are Android Applications, Mobile security and
Security in Cloud Computing. She is the author of several
publications related to his research interests.

Yassine El Khanboubi

Hereceived his Master’s degree in Information Systems
Engineering from Cadi Ayyad University Marrakesh,
Morocco. He is currently a PhD candidate at the Hassan
II university. His research interests include Computer
Network Security, Mobile and Wireless Communication
Security.

