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I. Introduction

Classical problem like semantic analysis continues to grab the 
attention of researchers since it is important to different fields 

of study. Semantic similarity has gained importance in fields like 
information retrieval [1], bio-medical domains [2], creating knowledge 
graphs [3], sentence clustering [4], cross-lingual text similarity [5]. 
Primitive semantic similarity measures are based on the distance 
between the concepts. Measures like Jaccard distance [6], Euclidean 
distance [7], and dice coefficient [8] are examples of it. These measures 
are not suitable for natural language processing activities as there is 
no prior knowledge taken into account for assessing the similarity. 
Researchers use the measures which consider background knowledge 
and the relation between the concepts to assess semantic similarity. 

Knowledge-based measures, which are one of the kinds of semantic 
similarity measures use relations between the concepts. State-of-the-
art knowledge-based measures use a lexical database like Wordnet [9] 
to measure semantic similarity. Wordnet is a structured organization 
of terms, referred to as synonym sets or concepts. Knowledge-based 
measures are formulated based on distance, depth or information 
content of concepts. Measures proposed by Rada [14], Wu and Palmer 
[17], Leacock and Chodorow [11], Li [12] specify different ideas of 
using the distance between the concepts to calculate the semantic 
similarity. The measure proposed by Li [12] uses distance and depth 
between the concepts as metrics to evaluate the similarity between the 
concepts. Resnik [15] calculates similarity by using the information 
content of the lowest common subsumer between the concepts. Lin 

[13], Jiang and Conrath [10] also use the information content between 
the concepts. Zhu [16] proposed a hybrid measure by combining 
the Resnik measure [15] and path measure [14]. Zhu [16] extracted 
semantic similarity by using knowledge-based measures on knowledge 
graphs like  YAGO  [38]. These measures do not discuss vector 
representations. These measures are not substantially strong to perform 
present-day NLP activities. Hence, the measures which address the 
distributional semantics of words are required in the current era.  

In recent years, distributional semantic representations of words 
gained popular attention. Distributional representations of words 
well known as word embeddings set the state-of-art systems for core 
natural language processing activities (NLP).  Word embeddings [18], 
[19], represent words or phrases with vectors to extract relationships 
between them. Word embedding techniques improved the efficiency of 
various NLP tasks, like word similarity [20],  sentiment analysis [21], 
[22], text classification [23], question answering tasks [24].

Even though word embedding techniques improved the accuracy 
of core NLP tasks, these approaches fail to address the polysemy 
problems [25]. Research related to polysemy, dealing context, and 
senses of words is needed in the present scenario.  Based on the 
word’s sense and context,  recent research is trying to improve the 
semantic representations. Word embedding techniques generally 
neglect to explore lexical structures with valuable semantic relations 
from lexical databases like Wordnet [9]. To improve the efficiency of 
word embeddings, word vectors should consider different contexts 
and multiple senses of words. Multi-sense embeddings require a 
well-formed semantic network to extract multiple senses of the word, 
alongside word vector representations. 

Semantic similarity requires the knowledge of concepts that 
are obtained from background sources. Well defined structures 
like Wordnet are limited, yet this knowledge cannot be ignored. 
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Hence, sources like Wikipedia and Wordnet can be combined to 
obtain the context. Wordnet establishes the relationship between the 
concepts using hierarchical relations. Each concept in Wordnet has 
synonym sets, which help to predict the multiple senses of words. 
Hence, this paper develops semantic vector representations of 
words considering their context, sense, definitions, and hypernym 
path using the lexical structure of Wordnet and word embedding 
techniques like  Word2vec models.

The following are the contributions of this paper:
• This paper uses the rich semantic structure of Wordnet to generate 

the senses and definitions of each word.
• Regarding each word, suitable contexts are generated from a large 

source of Wikipedia text.
• Multiple sense based word embeddings are generated. 
• This paper aims at developing parts-of-speech related synonym set 

embeddings to carry out word similarity tasks. 
• Detailed comparison and analysis of state-of-art techniques are 

mentioned.
• Nine benchmark datasets are compared to portray the significance 

of the proposed approach.
The paper is organized as follows. Section II gives the related 

work, which covers the existing word embedding techniques. Section 
III gives the proposed approach and covers the senses extracted from 
Wordnet, context from Wikipedia and word vector representations. 
In section IV, experimentation details of existing measures and the 
proposed measure are mentioned, followed by discussion in section 
V.  Section VI gives the conclusion of the work done and recommends 
some suggestions for future work.

II. Related Work

This section discusses the existing distributed representations of 
words. Distributed representations of words proposed by Mikolov et 
al, [18], [19] become popular among NLP related tasks. Working with 
contexts has its roots with the distributional hypothesis proposed by 
Harris [26]. After that, the bag-of-words [27] approach also discussed 
the distributed representations of words, but these approaches suffer 
from drawbacks like data sparsity, not maintaining word order, and 
dimensionality related issues. Approaches based on language prediction 
also exist in the literature of the NLP [28]. The language models are 
transformed with continuous bag-of-words and skip-gram models. 

Mikolov et al, [18], [19] proposed Word2vec with continuous skip-
gram and continuous bag-of-words (CBOW) which portrayed the 
importance of word embeddings. This approach gained importance 
due to its efficient log-linear neural network language model, low-
dimensionality vector representations. Skip-gram and CBOW 
models produce vector representations of words.  Word embedding 
representations like  SENNA [29], GloVe [30], and fastText [31] exist in 
the literature. All these are single vector representations. These models 
fail to address the polysemy of the words. Word vector representations 
can be enhanced by combining multiple senses of words. Examining 
the sense, context, and definitions of words while deriving word 
embeddings improves the efficiency of the NLP tasks. The proposed 
approach is developed using the Word2vec model to train the corpus 
and later the vectors are used based on context, sense, and definitions 
of each word. 

Researchers after the invention of distributional semantic 
representations of words developed sense embeddings [25], [32], [33], 
[34], [35] to perform NLP tasks like word similarity. Interestingly, 
Li [25] presented the idea of developing separate vectors for each 
sense. The approach mentioned by Iacobacci et al, [32] obtains sense 

embeddings using lexical resource BabelNet [52] for measuring 
semantic similarity. This approach is an effective measure for word 
similarity tasks, yet this can be enhanced by making the model 
understand the context of words.  Chen et al. [33] presented a 
model for word sense representation. This model considers a single 
representation per single sense. This model is considered as the basis 
for the innovation of presenting the word sense disambiguation with 
embedding techniques for similarity tasks. This model does not learn 
the relationships like hypernyms and hyponyms between the concepts 
from Wordnet. The model presented by  Oele et al. [34], combines 
word-sense, context, and word-definition to develop embeddings. This 
approach [34] developed lexeme embeddings for senses using the 
Lesk algorithm [36] and an AutoExtend [37] training procedure. The 
approach mentioned by Ruas et al, [35] disambiguates the text using 
a context window. The authors [35] explain the limitations of single 
vector representations and the advantages of multi-sense embeddings. 
This model [35] derived synonym set based embeddings by integrating 
Wordnet synonym sets and Word2vec model [18] model. 

Word embeddings mechanisms with single vector representations 
present all the senses in a single vector.  There is limited work done 
in this area. Hence, this paper focuses mainly on generating vector 
representations for each sense and the context of words is selected from 
top-n context-rich sentences from Wikipedia. Word embedding models 
capture the taxonomic information of words but fail in capturing 
hyponymy and entailment relations. To understand the relation 
between two words, the word`s synonyms and hyponyms play a crucial 
role. The above mentioned works in the literature [32-35] developed 
multi-sense embeddings but with little attention paid on synonym and 
hypernym relations. This paper projects the importance of the Wordnet 
hierarchy for understanding synonym sets, hypernyms, lowest common 
subsumer of concepts to generate multi-sense embeddings for word 
similarity tasks.

The next section portrays the proposed approach for generating 
multi-sense embeddings based on the word’s synonyms, parts-of-
speech, hypernyms. In the next section, a detailed exploration of 
Wordnet is presented at the start, followed by the explanation of 
working with multi-sense embeddings.

III. Proposed Methodology

In this section, the main idea of multi-sense embeddings using 
Wikipedia data and lexical database Wordnet is discussed. This 
section discusses developing Wikipedia corpus at the start, which is 
used by the proposed algorithm. The methodology presented in this 
section has two main tasks: (i) exploring Wordnet lexical structure (ii) 
using knowledge of synonym sets, hypernyms to produce multi-sense 
embeddings. The last subsection applies the multi-sense embeddings 
developed to perform the word similarity tasks.  

A. Pre-Processing of Wikipedia Articles
The initial process is to transform the Wikipedia articles into 

a corpus and then map the words with synonym sets of Wordnet. 
Initially, the Wikipedia dump is preprocessed to form the corpus. The 
latest Wikipedia dump is around 15.7 GB of size and has 4,677,566 
documents with more than 19,508,987 articles. The articles in the dump 
are in the XML format, which needs to be converted to text format. 
This research converts the Wikipedia dump into text format. Articles 
shorter than 50 words, article name starting with numbers, articles 
which are not standard words are pruned. From the text, punctuation 
and other unknown symbols are removed. The tokens which occurred 
more than ten times in the articles are preserved, and rest is removed 
since it is challenging to obtain their context. After cleaning the entire 
text, more than 2 million unique tokens are formed. 
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Later, these tokens are trained using the Word2vec model. To train 
the model, this paper uses the Word2vec with default hyperparameters. 
CBOW model of Word2vec [18] is the training algorithm, with a window 
size of 15 and vectors of size 300 dimensions (300 d) are the parameter 
specifications to generate embeddings. After this, all the possible senses 
obtained from Wordnet also are assigned vectors from the trained 
Word2Vec model. For each sense of the word, 300 dimensional vectors 
are generated. This paper proposes an efficient and simple training phase 
with minimal hyperparameters to understand the sense embeddings. 
Once this training phase is completed, Wordnet is explored to understand 
to generate all possible senses of a given word.

B. Exploring Wordnet Hierarchy
One of the main relationships that can exist among the concepts in 

Wordnet is synonymy. Wordnet has 117,000 synonym sets (synsets), 
and each of these is linked to one another using conceptual relations. A 
word may have many forms, every form has a distinct synset and these 
are uniquely represented in Wordnet. The relation between the synsets 
is an ancestor-child relation, this kind of relationship is referred to as 
hyponymy or IS-A relation. 

Polysemous words can be used in many senses; the synonym set 
of a concept refers to a particular sense. If two words are similar, then 
they share a common synset in the network. Traditional knowledge-
based measures [11]-[16] handle the polysemy and synonymy of the 
words using the taxonomic structure of the semantic network. These 
measures derive the synonym sets of the words using the hierarchical 
semantic relationships. Any model developed using ontologies for 
deriving semantic similarity should be capable of exploring different 
kinds of relations like hierarchical (IS-A), has-a, hypernyms, etc. The 
hierarchy between the concepts is a significant relationship as it maps 
the category of objects into a taxonomy.

The hierarchical structure of the concepts is provided by taxonomy. 
Each taxonomy concept is represented as a node, and the nodes are 
connected based on hierarchical relations in the network. The edges 
of the concepts represent the semantic relationship. WordNet [12] is 
a semantic network of English words. In this network, each word is 
represented as a synset. The noun network in WordNet was developed 
very richly using hyponymy/hypernymy hierarchy. 

The maximum depth of the noun hierarchy in this network is 16 
nodes. The noun network includes nine types of relations; synonymy 
relation, hyponymy (IS-A) relation, and its inverse hypernymy, and 
six meronymic (PART-OF) relations. Synonymy relations account for 
80 percent of the relations. Hyponymy relation between the words 
articulates IS-A relationship between two words and the inverse 
of this relation is hypernymy. COMPONENT-OF, MEMBER-OF, 
SUBSTANCE-OF and their inverses are meronymic relations.

Fig. 1 shows an example of Wordnet’s “is-a” relation structure. The 
concepts in Wordnet are arranged in the hierarchical structure. From 
Fig. 1, it can be noticed that the root of all concepts is ‘Entity.’ The figure 
shows only a fragment of Wordnet structure. The leaves ‘mammal,’  

‘tree,’ of the tree is under ‘organism.’  The leaf node ‘mammal’ is-a 
‘vertebrate’ and ‘vertebrate,’ is-a ‘chordate.’ The concept ‘chordate,’ 
is-a ‘animal.’ Similarly, ‘carrot’ is-a ‘root,’ and ‘root’ is-a ‘plant-organ,’ 
which is-a ‘plant-part.’ This organized representation in Wordnet helps 
in obtaining various senses of concepts. Fig. 1 represents the basic 
hierarchical cover  of  three concepts ‘tree,’ ‘mammal,’ and ‘carrot.’ 
This figure does not cover the various classifications under the 
concepts like ‘organism’ or under ‘plant.’ Once again, the concept like 
‘mammal’  has various subconcepts like cat, dog etc. All these are well 
organized in the Wordnet.  

Entity

Physical entity

Object

Whole

living_thing

organism

plant animal

vascular_plant

woody_plant

tree

plant_part

plant_organ

root

carrot

natural_object

Chordate

vertebrate

mammal

Fig. 1. Wordnet is-a relation example.

A concept is a synset of Wordnet that exists in the form as ‘concept.
pos.number.’ The first part in the synset represents the concept, pos 
represents the possible parts-of-speech (noun, verb, adjective and 
adverb), and the number indicates the number of applicable parts-of-
speech that exist for the concept. Consider the concept ‘advance,’ the 
possible synsets for the concept is shown in Fig. 2. From Fig. 2, it 
can be noted that the concept ‘advance’ is having a relationship with 
six noun synsets, twelve verb synsets, and two adjective synsets. Each 
synonym set in Fig. 2 is a different sense of the word ‘advance.’

Hypernyms in Wordnet specify the hierarchical structure of a concept 
and from the hypernyms of the two concepts, common ancestors can be 
checked. Checking the path of the hypernyms of two concepts helps in 
recognizing additional senses of word pairs. Hypernyms of two concepts 
‘accentuate’ and ‘highlight’ are shown in Fig. 3. From the figure, it 
can be noticed that the concepts have more common ancestors. The 
length of the hypernym path for the concept ‘accentuate’ is 9, and that 

Synset(’progress.n.03’), Synset(’improvement.n.01’),  Synset(’overture.n.03’),  
Synset(’progress.n.02’), Synset(’advance.n.05’),  Synset(’advance.n.06’), 

Synset(’advance.v.01’), Synset(’advance.v.02’),  Synset(’boost.v.04’),  
Synset(’promote.v.02’), Synset(’advance.v.05’),  Synset(gain.v.05’),
Synset(’progress.v.01’), Synset(’advance.v.08’),  Synset(’promote.v.02’),  
Synset(’advance.v.10’), Synset(’advance.v.11’),  Synset(’advance.v.12’),

Synset(’advance.s.01’), Synset(’advance.s.02’)

Fig. 2.  Possible synonym sets for the concept ‘advance’ obtained from Wordnet.



- 4 -

International Journal of Interactive Multimedia and Artificial Intelligence

of ‘highlight’ is 11. Ancestors of concept ‘accentuate’ are up to level 9, 
the depth of the concept from the root is 9, and that of ‘highlight’ is 11 
from the root. Both concepts have the same root up to level 9. Hence, 
these concepts are more similar. Wordnet provides different modules 
to obtain synonym sets, hypernyms, and other relations between the 
concepts. The proposed approach uses the information of synonym sets 
of a word, hypernym path of the words to generate the appropriate 
synset, hypernym path based sense embeddings for evaluating word 
similarity.  Another important information this paper considers to derive 
multi-sense embeddings while performing the word similarity task is 
least common subsumer (LCS). Least common subsumer (LCS) is the 
least possible ancestor of the two concepts in the taxonomy. With the 
concepts represented in Fig. 1, it is not possible to understand entirely 
about  LCS. There are many underlying concepts under a category, 
hence a more complex tree structure is shown in Fig. 4, to understand 
the LCS of the concepts. 

Fig. 4 is an instance of Wordnet taxonomy. In  Fig. 4, A is the root 
node and every node is a concept (represented as the synonym set) 
of Wordnet. Distance between two nodes is the shortest path possible 
from one node to another. Consider nodes H and L, the length between 
H and L is 6, least common subsumer of H, L is A. Similarly, LCS(F, 
L) is C and LCS(E, I) is B. 

A

B

D

H J K LI

E F G

C

Fig. 4.  A sample Tree in WordNet.

C. Methodology
In this subsection, the process of generating the multi-sense 

embeddings using synonym sets and hypernyms is presented. Fig. 
5 shows the block diagram of the proposed approach. Multi sense 
embeddings are generated using the Wordnet and Wikipedia text. 
Extracting multiple senses of a word is the crucial step in the entire 
process. In order to extract the senses, synonym sets and hypernym 
path of the word from Wordnet is used. 

Wikipedia

Wordnet

LCS
Average
Cosine

Similarity

Concept 1

Concept 2

Synonym set
Hypernym path

Google News
Vectors

Corpus Word
Train the 

words with 
CBOW model

Multi Sense Embeddings of word

Multiple sense embedding vectors

Synonyms

Multiple 
Senses of 
the word

Embeddings
of each sense

of word

Word Similarity Task

Multiple sense embedding vectors

Senses

Fig. 5. Block Diagram of  generating Multi-sense Embeddings and performing 
Word similarity task.

There are some concepts with fewer or zero synsets in Wordnet. 
This paper handles the words with fewer synsets using Google News 
vectors1 to derive synonyms.

The similarity of the synonyms with the respective word is 
calculated. Synonyms which are in certain threshold are considered as 
possible senses of the respective word. Once the senses are obtained, 
each sense is converted into a 300-dimensional vector from the pre-
trained Wikipedia CBOW model.  The words in the corpus are trained 
on Wikipedia text using the CBOW model as it is an efficient model 
and deals with the context of words in more massive datasets quite 
well. The block diagram also shows how to perform the word similarity 
task. The similarity of the two words is obtained using their multi-
sense embedding vectors. Since there are multiple sense vectors for 
each word, the average cosine similarity between them is calculated 
to get the final similarity. This paper also inspects another similarity 

1  https://code.google.com/archive/p/word2vec/

Synset(’act.v.01’)
Synset(’interact.v.01’)
Synset(’communicate.v.02’)  
Synset(’inform.v.01’)
Synset(’tell.v.02’)
Synset(’impart.v.01’)
Synset(’convey.v.01’)
Synset(’express.v.01’)
Synset(’stress.v.01’)

Synset(’act.v.01’)
Synset(’interact.v.01’)
Synset(’communicate.v.02’)  
Synset(’inform.v.01’)
Synset(’tell.v.02’)
Synset(’impart.v.01’)
Synset(’convey.v.01’)
Synset(’express.v.01’)
Synset(’stress.v.01’)
Synset(’bring_out.v.04’)
Synset(’foreground.v.01’)

Hypernyms of the concept “highlight”

Hypernyms of the concept “accentuate”

Level 1

Level 5

Level 9

Fig. 3. Hypernym paths for concepts ‘accentuate’ and ‘highlight’.
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metric called Tanimoto similarity [42] along with cosine similarity. 
The discussion about these metrics is mentioned in the next subsection. 
The block diagram shows how to obtain the multi-sense embeddings 
of a single word and similarity between two concepts. For the entire 
corpus with more than 2 million tokens, the same procedure is applied.

Once the information of synonym sets and hypernyms path 
are extracted from Wordnet, the next step is to generate the sense 
embeddings. The approach mentioned in this section is not explored 
in any of the previous works, the results obtained with this approach 
highlights the efficiency of this work. Algorithm I, Sense Embedding 
using Wordnet Synonym sets, gives the idea of generating sense 
embedding of a word Ci.

Algorithm I: Sense Embedding using Wordnet Synonym sets: 
Procedure SenseEmbed(Ci)

Input: Word (Ci), preprocessed Wikipedia Corpus, Wordnet, context of the 
word.
Output: Multi-Sense embeddings of the word
Step 1: Generate the synonym sets for concept Ci,      
             SS(Ci) = [s1, s2, s3,....sn], n synonym sets for Ci   
             SS_Preserve(Ci)={}, empty set 
Step 2: Group synonym sets based on parts-of-speech. 
Step 3: Preserve the most suitable sense by checking the definitions of each 
synonym set in Wordnet
            pos ← POS(word (Ci)) from context     
            SS_POS ← pos(SS(Ci))  
            for j in 1 to len(SS_POS):
                  if def(SS_POS[j]) matches context:  
                      SS_Preserve(Ci) ← SS_POS[j] 
                      SS_Preserve(Ci) ← lemmas(SS_POS[j])
                 end if
            end for
Step 4: Generate the hypernym path of each synonym set to add appropriate 
senses.
            for j in 1 to n:
                 Hypernyms = synsets(hypernym_path(sj))
                  if  hypernym_path(sj) exists:  
                       for q in 1 to len(Hypernyms):
                             if  Similar( Hypernyms[q], word(Ci)) >=  δ
                                 Add Hyper to SS_Preserve(Ci) 
                              end if
                        end for 
                  end if
             end for                   
Step 5: Extract top-m related synonyms of Ci 
           top_m(Syn)<-Google News vectors 
Step 6: Update SS(Ci) of Ci

            for k in 1 to m:
                  if top_m(Syn) not in SS(Ci)[k] 
                        Add item to the candidates of SS_Preserve(Ci)
                 end if
           end for
Step 7: Generate word vector representations for each sense in SS_
Preserve(Ci) using trained Word2vec representations.
          for k in 1 to len(SS_Preserve(Ci)):
                SEV(Ci) ← Word2Vec(SS_Preserve(Ci)[k]
           end for

Algorithm I, SenseEmbed(Ci), takes a word (Ci), preprocessed 
Wikipedia corpus, Wordnet as input. The output of the algorithm 
is multi-sense embeddings SEV(Ci) of the word Ci. The articles in 
Wikipedia are preprocessed by removing punctuations, HTML tags, 
followed by removing stop words from the document. The words 
are then lemmatized to their root form. A corpus of Wikipedia words 
is formed after this. Wikipedia corpus is an input for the algorithm 
to check the word for which multi-sense embeddings need to be 
generated is present or not. Lexical database Wordnet and the context 
of the word are other important inputs to the algorithm. Context usually 
is a sentence or a sequence of words in which the required word (Ci) 
is present. Based on context, different related synonyms of the sense 
are extracted. Algorithm I generates multi-sense embedding vectors as 
output for the given input word (Ci) based on seven steps.

The first part of the algorithm from steps 1 to 4 majorly relies on 
Wordnet to extract multiple senses of the word. After step 1 in the 
algorithm, the possible synsets of the word are in SS(Ci). Appropriate 
synsets of the words are stored in SS_Preserve(Ci), which is empty at 
the start and is updated in steps 3, 4 and 6. In step2, the synonym sets 
are grouped based on their parts-of-speech and the tagging of synonym 
sets is removed. Grouping synonym sets based on their parts-of-speech 
helps to obtain synsets required for the context. 

In step 3, POS(word (Ci)) is an internal procedure that returns the 
parts-of-speech of the input word. Based on this, the synsets of the 
word are selected and stored in SS_POS. The synsets definitions are 
matched with the context of the word to update SS_Preserve(Ci). To 
explain in further consider the words shown as examples in Table I.  
Table I shows the information of two words, ‘tiger’ and ‘sofa.’ For the 
word ‘tiger,’  a context, synsets and definitions of synsets are mentioned 
in the table. Similarly, for the word ‘sofa,’  synsets and lemmas are 
mentioned in Table I. The context of ‘tiger,’  matches the definition of 
‘tiger.n.02’, and the lemmas of this sense are added to SS_Preserve(Ci). 
The lemmas of a synset are the synonyms of the word in a particular 
sense. There are certain cases where the algorithm has to handle the 
words with no context. For these words, the algorithm considers all the 
synsets and their lemmas. The second word ‘sofa’ in the table has only 
one synset and the context of this word is not given. The lemmas of the 
words are added to SS_Preserve(Ci). 

TABLE I. Synsets, Definitions and Lemmas for Example Words ‘Tiger’ 
and ‘Sofa’ from Wordnet

Word   -------   ‘tiger’
Context ‘tiger of snows’
Synsets Synset(‘tiger.n.01’), Synset(‘tiger.n.02’)
Definition of ‘tiger.n.01’ 
Definition of ‘tiger.n.02’ 

‘a fierce or audacious person’
‘large feline of forests in most of Asia 
having a tawny coat with black stripes; 
endangered’

Lemmas of ‘tiger.n.02’ ‘tiger’, ‘Panthera_tigris’
Hypernyms of ‘tiger.n.02’ Synset(‘big_cat.n.01’)
Hypernym path
of ‘tiger.n.02’

‘entity.n.01’→’physical_entity.n.01’→ 
‘object.n.01’ → ‘whole.n.02’ → 
‘living_thing.n.01’ → ‘organism.n.01’ → 
‘animal.n.01’ → chordate.n.01’ → 
‘vertebrate.n.01’→ ‘mammal.n.01’ → 
‘placental.n.01’ → ‘carnivore.n.01’ → 
‘feline.n.01’→ ‘big_cat.n.01’→’tiger.n.02’

Word  ------   ‘sofa’
Context ----
Synsets Synset(‘sofa.n.01’)
Definition of ‘sofa.n.01’ ‘an upholstered seat for more than one 

person’
Lemmas of ‘sofa.n.01’ ‘sofa’, ‘couch’, ‘lounge’ 
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There are certain words with fewer or no synsets in Wordnet, for 
these words hypernyms and hypernym paths are considered to extract 
possible senses. Step 4 discusses these details. The word ‘tiger’ in Table 
I, has only two senses with only one sense is matching the context. 
At the same time, the lemmas (synonyms) of the word are also two. 
Hence, navigating through the hypernym path of such words, helps in 
increasing the multiple senses. The hypernym path of synset ‘tiger.n.02’ 
is shown in Table I, from the path it is observed that the head portion 
of the path contains more generalized synsets. But the synsets which 
are two or three levels up the synset ‘tiger.n.02’ are more specific to 
the synset. Hence, these senses are also examined to update them in 
SS_Preserve(Ci). To determine, whether these can be added or not, 
cosine similarity between the synset in the hypernym path and word 
are determined. If the similarity is greater than δ, the synset is added to 
SS_Preserve(Ci). The value this paper considers for the δ is 0.5. 

Steps 5 and 6 in Algorithm I handle the words with no synsets 
and hypernym paths in Wordnet by extracting synonyms of the word 
using pre-trained Google News vectors. From step 5, top-m related 
synonyms of Ci are extracted. The value of m chosen is 10. In step 6, 
these are added to SS_Preserve(Ci). 

After step 6, SS_Preserve(Ci) contains synsets, lemmas (synonyms) 
and certain synsets from hypernym path or synonyms from Google 
News vectors. As the synonym sets are in the form ‘concept.pos.
number,’ it is not possible to generate the embeddings for words with 
these representations hence tagging is removed. For each sense present 
in SS_Preserve(Ci), a vector of 300 dimensions is obtained from the 
trained model discussed in subsection A. The context sliding window 
in this approach is similar to the one used in CBOW [18]. The word 
vector representations for each sense of SS_Preserve(Ci) are stored in  
SEV(Ci). 

The vector representations stored in SEV(Ci) are based on the 
synsets, lemmas (synonyms), hypernym path information from 
Wordnet,  and synonyms extracted from Google News vectors. These 
vectors can be used in word similarity, analogy, entailment tasks. In 
the next subsection, the multi-sense embeddings are used to carry out 
word similarity tasks.

D. Word Similarity Task using Multi-Sense Embeddings
In the previous subsection, the procedure to obtain multi-sense 

embedding representations of a word is presented. This subsection 
uses the methodology of  multi-sense embeddings to carry out word 
similarity tasks. For two concepts or words, Ci, Cj, Algorithm I 
generates the multi-sense vector representations as,

Where Ci , Cj represents words, s1i represents sense embedding 
vector ‘i’ of word Ci and s2j represents the sense embedding vector ‘j’ 
of Cj. In the above representations, the number of senses for concepts 
Ci and Cj are n and m, and both greater than one. 

Algorithm II obtains the similarity of two words Ci, Cj, using SEV(Ci), 
SEV(Cj) vectors. The initial step in the algorithm is to generate Multi 
sense embedding vectors of the concepts using Algorithm I. The next 
step is to update SEV(Ci), SEV(Cj). The idea here is to utilize all the 
related senses of the words to derive similarity. Wordnet is searched for 
the least common subsumer (LCS) of words Ci, Cj. LCS is the shared 
ancestor of two concepts. 

Using LCS information of Ci and Cj, SEV(Ci), SEV(Cj) are updated. 
Step 2 in Algorithm II updates the sense vectors by checking the path 
in between LCS to Ci. The list Synsets(Ci, LCS) in the algorithm holds 
all the synsets in the path from Ci to LCS. The synsets which are 

similar to the word Ci are added to SEV(Ci), by calculating the Similar( 
Synsets(Ci, LCS) [j], Ci). If this value is greater than δ, then the synset is 
converted into a vector of 300 dimensions from the pretrained CBOW 
model on Wikipedia text.  The same procedure is repeated to update 
SEV(Cj). If LCS of concepts does not exist, the hypernym path of each 
concept is examined. It is observed from the experimentations that 
this step hardly updates the sense vectors, since individual hypernym 
paths are checked in Algorithm I.  But this is done not to miss out on 
any possible senses. Algorithms I and II check all the possible senses, 
which increases the overall efficiency of the proposed approach.  

Step 3 in Algorithm II calculates the average similarity of the two 
multi vectors, SEV(Cj), SEV(Cj). MSSA approach [35] gives two 
metrics for evaluating the approaches, namely average similarity 
and maximum similarity. If the maximum similarity is considered, 
similarity obtained will be of only one sense in each word. Hence, this 

Algorithm II :  Word Similarity using Sense Embed vectors and  
Wordnet information:: WordSimilarity(Ci,Cj)

Input: Words Ci, Cj,  
Output: Similarity of Ci, Cj

Step 1: Multi sense vectors for Ci, Cj

            SEV(Ci) ← SenseEmbed(Ci)
            SEV(Cj) ← SenseEmbed(Cj)
Step 2: Update SEV(Ci ), SEV(Cj) using LCS information from Wordnet, 
hypernym path of both concepts 
            if LCS(Ci, Cj) is TRUE:
                 Synsets(Ci, LCS) ← Path(Ci,LCS)
                 for j in 1 to len(Synsets(Ci , LCS)): 
                      if  Similar(Synsets(Ci , LCS) [j], Ci ) >=  δ
                           Add Vec(Synsets(Ci , LCS) [j]) to SEV(Ci)
                      end if
                 end for 
            end if                   
            // Repeat above for SEV(Cj), Cj

                   else
                path1←  hypernym_path(Ci)
                path2 ← hypernym_path(Cj)
                for k in len(path1):
                    for l in len(path2):
                         if path1[k]== path2[l] 
                             if path1[k] not in SEV(Ci) 
                                  update SEV(Ci)
                            end if
                            if path1[k] not in SEV(Cj)
                                  update SEV(Cj)
                            end if
                        end if
                   end for 
               end for                                                      
Step 3: Similarity of the concepts Ci , Cj

             for p in 1 to len(SEV(Ci )):
                  for q in 1 to len(SEV(Cj)):
                      sim[p][q] = M(SEV(Cj)[p], SEV(Cj)[q])
                       //Where M is either Cosine or Tanimoto similarity
                  end for 
             end for      
            //average of similarity



- 7 -

Article in Press

paper uses average similarity of all the senses. Given SEV(Ci), SEV(Cj), 
the similarity is calculated using the following equation,

 (1)

Where M(s1i, s1j) gives the similarity of sense embedding vectors 
s1i, s1j, M is either Cosine or Tanimoto similarity metric for assessing 
the vectors. If the words are represented as vectors, the task of finding 
the similarity between them is simpler. There are many measures that 
calculate the similarity between the vectors, like Cosine, Tanimoto 
[42], etc. The most used metric for Word2vec models is cosine 
similarity. The vectors with the same orientation are more similar and 
tend to have a value of 1 with cosine similarity. The results of state-of-
art approaches are based on the cosine similarity between the vectors. 
To estimate the strength of the proposed approach with state-of-art 
techniques cosine similarity is considered. Tanimoto metric [42] is 
mainly used to calculate the similarity of vectors with binary data. But 
this metric can be easily enhanced to apply on vectors with continuous 
data. Tanimoto [42] metric for continuous data is used in this paper. 
Moreover, this metric is analogous to cosine similarity. Hence, this 
metric is also considered for measuring the similarity.

 (2)                                                                                  

 (3)

This section proposes multi-sense embeddings using Wikipedia 
data and lexical database Wordnet. Multiple senses of words are 
extracted from the synsets, definitions, hypernym path and Google 
News vectors. These vectors are enhanced using LCS information of 
concepts to perform word similarity tasks. The next section discusses 
the experimentation details, datasets and models compared with the 
proposed approach.

IV. Results

In this section,  experiments related to word similarity task are 
presented. The proposed algorithm and its comparison against other 
approaches are shown in detail.  

A. Experimentation Setup  
The proposed methodology in this paper is implemented using 

Python 3.6 with NLTK 3.42 and gensim 3.43 libraries. NLTK is used 
to get  the information of Wordnet’s synsets, definitions, lemmas, 
LCS of concepts and hypernym path. This paper builds a corpus from 
Wikipedia dump4 which is open-source. CBOW Word2vec [18] is used 
to train the corpus of words. The hyperparameters of the  model are as 
follows: CBOW model for training, a window size of 15, vector size 
of 300 dimensions. Google News Vectors5 used in Algorithm I is a pre-
trained model with tokens and respective word vectors. 

B. Datasets 
The benchmark datasets used in this paper are described as follows:

1. MC dataset [43]: MC dataset is a subset of the RG dataset [44], 
this dataset has 30 word pairs. Two word pairs are not present in 

2   https://www.nltk.org/
3   https://radimrehurek.com/gensim/models/word2vec.html
4   https://dumps.wikimedia.org/enwiki/latest/
5    https://code.google.com/archive/p/word2vec/

Wordnet and hence the researchers work on 28 word pairs. The 
rating for each word pair in the dataset is in the range from 0 to 4, 
higher rating indicates word pairs are more similar.

2. RG dataset [44]: This dataset contains 65 word pairs and rating is 
in the range 0 to 4. 

3. WS-353 dataset [45]: This dataset has 353 noun pairs, the rating of 
word pairs are in a range from 0 to 10. The dataset is divided into 
two sets. The first set is with 153 word pairs and the later with 200 
word pairs. The complete version is considered in experimentation.

4. MTurk771 dataset: Halawi et al, [46] proposed this dataset with  771 
word pairs and each word pair is given a rating in the range 0 to 5. 

5. MTurk287 dataset [47]: This dataset has 287 word pairs, the rating 
of each word is in the range 0 to 5. All the word pairs are noun pairs.

6. SCWS  (Stanford Context Word Similarity) dataset [48]: This 
dataset has 1997 word pairs, for each word in the word pair context 
is mentioned in the dataset. Word pairs are given a rating in range 
from 0 to 10.

7. Rare words dataset [49]: This dataset has 2034 word pairs and each 
word pair is given a rating in the range 0 to 4. 

8. Men dataset [50]: This dataset has 3000 word pairs. This dataset 
has word pairs of noun, verb, and adjectives. The rating of each 
word ranges from 0 to 1.

9. Simlex999 dataset [51]: This dataset has 999 word pairs, out of 
these 999 word pairs, 666 word pairs are nouns, 222 are verb pairs 
and 111 adjective pairs. For experimentation purposes, 666 noun 
pairs (Simlex666) are considered.

C. Models Compared
The following models are compared with the proposed approach on 

benchmark datasets,
1. CBOW: Mikolov et al. [18] proposed  Word2vec with two word 

embedding models, namely Skip-gram and CBOW.  Skip-gram 
aims to predict a context word in a window around a target word. 
CBOW  predicts the current target word using the representations 
for its context words. It is mentioned in several works that CBOW 
is more efficient, hence this approach is selected as one of the state-
of-art methods for comparison. 

2. GloVe: Pennington et al. [30] proposed a log-bilinear model called 
GloVe for learning word vectors. This is based on global matrix 
factorization and local context window methods. Local window 
methods like Word2vec[18],  fail to capture global statistical 
information in the corpus, GloVe overcomes this drawback.

3. fastText [31]: Word2vec [18] and GloVe [30]  ignore morphology 
of words. Hence, these approaches produce more out of vocabulary 
words. The fastText approach overcomes this problem by 
representing each word as a bag of character n-grams. 

4. SenseEmbed [32]: SensEmbed uses  BabelNet [52] for word 
sense disambiguation. This model trains a word2vec model (400 
dimensions). This approach integrates structural knowledge from 
BabelNet and the distributional sense representations. 

5. Chen et al. [33]: This approach performs disambiguation of 
words to learn word sense representations. It has two sub-tasks, 
namely L2R (left to right) and S2C (simple to complex).  L2R 
disambiguates words from left to right and S2C selects senses of 
the word. S2C selects only those senses with a certain threshold. 

6. MSSA: MSSA approach [35], mentions that Chen et al. [33] 
considers only specific senses leading to poor representations. 
Hence, MSSA explores all senses available for a word. MSSA-T 
and MSSA-D approaches mentioned in this work are taken for 
comparison.
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7. Paragram : Wieting et al. [42] proposed a word embedding model 
based on paraphrase phrases in PPDB database [53]. 

8. Counter-fitting [41]: This approach considers antonymy and 
synonymy constraints from the PPDB database and Wordnet. 

9. Attract-Repel: Mrksic et al. [39] proposed Attract–Repel approach 
with synonymy and antonymy constraints to develop embeddings. 
In this approach, semantic relations are taken from BabelNet [52].

D. Metrics
This paper uses two evaluation metrics, the Spearman rank 

correlation, the Pearson correlation factor. Pearson correlation was 
first given in the studies of synonymy between words by Rubenstein 
and Goodenough [43]. A majority of the researchers in their works 
evaluated their approaches with Pearson correlation. Hence, this paper 
uses this evaluation metric to compare the results with state-of-the-art 
approaches. Another metric that is used by all the researchers for word 
similarity tasks is  Spearman correlation. Hence, this metric is also used 
for comparing the results. Pearson correlation coefficient measures the 
strength and direction of the linear relationship between the variables. 
Whereas, the Spearman coefficient measures the correlation between 
the ranks of two variables. There are fewer publications that reported 
the results of both  Spearman and Pearson correlation coefficient 
values. The unavailable data are not mentioned in the results.  

The experimentations of the approaches Word2vec [18], GloVe [30], 
fastText [31] are implemented by us. The results of the approaches 
[39], [41], [42] are obtained from the HESML library6. The results of 
the approaches [32] and [33] for some datasets are reported in [35]. The 
MSSA [35] approach reported results for only Spearman correlation. 
The results reported in the tables for [32], [33] are taken from MSSA 
[35], as it became difficult to set up the same environment and to 
produce results. 

Table II presents the results of the proposed approach against several 
state-of-the-art distributional approaches on the MC dataset [43]. On 
this dataset, Attract-Repel, SenseEmbed, and proposed approaches 
have obtained the highest Spearman correlation results. The proposed 
method obtained the highest results for the Pearson correlation, which 
is 0.851.

TABLE II. Spearman and Pearson Correlations of Proposed and 
Existing Word Embedding Approaches on MC-28 Dataset, Highest 

Results Highlighted in Boldface

Method Spearman correlation Pearson correlation
SenseEmbed [32] 0.880 --

MSSA-T [35] 0.796 --
MSSA-D [35] 0.835 --

Attract-Repel [39] 0.884 0.837
Counter-fitting [41] 0.857 0.806

Paragram [42] 0.824 0.796
CBOW [18] 0.781 0.796
GloVe [30] 0.862 0.845

FastText [31] 0.845 0.842
Proposed approach 

(cosine) 0.865 0.851

Proposed approach 
(Tanimoto) 0.860 0.845

Table III  shows the results of the proposed approach against 
several models for the RG [44] benchmark dataset. In this experiment, 
SensEmbed and proposed approach obtained the highest results for the 
Spearman correlation. The approach SenseEmbed [32] develop multi-
sense vectors using BabelNet [51]. BabelNet is a lexical database 

6   https://github.com/jjlastra/HESML

composed of different resources. This approach trains the Word2vec 
model with 400 dimensions. This approach obtained better results on 
smaller datasets when the size of the dataset increases, the results of 
SenseEmbed approach are not promising as they are for MC and RG 
datasets.

MC [43] benchmark is a subset of the RG [44] benchmark dataset. 
The words in the MC benchmark and RG are nouns. Algorithm I 
to generate the multi-sense embeddings of these datasets uses noun 
synsets from Wordnet. Some of the word pairs in these datasets are 
having very few noun synsets. For the words with one or two synsets, 
lemmas (synonyms) are generated. For words with fewer synonyms 
tracing the hypernym path gives multiple senses. There is minimal 
variation in the Spearman and Pearson correlation for cosine and 
Tanimoto metrics because both are analogous. The human ratings of 
half of the word pairs in MC benchmark are meager, suggesting that 
these word pairs are less similar. Out of 28 word pairs in the dataset, the 
human ratings of 10 word pairs are below 1.0, the scale of the ratings 
is in the range [0,4]. Hence, the approaches like Attract-Repel [39], 
Counter-fitting [41] handle the antonym relations work well on this 
dataset. The multi-sense embeddings approaches also worked well on 
both MC and RG benchmarks since all the senses are covered. The 
SenseEmbed [32] approach uses BabelNet [52], which has a wide 
coverage of synsets. Hence it is able to achieve better results on these 
two benchmarks and also on other datasets. 

TABLE III. Spearman and Pearson Correlations of Proposed and 
Existing Word Embedding Approaches on RG-65 Dataset, Highest 

Results Highlighted in Boldface

Method Spearman correlation Pearson correlation
SenseEmbed [32] 0.871 --

MSSA-T [35] 0.776 --
MSSA-D [35] 0.801 --

Attract-Repel [39] 0.825 0.840
Counter-fitting [41] 0.808 0.806

Paragram [42] 0.813 0.810
CBOW [18] 0.760 0.772
GloVe [30] 0.755 0.770

FastText [31] 0.801 0.793
Proposed approach 

(cosine) 0.863 0.851

Proposed approach 
(Tanimoto) 0.865 0.847

Table IV presents the Spearman and Pearson correlation values 
of the approaches on the WS-353 dataset. From the results, it can be 
observed that the proposed approach outperformed all the other state-
of-art approaches. WS-353 dataset is an interesting one because the 
dataset is used for carrying out semantic relatedness and semantic 
similarity tasks. The dataset has a collection of nouns, verbs, and 
adjectives. Algorithm I groups the synsets based on the parts-of-speech 
while generating the synsets, and hence, the proposed approach is able 
to achieve better results for both cosine and Tanimoto similarities.

Tables V and VI represent the results on Turk771 and Turk287 
datasets. Semantic relatedness tasks use these two datasets. The 
difference between semantic similarity datasets and relatedness 
datasets is in the former, the concepts are more specific, and in the 
later, the concepts are more general. The proposed approach handles 
both the types because it observes both specific (using synonyms) 
terms, and general (using hypernyms) terms efficiently. The proposed 
approach obtained the highest results for Spearman correlation on both 
benchmarks. The single vector representation model GloVe achieved 
the highest results for the Pearson correlation.
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TABLE IV. Spearman and Pearson Correlations of Proposed and 
Existing Word Embedding Approaches on WS-353 Dataset, Highest 

Results Highlighted in Boldface

Method Spearman correlation Pearson correlation
SenseEmbed [32] 0.779 --

MSSA-T [35] 0.694 --
MSSA-D [35] 0.708 --

Attract-Repel [39] 0.666 0.608
Counter-fitting [41] 0.680 0.615

Paragram [42] 0.764 0.679
CBOW [18] 0.603 0.642
GloVe [30] 0.716 0.713

FastText [31] 0.738 0.698
Proposed approach 

(cosine) 0.817 0.836

Proposed approach 
(Tanimoto) 0.814 0.832

TABLE V. Spearman and Pearson Correlations of Proposed and 
Existing Word Embedding Approaches on Turk771 Dataset, Highest 

Results Highlighted in Boldface

Method Spearman correlation Pearson correlation
Attract-Repel [39] 0.599 0.590

Counter-fitting [41] 0.701 0.666
Paragram [42] 0.745 0.704
CBOW [18] 0.672 0.698
GloVe [30] 0.715 0.749

FastText [31] 0.661 0.728
Proposed approach 

(cosine) 0.761 0.733

Proposed approach 
(Tanimoto) 0.757 0.727

TABLE VI. Spearman and Pearson Correlations of Proposed and 
Existing Word Embedding Approaches on Turk287 Dataset, Highest 

Results Highlighted in Boldface

Method Spearman correlation Pearson correlation
Attract-Repel [39] 0.606 0.618

Counter-fitting [41] 0.639 0.630
Paragram [42] 0.699 0.701
CBOW [18] 0.674 0.650
GloVe [30] 0.724 0.749

FastText [31] 0.709 0.728
Proposed approach 

(cosine) 0.726 0.736

Proposed approach 
(Tanimoto) 0.724 0.732

SCWS dataset has 1997 word pairs. Each word in the word pair has 
a context sentence, parts-of-speech of the word is mentioned for each 
word. SCWS dataset has four different sets of word pairs. The majority 
of the word pairs in the dataset have the same parts-of-speech, and 
some word pairs are with different parts-of-speech.
• The dataset has 1323 pairs, which are nouns.
• The dataset has 399 verb pairs.
• The dataset has 97 adjective pairs.
• Remaining 178 word pairs are with different parts-of-speech like 

noun-verb, verb-noun, verb-adjective, etc.
The results of the SCWS dataset are given in Table VII. The 

state-of-art methods produced competitive results with Spearman 

correlation but failed to produce the same with Pearson correlation. 
But the proposed approach is consistent in obtaining the highest results 
on this dataset also. Algorithm I handles words with different parts-of-
speech, that enabled the proposed approach to achieve better results on 
this dataset in comparison with state-of-art methods.

TABLE VII. Spearman and Pearson Correlations of Proposed and 
Existing Word Embedding Approaches on SCWS Dataset, Highest 

Results Highlighted in Boldface

Method Spearman correlation Pearson correlation
SenseEmbed [32] 0.624 --

MSSA-T [35] 0.649 --
MSSA-D [35] 0.640 --

Chen et al. [33] 0.662 --
Attract-Repel [39] 0.587 0.113

Counter-fitting [41] 0.611 0.114
Paragram [42] 0.691 0.115
CBOW [18] 0.643 0.105
GloVe [30] 0.624 0.106

FastText [31] 0.652 0.106
Proposed approach 

(cosine) 0.693 0.658

Proposed approach 
(Tanimoto) 0.690 0.658

 Table VIII shows the results of the approaches to the Rare words 
dataset. This dataset has nouns, verbs and adjective word pairs. The 
proposed approach has obtained the highest results of Spearman and 
Pearson correlation on this dataset also because Algorithm I handles 
different parts-of-speech efficiently.

TABLE VIII. Spearman and Pearson Correlations of Proposed and 
Existing Word Embedding Approaches on Rare words Dataset, Highest 

Results Highlighted in Boldface

Method Spearman correlation Pearson correlation
Attract-Repel [39] 0.273 0.319

Counter-fitting [41] 0.207 0.288
Paragram [42] 0.536 0.505
CBOW [18] 0.456 0.438
GloVe [30] 0.451 0.440

FastText [31] 0.464 0.432
Proposed approach 

(cosine) 0.543 0.544

Proposed approach 
(Tanimoto) 0.535 0.535

Table IX shows the Spearman and Pearson correlation values on 
Men dataset. This dataset is a collection of 3000 word pairs, with all 
the parts-of-speech included in it. The proposed approach continues 
to outperform all the state-of-art approaches on this dataset also. 
The proposed approach obtained the highest values of 0.836, 0.815 
for Spearman and Pearson correlation, respectively. From the results 
obtained on all the datasets, it is observed that the proposed approach 
performed well on different benchmarks. It is because of the procedure 
followed to generate the multi-sense embeddings.

Table X shows the analysis on Simlex666 dataset, the results on this 
dataset for the proposed approach and other multi-sense approaches are 
marginally less when compared with Attract-Repel [39], counter-fitting 
[41], paragram [42]. These three approaches Attract-Repel, counter-
fitting, paragram outperformed other single vector and multi-vector 
representations on the Simlex666 dataset. The reasons are mentioned 
in the discussion section.
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TABLE IX.  Spearman and Pearson Correlations of Proposed and 
Existing Word Embedding Approaches on Men Dataset, Highest Results 

Highlighted In Boldface

Method Spearman correlation Pearson correlation
SenseEmbed [32] 0.805 --

MSSA-T [35] 0.769 --
MSSA-D [35] 0.768 --

Chen et al. [33] 0.620 --
Attract-Repel [39] 0.709 0.655

Counter-fitting [41] 0.741 0.680
Paragram [42] 0.799 0.754
CBOW [18] 0.732 0.723
GloVe [30] 0.801 0.800

FastText [31] 0.762 0.755
Proposed approach 

(cosine) 0.836 0.815

Proposed approach 
(Tanimoto) 0.831 0.810

TABLE X.  Spearman and Pearson Correlations of Proposed and 
Existing Word Embedding Approaches on Simlex666 Dataset, Highest 

Results Highlighted in Boldface

Method Spearman correlation Pearson correlation
MSSA-T [35] 0.460 --
MSSA-D [35] 0.425 --

Chen et al. [33] 0.430 --
Attract-Repel [39] 0.690 0.691

Counter-fitting [41] 0.698 0.697
Paragram [42] 0.645 0.662
CBOW [18] 0.454 0.461
GloVe [30] 0.429 0.467

FastText [31] 0.410 0.411
Proposed approach 

(cosine) 0.522 0.531

Proposed approach 
(Tanimoto) 0.521 0.527

V. Discussion

In the results section, nine benchmark datasets are analyzed with 
the state-of-art systems and the proposed approach. The state-of-the-art 
systems compared in this paper are categorized as follows:
1. Symmetric pattern vector representations: Approaches like CBOW 

of Word2vec [18], GloVe [30], fastText [31] fall in this category. 
These approaches use shallow linguistic information like word and 
context co-occurrences within a single window. 

2. Inject approaches : The approaches such as Attract-Repel [39], 
counter-fitting [41], Paragram [40] fall in this category. In these 
approaches, word embeddings are enriched with synonymy and 
antonymy constraints and paraphrase relations. These three inject 
approaches use synonymy and antonymy relations of the words.

3. Multi-sense representations: Approaches like SenseEmbed [32], 
Chen et al. [33], MSSA [35], fall in this category. These approaches 
use multi-sense vector representations to carry out various NLP 
tasks. 

On MC and RG datasets, there is a little variation in the results of all 
the approaches. This is because of the less number of word pairs in the 
datasets. Most of the researchers use these two benchmarks as these are 
more popular datasets in word similarity tasks. From, the results it is 
observed that the proposed approach performed consistently on all the 

datasets except Simlex666 dataset. The proposed approach obtained the 
first or second highest results of Spearman and Pearson correlations. 
The single vector representations CBOW [18], GloVe [30], fastText 
[31] when compared with multi-sense representations obtained lesser 
results. The CBOW [18], GloVe [30], fastText [31] approaches laid the 
basis of modern research for carrying out multiple NLP tasks. As the 
proposed approach generates all the multiple senses based on context, 
definitions, hypernym path, and LCS, the results are consistent on all 
the datsets.

Inject approaches like  Attract-Repel [39], counter-fitting [41], 
paragram [40] performed well on WS-353 and Simlex666 datasets. 
The reason why these methods obtained better results on these 
datasets is because of using synonymy and antonymy relations. The 
multi-vector representations performed well on the WS-353 dataset 
but failed to perform well on the Simlex666 dataset. Compared to 
the WS-353 dataset, the Simlex666 dataset has more antonym word 
pairs, the inter-annotator agreement is also less in this dataset. As the 
multi-vector representations do not consider dealing with antonym 
relations, injection approaches produced better results on these datasets 
compared to multi-sense representations. Turk771 and Turk287 
datasets have only noun pairs and the proposed approach obtained 
better results on these two datasets. These datasets are used mostly 
in semantic relatedness purposes. The proposed approach obtained the 
highest results on the WS-353 dataset because of handling synsets of 
different parts-of-speech.

On larger datasets like SCWS, Men and Rare words, the performance 
of the multi-vector representations and the proposed approach are 
consistent. These three datasets have different parts-of-speech word 
pairs. Algorithm I generates synsets with respect to their parts-of-
speech to produce suitable multi-sense vector representations of the 
word. On larger datasets, the proposed multi-vector representation 
model outperformed the other state-of-art systems. The overall 
performance of the proposed approach is stable on all the datasets. 

VI. Conclusion

This paper discusses the importance of multi-sense embedding for 
carrying out word similarity tasks. The proposed approach overcomes 
the limitations of single vector representations. This paper understands 
the importance of synonym sets, hypernyms, LCS, and definitions of 
words to generate multi-sense embeddings. This inspection of Wordnet 
for various parameters is a novel idea, which is not explored by the 
NLP community. With improved results of word similarity, this paper 
shows the significance of multi-sense representations. 

The proposed approach performs disambiguation of words using 
Wordnet. A library of words from Wikipedia is created, and for each 
word, multi-sense embeddings are generated. Sense embedding vectors 
are enriched by using the LCS, hypernym information between the 
words. A comparison with recent state-of-art methods confirmed the 
efficiency of the proposed approach.

The proposed multi-sense representation produced state-of-art 
results on nine benchmark datasets. With these considerations, the next 
challenge is to see how multi-sense embeddings help to improve the 
efficiency of other NLP tasks like text summarization and document 
classification.  
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