
- 1 -Please cite this article in press as:
K. S. Prasad Mudigonda, P. Sharma. Multi-sense Embeddings Using Synonym Sets and Hypernym Information from Wordnet, International Journal of
Interactive Multimedia and Artificial Intelligence, (2020), http://dx.doi.org/10.9781/ijimai.2020.07.001

I. Introduction

Classical problem like semantic analysis continues to grab the
attention of researchers since it is important to different fields

of study. Semantic similarity has gained importance in fields like
information retrieval [1], bio-medical domains [2], creating knowledge
graphs [3], sentence clustering [4], cross-lingual text similarity [5].
Primitive semantic similarity measures are based on the distance
between the concepts. Measures like Jaccard distance [6], Euclidean
distance [7], and dice coefficient [8] are examples of it. These measures
are not suitable for natural language processing activities as there is
no prior knowledge taken into account for assessing the similarity.
Researchers use the measures which consider background knowledge
and the relation between the concepts to assess semantic similarity.

Knowledge-based measures, which are one of the kinds of semantic
similarity measures use relations between the concepts. State-of-the-
art knowledge-based measures use a lexical database like Wordnet [9]
to measure semantic similarity. Wordnet is a structured organization
of terms, referred to as synonym sets or concepts. Knowledge-based
measures are formulated based on distance, depth or information
content of concepts. Measures proposed by Rada [14], Wu and Palmer
[17], Leacock and Chodorow [11], Li [12] specify different ideas of
using the distance between the concepts to calculate the semantic
similarity. The measure proposed by Li [12] uses distance and depth
between the concepts as metrics to evaluate the similarity between the
concepts. Resnik [15] calculates similarity by using the information
content of the lowest common subsumer between the concepts. Lin

[13], Jiang and Conrath [10] also use the information content between
the concepts. Zhu [16] proposed a hybrid measure by combining
the Resnik measure [15] and path measure [14]. Zhu [16] extracted
semantic similarity by using knowledge-based measures on knowledge
graphs like YAGO [38]. These measures do not discuss vector
representations. These measures are not substantially strong to perform
present-day NLP activities. Hence, the measures which address the
distributional semantics of words are required in the current era.

In recent years, distributional semantic representations of words
gained popular attention. Distributional representations of words
well known as word embeddings set the state-of-art systems for core
natural language processing activities (NLP). Word embeddings [18],
[19], represent words or phrases with vectors to extract relationships
between them. Word embedding techniques improved the efficiency of
various NLP tasks, like word similarity [20], sentiment analysis [21],
[22], text classification [23], question answering tasks [24].

Even though word embedding techniques improved the accuracy
of core NLP tasks, these approaches fail to address the polysemy
problems [25]. Research related to polysemy, dealing context, and
senses of words is needed in the present scenario. Based on the
word’s sense and context, recent research is trying to improve the
semantic representations. Word embedding techniques generally
neglect to explore lexical structures with valuable semantic relations
from lexical databases like Wordnet [9]. To improve the efficiency of
word embeddings, word vectors should consider different contexts
and multiple senses of words. Multi-sense embeddings require a
well-formed semantic network to extract multiple senses of the word,
alongside word vector representations.

Semantic similarity requires the knowledge of concepts that
are obtained from background sources. Well defined structures
like Wordnet are limited, yet this knowledge cannot be ignored.

Multi-sense Embeddings Using Synonym Sets and
Hypernym Information from Wordnet
Krishna Siva Prasad Mudigonda*, Poonam Sharma

Department of Computer Science and Engineering, Visvesvaraya National Institute of Technology,
Nagpur (India)

Received 17 November 2019 | Accepted 8 May 2020 | Published 2 July 2020

Keywords

Hypernym Path,
Multi-sense Embeddings,
Synonym Sets, Word
Embeddings, Word
Similarity.

Abstract

Word embedding approaches increased the efficiency of natural language processing (NLP) tasks. Traditional
word embeddings though robust for many NLP activities, do not handle polysemy of words. The tasks of semantic
similarity between concepts need to understand relations like hypernymy and synonym sets to produce efficient
word embeddings. The outcomes of any expert system are affected by the text representation. Systems that
understand senses, context, and definitions of concepts while deriving vector representations handle the drawbacks
of single vector representations. This paper presents a novel idea for handling polysemy by generating Multi-
Sense Embeddings using synonym sets and hypernyms information of words. This paper derives embeddings
of a word by understanding the information of a word at different levels, starting from sense to context and
definitions. Proposed sense embeddings of words obtained prominent results when tested on word similarity tasks.
The proposed approach is tested on nine benchmark datasets, which outperformed several state-of-the-art systems.

* Corresponding author.
E-mail address: krishnasivaprasad536@gmail.com

DOI: 10.9781/ijimai.2020.07.001

- 2 -

International Journal of Interactive Multimedia and Artificial Intelligence

Hence, sources like Wikipedia and Wordnet can be combined to
obtain the context. Wordnet establishes the relationship between the
concepts using hierarchical relations. Each concept in Wordnet has
synonym sets, which help to predict the multiple senses of words.
Hence, this paper develops semantic vector representations of
words considering their context, sense, definitions, and hypernym
path using the lexical structure of Wordnet and word embedding
techniques like Word2vec models.

The following are the contributions of this paper:
• This paper uses the rich semantic structure of Wordnet to generate

the senses and definitions of each word.
• Regarding each word, suitable contexts are generated from a large

source of Wikipedia text.
• Multiple sense based word embeddings are generated.
• This paper aims at developing parts-of-speech related synonym set

embeddings to carry out word similarity tasks.
• Detailed comparison and analysis of state-of-art techniques are

mentioned.
• Nine benchmark datasets are compared to portray the significance

of the proposed approach.
The paper is organized as follows. Section II gives the related

work, which covers the existing word embedding techniques. Section
III gives the proposed approach and covers the senses extracted from
Wordnet, context from Wikipedia and word vector representations.
In section IV, experimentation details of existing measures and the
proposed measure are mentioned, followed by discussion in section
V. Section VI gives the conclusion of the work done and recommends
some suggestions for future work.

II. Related Work

This section discusses the existing distributed representations of
words. Distributed representations of words proposed by Mikolov et
al, [18], [19] become popular among NLP related tasks. Working with
contexts has its roots with the distributional hypothesis proposed by
Harris [26]. After that, the bag-of-words [27] approach also discussed
the distributed representations of words, but these approaches suffer
from drawbacks like data sparsity, not maintaining word order, and
dimensionality related issues. Approaches based on language prediction
also exist in the literature of the NLP [28]. The language models are
transformed with continuous bag-of-words and skip-gram models.

Mikolov et al, [18], [19] proposed Word2vec with continuous skip-
gram and continuous bag-of-words (CBOW) which portrayed the
importance of word embeddings. This approach gained importance
due to its efficient log-linear neural network language model, low-
dimensionality vector representations. Skip-gram and CBOW
models produce vector representations of words. Word embedding
representations like SENNA [29], GloVe [30], and fastText [31] exist in
the literature. All these are single vector representations. These models
fail to address the polysemy of the words. Word vector representations
can be enhanced by combining multiple senses of words. Examining
the sense, context, and definitions of words while deriving word
embeddings improves the efficiency of the NLP tasks. The proposed
approach is developed using the Word2vec model to train the corpus
and later the vectors are used based on context, sense, and definitions
of each word.

Researchers after the invention of distributional semantic
representations of words developed sense embeddings [25], [32], [33],
[34], [35] to perform NLP tasks like word similarity. Interestingly,
Li [25] presented the idea of developing separate vectors for each
sense. The approach mentioned by Iacobacci et al, [32] obtains sense

embeddings using lexical resource BabelNet [52] for measuring
semantic similarity. This approach is an effective measure for word
similarity tasks, yet this can be enhanced by making the model
understand the context of words. Chen et al. [33] presented a
model for word sense representation. This model considers a single
representation per single sense. This model is considered as the basis
for the innovation of presenting the word sense disambiguation with
embedding techniques for similarity tasks. This model does not learn
the relationships like hypernyms and hyponyms between the concepts
from Wordnet. The model presented by Oele et al. [34], combines
word-sense, context, and word-definition to develop embeddings. This
approach [34] developed lexeme embeddings for senses using the
Lesk algorithm [36] and an AutoExtend [37] training procedure. The
approach mentioned by Ruas et al, [35] disambiguates the text using
a context window. The authors [35] explain the limitations of single
vector representations and the advantages of multi-sense embeddings.
This model [35] derived synonym set based embeddings by integrating
Wordnet synonym sets and Word2vec model [18] model.

Word embeddings mechanisms with single vector representations
present all the senses in a single vector. There is limited work done
in this area. Hence, this paper focuses mainly on generating vector
representations for each sense and the context of words is selected from
top-n context-rich sentences from Wikipedia. Word embedding models
capture the taxonomic information of words but fail in capturing
hyponymy and entailment relations. To understand the relation
between two words, the word`s synonyms and hyponyms play a crucial
role. The above mentioned works in the literature [32-35] developed
multi-sense embeddings but with little attention paid on synonym and
hypernym relations. This paper projects the importance of the Wordnet
hierarchy for understanding synonym sets, hypernyms, lowest common
subsumer of concepts to generate multi-sense embeddings for word
similarity tasks.

The next section portrays the proposed approach for generating
multi-sense embeddings based on the word’s synonyms, parts-of-
speech, hypernyms. In the next section, a detailed exploration of
Wordnet is presented at the start, followed by the explanation of
working with multi-sense embeddings.

III. Proposed Methodology

In this section, the main idea of multi-sense embeddings using
Wikipedia data and lexical database Wordnet is discussed. This
section discusses developing Wikipedia corpus at the start, which is
used by the proposed algorithm. The methodology presented in this
section has two main tasks: (i) exploring Wordnet lexical structure (ii)
using knowledge of synonym sets, hypernyms to produce multi-sense
embeddings. The last subsection applies the multi-sense embeddings
developed to perform the word similarity tasks.

A. Pre-Processing of Wikipedia Articles
The initial process is to transform the Wikipedia articles into

a corpus and then map the words with synonym sets of Wordnet.
Initially, the Wikipedia dump is preprocessed to form the corpus. The
latest Wikipedia dump is around 15.7 GB of size and has 4,677,566
documents with more than 19,508,987 articles. The articles in the dump
are in the XML format, which needs to be converted to text format.
This research converts the Wikipedia dump into text format. Articles
shorter than 50 words, article name starting with numbers, articles
which are not standard words are pruned. From the text, punctuation
and other unknown symbols are removed. The tokens which occurred
more than ten times in the articles are preserved, and rest is removed
since it is challenging to obtain their context. After cleaning the entire
text, more than 2 million unique tokens are formed.

- 3 -

Article in Press

Later, these tokens are trained using the Word2vec model. To train
the model, this paper uses the Word2vec with default hyperparameters.
CBOW model of Word2vec [18] is the training algorithm, with a window
size of 15 and vectors of size 300 dimensions (300 d) are the parameter
specifications to generate embeddings. After this, all the possible senses
obtained from Wordnet also are assigned vectors from the trained
Word2Vec model. For each sense of the word, 300 dimensional vectors
are generated. This paper proposes an efficient and simple training phase
with minimal hyperparameters to understand the sense embeddings.
Once this training phase is completed, Wordnet is explored to understand
to generate all possible senses of a given word.

B. Exploring Wordnet Hierarchy
One of the main relationships that can exist among the concepts in

Wordnet is synonymy. Wordnet has 117,000 synonym sets (synsets),
and each of these is linked to one another using conceptual relations. A
word may have many forms, every form has a distinct synset and these
are uniquely represented in Wordnet. The relation between the synsets
is an ancestor-child relation, this kind of relationship is referred to as
hyponymy or IS-A relation.

Polysemous words can be used in many senses; the synonym set
of a concept refers to a particular sense. If two words are similar, then
they share a common synset in the network. Traditional knowledge-
based measures [11]-[16] handle the polysemy and synonymy of the
words using the taxonomic structure of the semantic network. These
measures derive the synonym sets of the words using the hierarchical
semantic relationships. Any model developed using ontologies for
deriving semantic similarity should be capable of exploring different
kinds of relations like hierarchical (IS-A), has-a, hypernyms, etc. The
hierarchy between the concepts is a significant relationship as it maps
the category of objects into a taxonomy.

The hierarchical structure of the concepts is provided by taxonomy.
Each taxonomy concept is represented as a node, and the nodes are
connected based on hierarchical relations in the network. The edges
of the concepts represent the semantic relationship. WordNet [12] is
a semantic network of English words. In this network, each word is
represented as a synset. The noun network in WordNet was developed
very richly using hyponymy/hypernymy hierarchy.

The maximum depth of the noun hierarchy in this network is 16
nodes. The noun network includes nine types of relations; synonymy
relation, hyponymy (IS-A) relation, and its inverse hypernymy, and
six meronymic (PART-OF) relations. Synonymy relations account for
80 percent of the relations. Hyponymy relation between the words
articulates IS-A relationship between two words and the inverse
of this relation is hypernymy. COMPONENT-OF, MEMBER-OF,
SUBSTANCE-OF and their inverses are meronymic relations.

Fig. 1 shows an example of Wordnet’s “is-a” relation structure. The
concepts in Wordnet are arranged in the hierarchical structure. From
Fig. 1, it can be noticed that the root of all concepts is ‘Entity.’ The figure
shows only a fragment of Wordnet structure. The leaves ‘mammal,’

‘tree,’ of the tree is under ‘organism.’ The leaf node ‘mammal’ is-a
‘vertebrate’ and ‘vertebrate,’ is-a ‘chordate.’ The concept ‘chordate,’
is-a ‘animal.’ Similarly, ‘carrot’ is-a ‘root,’ and ‘root’ is-a ‘plant-organ,’
which is-a ‘plant-part.’ This organized representation in Wordnet helps
in obtaining various senses of concepts. Fig. 1 represents the basic
hierarchical cover of three concepts ‘tree,’ ‘mammal,’ and ‘carrot.’
This figure does not cover the various classifications under the
concepts like ‘organism’ or under ‘plant.’ Once again, the concept like
‘mammal’ has various subconcepts like cat, dog etc. All these are well
organized in the Wordnet.

Entity

Physical entity

Object

Whole

living_thing

organism

plant animal

vascular_plant

woody_plant

tree

plant_part

plant_organ

root

carrot

natural_object

Chordate

vertebrate

mammal

Fig. 1. Wordnet is-a relation example.

A concept is a synset of Wordnet that exists in the form as ‘concept.
pos.number.’ The first part in the synset represents the concept, pos
represents the possible parts-of-speech (noun, verb, adjective and
adverb), and the number indicates the number of applicable parts-of-
speech that exist for the concept. Consider the concept ‘advance,’ the
possible synsets for the concept is shown in Fig. 2. From Fig. 2, it
can be noted that the concept ‘advance’ is having a relationship with
six noun synsets, twelve verb synsets, and two adjective synsets. Each
synonym set in Fig. 2 is a different sense of the word ‘advance.’

Hypernyms in Wordnet specify the hierarchical structure of a concept
and from the hypernyms of the two concepts, common ancestors can be
checked. Checking the path of the hypernyms of two concepts helps in
recognizing additional senses of word pairs. Hypernyms of two concepts
‘accentuate’ and ‘highlight’ are shown in Fig. 3. From the figure, it
can be noticed that the concepts have more common ancestors. The
length of the hypernym path for the concept ‘accentuate’ is 9, and that

Synset(’progress.n.03’), Synset(’improvement.n.01’), Synset(’overture.n.03’),
Synset(’progress.n.02’), Synset(’advance.n.05’), Synset(’advance.n.06’),

Synset(’advance.v.01’), Synset(’advance.v.02’), Synset(’boost.v.04’),
Synset(’promote.v.02’), Synset(’advance.v.05’), Synset(gain.v.05’),
Synset(’progress.v.01’), Synset(’advance.v.08’), Synset(’promote.v.02’),
Synset(’advance.v.10’), Synset(’advance.v.11’), Synset(’advance.v.12’),

Synset(’advance.s.01’), Synset(’advance.s.02’)

Fig. 2. Possible synonym sets for the concept ‘advance’ obtained from Wordnet.

- 4 -

International Journal of Interactive Multimedia and Artificial Intelligence

of ‘highlight’ is 11. Ancestors of concept ‘accentuate’ are up to level 9,
the depth of the concept from the root is 9, and that of ‘highlight’ is 11
from the root. Both concepts have the same root up to level 9. Hence,
these concepts are more similar. Wordnet provides different modules
to obtain synonym sets, hypernyms, and other relations between the
concepts. The proposed approach uses the information of synonym sets
of a word, hypernym path of the words to generate the appropriate
synset, hypernym path based sense embeddings for evaluating word
similarity. Another important information this paper considers to derive
multi-sense embeddings while performing the word similarity task is
least common subsumer (LCS). Least common subsumer (LCS) is the
least possible ancestor of the two concepts in the taxonomy. With the
concepts represented in Fig. 1, it is not possible to understand entirely
about LCS. There are many underlying concepts under a category,
hence a more complex tree structure is shown in Fig. 4, to understand
the LCS of the concepts.

Fig. 4 is an instance of Wordnet taxonomy. In Fig. 4, A is the root
node and every node is a concept (represented as the synonym set)
of Wordnet. Distance between two nodes is the shortest path possible
from one node to another. Consider nodes H and L, the length between
H and L is 6, least common subsumer of H, L is A. Similarly, LCS(F,
L) is C and LCS(E, I) is B.

A

B

D

H J K LI

E F G

C

Fig. 4. A sample Tree in WordNet.

C. Methodology
In this subsection, the process of generating the multi-sense

embeddings using synonym sets and hypernyms is presented. Fig.
5 shows the block diagram of the proposed approach. Multi sense
embeddings are generated using the Wordnet and Wikipedia text.
Extracting multiple senses of a word is the crucial step in the entire
process. In order to extract the senses, synonym sets and hypernym
path of the word from Wordnet is used.

Wikipedia

Wordnet

LCS
Average
Cosine

Similarity

Concept 1

Concept 2

Synonym set
Hypernym path

Google News
Vectors

Corpus Word
Train the

words with
CBOW model

Multi Sense Embeddings of word

Multiple sense embedding vectors

Synonyms

Multiple
Senses of
the word

Embeddings
of each sense

of word

Word Similarity Task

Multiple sense embedding vectors

Senses

Fig. 5. Block Diagram of generating Multi-sense Embeddings and performing
Word similarity task.

There are some concepts with fewer or zero synsets in Wordnet.
This paper handles the words with fewer synsets using Google News
vectors1 to derive synonyms.

The similarity of the synonyms with the respective word is
calculated. Synonyms which are in certain threshold are considered as
possible senses of the respective word. Once the senses are obtained,
each sense is converted into a 300-dimensional vector from the pre-
trained Wikipedia CBOW model. The words in the corpus are trained
on Wikipedia text using the CBOW model as it is an efficient model
and deals with the context of words in more massive datasets quite
well. The block diagram also shows how to perform the word similarity
task. The similarity of the two words is obtained using their multi-
sense embedding vectors. Since there are multiple sense vectors for
each word, the average cosine similarity between them is calculated
to get the final similarity. This paper also inspects another similarity

1 https://code.google.com/archive/p/word2vec/

Synset(’act.v.01’)
Synset(’interact.v.01’)
Synset(’communicate.v.02’)
Synset(’inform.v.01’)
Synset(’tell.v.02’)
Synset(’impart.v.01’)
Synset(’convey.v.01’)
Synset(’express.v.01’)
Synset(’stress.v.01’)

Synset(’act.v.01’)
Synset(’interact.v.01’)
Synset(’communicate.v.02’)
Synset(’inform.v.01’)
Synset(’tell.v.02’)
Synset(’impart.v.01’)
Synset(’convey.v.01’)
Synset(’express.v.01’)
Synset(’stress.v.01’)
Synset(’bring_out.v.04’)
Synset(’foreground.v.01’)

Hypernyms of the concept “highlight”

Hypernyms of the concept “accentuate”

Level 1

Level 5

Level 9

Fig. 3. Hypernym paths for concepts ‘accentuate’ and ‘highlight’.

- 5 -

Article in Press

metric called Tanimoto similarity [42] along with cosine similarity.
The discussion about these metrics is mentioned in the next subsection.
The block diagram shows how to obtain the multi-sense embeddings
of a single word and similarity between two concepts. For the entire
corpus with more than 2 million tokens, the same procedure is applied.

Once the information of synonym sets and hypernyms path
are extracted from Wordnet, the next step is to generate the sense
embeddings. The approach mentioned in this section is not explored
in any of the previous works, the results obtained with this approach
highlights the efficiency of this work. Algorithm I, Sense Embedding
using Wordnet Synonym sets, gives the idea of generating sense
embedding of a word Ci.

Algorithm I: Sense Embedding using Wordnet Synonym sets:
Procedure SenseEmbed(Ci)

Input: Word (Ci), preprocessed Wikipedia Corpus, Wordnet, context of the
word.
Output: Multi-Sense embeddings of the word
Step 1: Generate the synonym sets for concept Ci,
 SS(Ci) = [s1, s2, s3,....sn], n synonym sets for Ci
 SS_Preserve(Ci)={}, empty set
Step 2: Group synonym sets based on parts-of-speech.
Step 3: Preserve the most suitable sense by checking the definitions of each
synonym set in Wordnet
 pos ← POS(word (Ci)) from context
 SS_POS ← pos(SS(Ci))
 for j in 1 to len(SS_POS):
 if def(SS_POS[j]) matches context:
 SS_Preserve(Ci) ← SS_POS[j]
 SS_Preserve(Ci) ← lemmas(SS_POS[j])
 end if
 end for
Step 4: Generate the hypernym path of each synonym set to add appropriate
senses.
 for j in 1 to n:
 Hypernyms = synsets(hypernym_path(sj))
 if hypernym_path(sj) exists:
 for q in 1 to len(Hypernyms):
 if Similar(Hypernyms[q], word(Ci)) >= δ
 Add Hyper to SS_Preserve(Ci)
 end if
 end for
 end if
 end for
Step 5: Extract top-m related synonyms of Ci
 top_m(Syn)<-Google News vectors
Step 6: Update SS(Ci) of Ci

 for k in 1 to m:
 if top_m(Syn) not in SS(Ci)[k]
 Add item to the candidates of SS_Preserve(Ci)
 end if
 end for
Step 7: Generate word vector representations for each sense in SS_
Preserve(Ci) using trained Word2vec representations.
 for k in 1 to len(SS_Preserve(Ci)):
 SEV(Ci) ← Word2Vec(SS_Preserve(Ci)[k]
 end for

Algorithm I, SenseEmbed(Ci), takes a word (Ci), preprocessed
Wikipedia corpus, Wordnet as input. The output of the algorithm
is multi-sense embeddings SEV(Ci) of the word Ci. The articles in
Wikipedia are preprocessed by removing punctuations, HTML tags,
followed by removing stop words from the document. The words
are then lemmatized to their root form. A corpus of Wikipedia words
is formed after this. Wikipedia corpus is an input for the algorithm
to check the word for which multi-sense embeddings need to be
generated is present or not. Lexical database Wordnet and the context
of the word are other important inputs to the algorithm. Context usually
is a sentence or a sequence of words in which the required word (Ci)
is present. Based on context, different related synonyms of the sense
are extracted. Algorithm I generates multi-sense embedding vectors as
output for the given input word (Ci) based on seven steps.

The first part of the algorithm from steps 1 to 4 majorly relies on
Wordnet to extract multiple senses of the word. After step 1 in the
algorithm, the possible synsets of the word are in SS(Ci). Appropriate
synsets of the words are stored in SS_Preserve(Ci), which is empty at
the start and is updated in steps 3, 4 and 6. In step2, the synonym sets
are grouped based on their parts-of-speech and the tagging of synonym
sets is removed. Grouping synonym sets based on their parts-of-speech
helps to obtain synsets required for the context.

In step 3, POS(word (Ci)) is an internal procedure that returns the
parts-of-speech of the input word. Based on this, the synsets of the
word are selected and stored in SS_POS. The synsets definitions are
matched with the context of the word to update SS_Preserve(Ci). To
explain in further consider the words shown as examples in Table I.
Table I shows the information of two words, ‘tiger’ and ‘sofa.’ For the
word ‘tiger,’ a context, synsets and definitions of synsets are mentioned
in the table. Similarly, for the word ‘sofa,’ synsets and lemmas are
mentioned in Table I. The context of ‘tiger,’ matches the definition of
‘tiger.n.02’, and the lemmas of this sense are added to SS_Preserve(Ci).
The lemmas of a synset are the synonyms of the word in a particular
sense. There are certain cases where the algorithm has to handle the
words with no context. For these words, the algorithm considers all the
synsets and their lemmas. The second word ‘sofa’ in the table has only
one synset and the context of this word is not given. The lemmas of the
words are added to SS_Preserve(Ci).

TABLE I. Synsets, Definitions and Lemmas for Example Words ‘Tiger’
and ‘Sofa’ from Wordnet

Word ------- ‘tiger’
Context ‘tiger of snows’
Synsets Synset(‘tiger.n.01’), Synset(‘tiger.n.02’)
Definition of ‘tiger.n.01’
Definition of ‘tiger.n.02’

‘a fierce or audacious person’
‘large feline of forests in most of Asia
having a tawny coat with black stripes;
endangered’

Lemmas of ‘tiger.n.02’ ‘tiger’, ‘Panthera_tigris’
Hypernyms of ‘tiger.n.02’ Synset(‘big_cat.n.01’)
Hypernym path
of ‘tiger.n.02’

‘entity.n.01’→’physical_entity.n.01’→
‘object.n.01’ → ‘whole.n.02’ →
‘living_thing.n.01’ → ‘organism.n.01’ →
‘animal.n.01’ → chordate.n.01’ →
‘vertebrate.n.01’→ ‘mammal.n.01’ →
‘placental.n.01’ → ‘carnivore.n.01’ →
‘feline.n.01’→ ‘big_cat.n.01’→’tiger.n.02’

Word ------ ‘sofa’
Context ----
Synsets Synset(‘sofa.n.01’)
Definition of ‘sofa.n.01’ ‘an upholstered seat for more than one

person’
Lemmas of ‘sofa.n.01’ ‘sofa’, ‘couch’, ‘lounge’

- 6 -

International Journal of Interactive Multimedia and Artificial Intelligence

There are certain words with fewer or no synsets in Wordnet, for
these words hypernyms and hypernym paths are considered to extract
possible senses. Step 4 discusses these details. The word ‘tiger’ in Table
I, has only two senses with only one sense is matching the context.
At the same time, the lemmas (synonyms) of the word are also two.
Hence, navigating through the hypernym path of such words, helps in
increasing the multiple senses. The hypernym path of synset ‘tiger.n.02’
is shown in Table I, from the path it is observed that the head portion
of the path contains more generalized synsets. But the synsets which
are two or three levels up the synset ‘tiger.n.02’ are more specific to
the synset. Hence, these senses are also examined to update them in
SS_Preserve(Ci). To determine, whether these can be added or not,
cosine similarity between the synset in the hypernym path and word
are determined. If the similarity is greater than δ, the synset is added to
SS_Preserve(Ci). The value this paper considers for the δ is 0.5.

Steps 5 and 6 in Algorithm I handle the words with no synsets
and hypernym paths in Wordnet by extracting synonyms of the word
using pre-trained Google News vectors. From step 5, top-m related
synonyms of Ci are extracted. The value of m chosen is 10. In step 6,
these are added to SS_Preserve(Ci).

After step 6, SS_Preserve(Ci) contains synsets, lemmas (synonyms)
and certain synsets from hypernym path or synonyms from Google
News vectors. As the synonym sets are in the form ‘concept.pos.
number,’ it is not possible to generate the embeddings for words with
these representations hence tagging is removed. For each sense present
in SS_Preserve(Ci), a vector of 300 dimensions is obtained from the
trained model discussed in subsection A. The context sliding window
in this approach is similar to the one used in CBOW [18]. The word
vector representations for each sense of SS_Preserve(Ci) are stored in
SEV(Ci).

The vector representations stored in SEV(Ci) are based on the
synsets, lemmas (synonyms), hypernym path information from
Wordnet, and synonyms extracted from Google News vectors. These
vectors can be used in word similarity, analogy, entailment tasks. In
the next subsection, the multi-sense embeddings are used to carry out
word similarity tasks.

D. Word Similarity Task using Multi-Sense Embeddings
In the previous subsection, the procedure to obtain multi-sense

embedding representations of a word is presented. This subsection
uses the methodology of multi-sense embeddings to carry out word
similarity tasks. For two concepts or words, Ci, Cj, Algorithm I
generates the multi-sense vector representations as,

Where Ci , Cj represents words, s1i represents sense embedding
vector ‘i’ of word Ci and s2j represents the sense embedding vector ‘j’
of Cj. In the above representations, the number of senses for concepts
Ci and Cj are n and m, and both greater than one.

Algorithm II obtains the similarity of two words Ci, Cj, using SEV(Ci),
SEV(Cj) vectors. The initial step in the algorithm is to generate Multi
sense embedding vectors of the concepts using Algorithm I. The next
step is to update SEV(Ci), SEV(Cj). The idea here is to utilize all the
related senses of the words to derive similarity. Wordnet is searched for
the least common subsumer (LCS) of words Ci, Cj. LCS is the shared
ancestor of two concepts.

Using LCS information of Ci and Cj, SEV(Ci), SEV(Cj) are updated.
Step 2 in Algorithm II updates the sense vectors by checking the path
in between LCS to Ci. The list Synsets(Ci, LCS) in the algorithm holds
all the synsets in the path from Ci to LCS. The synsets which are

similar to the word Ci are added to SEV(Ci), by calculating the Similar(
Synsets(Ci, LCS) [j], Ci). If this value is greater than δ, then the synset is
converted into a vector of 300 dimensions from the pretrained CBOW
model on Wikipedia text. The same procedure is repeated to update
SEV(Cj). If LCS of concepts does not exist, the hypernym path of each
concept is examined. It is observed from the experimentations that
this step hardly updates the sense vectors, since individual hypernym
paths are checked in Algorithm I. But this is done not to miss out on
any possible senses. Algorithms I and II check all the possible senses,
which increases the overall efficiency of the proposed approach.

Step 3 in Algorithm II calculates the average similarity of the two
multi vectors, SEV(Cj), SEV(Cj). MSSA approach [35] gives two
metrics for evaluating the approaches, namely average similarity
and maximum similarity. If the maximum similarity is considered,
similarity obtained will be of only one sense in each word. Hence, this

Algorithm II : Word Similarity using Sense Embed vectors and
Wordnet information:: WordSimilarity(Ci,Cj)

Input: Words Ci, Cj,
Output: Similarity of Ci, Cj

Step 1: Multi sense vectors for Ci, Cj

 SEV(Ci) ← SenseEmbed(Ci)
 SEV(Cj) ← SenseEmbed(Cj)
Step 2: Update SEV(Ci), SEV(Cj) using LCS information from Wordnet,
hypernym path of both concepts
 if LCS(Ci, Cj) is TRUE:
 Synsets(Ci, LCS) ← Path(Ci,LCS)
 for j in 1 to len(Synsets(Ci , LCS)):
 if Similar(Synsets(Ci , LCS) [j], Ci) >= δ
 Add Vec(Synsets(Ci , LCS) [j]) to SEV(Ci)
 end if
 end for
 end if
 // Repeat above for SEV(Cj), Cj

 else
 path1← hypernym_path(Ci)
 path2 ← hypernym_path(Cj)
 for k in len(path1):
 for l in len(path2):
 if path1[k]== path2[l]
 if path1[k] not in SEV(Ci)
 update SEV(Ci)
 end if
 if path1[k] not in SEV(Cj)
 update SEV(Cj)
 end if
 end if
 end for
 end for
Step 3: Similarity of the concepts Ci , Cj

 for p in 1 to len(SEV(Ci)):
 for q in 1 to len(SEV(Cj)):
 sim[p][q] = M(SEV(Cj)[p], SEV(Cj)[q])
 //Where M is either Cosine or Tanimoto similarity
 end for
 end for
 //average of similarity

- 7 -

Article in Press

paper uses average similarity of all the senses. Given SEV(Ci), SEV(Cj),
the similarity is calculated using the following equation,

 (1)

Where M(s1i, s1j) gives the similarity of sense embedding vectors
s1i, s1j, M is either Cosine or Tanimoto similarity metric for assessing
the vectors. If the words are represented as vectors, the task of finding
the similarity between them is simpler. There are many measures that
calculate the similarity between the vectors, like Cosine, Tanimoto
[42], etc. The most used metric for Word2vec models is cosine
similarity. The vectors with the same orientation are more similar and
tend to have a value of 1 with cosine similarity. The results of state-of-
art approaches are based on the cosine similarity between the vectors.
To estimate the strength of the proposed approach with state-of-art
techniques cosine similarity is considered. Tanimoto metric [42] is
mainly used to calculate the similarity of vectors with binary data. But
this metric can be easily enhanced to apply on vectors with continuous
data. Tanimoto [42] metric for continuous data is used in this paper.
Moreover, this metric is analogous to cosine similarity. Hence, this
metric is also considered for measuring the similarity.

 (2)

 (3)

This section proposes multi-sense embeddings using Wikipedia
data and lexical database Wordnet. Multiple senses of words are
extracted from the synsets, definitions, hypernym path and Google
News vectors. These vectors are enhanced using LCS information of
concepts to perform word similarity tasks. The next section discusses
the experimentation details, datasets and models compared with the
proposed approach.

IV. Results

In this section, experiments related to word similarity task are
presented. The proposed algorithm and its comparison against other
approaches are shown in detail.

A. Experimentation Setup
The proposed methodology in this paper is implemented using

Python 3.6 with NLTK 3.42 and gensim 3.43 libraries. NLTK is used
to get the information of Wordnet’s synsets, definitions, lemmas,
LCS of concepts and hypernym path. This paper builds a corpus from
Wikipedia dump4 which is open-source. CBOW Word2vec [18] is used
to train the corpus of words. The hyperparameters of the model are as
follows: CBOW model for training, a window size of 15, vector size
of 300 dimensions. Google News Vectors5 used in Algorithm I is a pre-
trained model with tokens and respective word vectors.

B. Datasets
The benchmark datasets used in this paper are described as follows:

1. MC dataset [43]: MC dataset is a subset of the RG dataset [44],
this dataset has 30 word pairs. Two word pairs are not present in

2 https://www.nltk.org/
3 https://radimrehurek.com/gensim/models/word2vec.html
4 https://dumps.wikimedia.org/enwiki/latest/
5 https://code.google.com/archive/p/word2vec/

Wordnet and hence the researchers work on 28 word pairs. The
rating for each word pair in the dataset is in the range from 0 to 4,
higher rating indicates word pairs are more similar.

2. RG dataset [44]: This dataset contains 65 word pairs and rating is
in the range 0 to 4.

3. WS-353 dataset [45]: This dataset has 353 noun pairs, the rating of
word pairs are in a range from 0 to 10. The dataset is divided into
two sets. The first set is with 153 word pairs and the later with 200
word pairs. The complete version is considered in experimentation.

4. MTurk771 dataset: Halawi et al, [46] proposed this dataset with 771
word pairs and each word pair is given a rating in the range 0 to 5.

5. MTurk287 dataset [47]: This dataset has 287 word pairs, the rating
of each word is in the range 0 to 5. All the word pairs are noun pairs.

6. SCWS (Stanford Context Word Similarity) dataset [48]: This
dataset has 1997 word pairs, for each word in the word pair context
is mentioned in the dataset. Word pairs are given a rating in range
from 0 to 10.

7. Rare words dataset [49]: This dataset has 2034 word pairs and each
word pair is given a rating in the range 0 to 4.

8. Men dataset [50]: This dataset has 3000 word pairs. This dataset
has word pairs of noun, verb, and adjectives. The rating of each
word ranges from 0 to 1.

9. Simlex999 dataset [51]: This dataset has 999 word pairs, out of
these 999 word pairs, 666 word pairs are nouns, 222 are verb pairs
and 111 adjective pairs. For experimentation purposes, 666 noun
pairs (Simlex666) are considered.

C. Models Compared
The following models are compared with the proposed approach on

benchmark datasets,
1. CBOW: Mikolov et al. [18] proposed Word2vec with two word

embedding models, namely Skip-gram and CBOW. Skip-gram
aims to predict a context word in a window around a target word.
CBOW predicts the current target word using the representations
for its context words. It is mentioned in several works that CBOW
is more efficient, hence this approach is selected as one of the state-
of-art methods for comparison.

2. GloVe: Pennington et al. [30] proposed a log-bilinear model called
GloVe for learning word vectors. This is based on global matrix
factorization and local context window methods. Local window
methods like Word2vec[18], fail to capture global statistical
information in the corpus, GloVe overcomes this drawback.

3. fastText [31]: Word2vec [18] and GloVe [30] ignore morphology
of words. Hence, these approaches produce more out of vocabulary
words. The fastText approach overcomes this problem by
representing each word as a bag of character n-grams.

4. SenseEmbed [32]: SensEmbed uses BabelNet [52] for word
sense disambiguation. This model trains a word2vec model (400
dimensions). This approach integrates structural knowledge from
BabelNet and the distributional sense representations.

5. Chen et al. [33]: This approach performs disambiguation of
words to learn word sense representations. It has two sub-tasks,
namely L2R (left to right) and S2C (simple to complex). L2R
disambiguates words from left to right and S2C selects senses of
the word. S2C selects only those senses with a certain threshold.

6. MSSA: MSSA approach [35], mentions that Chen et al. [33]
considers only specific senses leading to poor representations.
Hence, MSSA explores all senses available for a word. MSSA-T
and MSSA-D approaches mentioned in this work are taken for
comparison.

- 8 -

International Journal of Interactive Multimedia and Artificial Intelligence

7. Paragram : Wieting et al. [42] proposed a word embedding model
based on paraphrase phrases in PPDB database [53].

8. Counter-fitting [41]: This approach considers antonymy and
synonymy constraints from the PPDB database and Wordnet.

9. Attract-Repel: Mrksic et al. [39] proposed Attract–Repel approach
with synonymy and antonymy constraints to develop embeddings.
In this approach, semantic relations are taken from BabelNet [52].

D. Metrics
This paper uses two evaluation metrics, the Spearman rank

correlation, the Pearson correlation factor. Pearson correlation was
first given in the studies of synonymy between words by Rubenstein
and Goodenough [43]. A majority of the researchers in their works
evaluated their approaches with Pearson correlation. Hence, this paper
uses this evaluation metric to compare the results with state-of-the-art
approaches. Another metric that is used by all the researchers for word
similarity tasks is Spearman correlation. Hence, this metric is also used
for comparing the results. Pearson correlation coefficient measures the
strength and direction of the linear relationship between the variables.
Whereas, the Spearman coefficient measures the correlation between
the ranks of two variables. There are fewer publications that reported
the results of both Spearman and Pearson correlation coefficient
values. The unavailable data are not mentioned in the results.

The experimentations of the approaches Word2vec [18], GloVe [30],
fastText [31] are implemented by us. The results of the approaches
[39], [41], [42] are obtained from the HESML library6. The results of
the approaches [32] and [33] for some datasets are reported in [35]. The
MSSA [35] approach reported results for only Spearman correlation.
The results reported in the tables for [32], [33] are taken from MSSA
[35], as it became difficult to set up the same environment and to
produce results.

Table II presents the results of the proposed approach against several
state-of-the-art distributional approaches on the MC dataset [43]. On
this dataset, Attract-Repel, SenseEmbed, and proposed approaches
have obtained the highest Spearman correlation results. The proposed
method obtained the highest results for the Pearson correlation, which
is 0.851.

TABLE II. Spearman and Pearson Correlations of Proposed and
Existing Word Embedding Approaches on MC-28 Dataset, Highest

Results Highlighted in Boldface

Method Spearman correlation Pearson correlation
SenseEmbed [32] 0.880 --

MSSA-T [35] 0.796 --
MSSA-D [35] 0.835 --

Attract-Repel [39] 0.884 0.837
Counter-fitting [41] 0.857 0.806

Paragram [42] 0.824 0.796
CBOW [18] 0.781 0.796
GloVe [30] 0.862 0.845

FastText [31] 0.845 0.842
Proposed approach

(cosine) 0.865 0.851

Proposed approach
(Tanimoto) 0.860 0.845

Table III shows the results of the proposed approach against
several models for the RG [44] benchmark dataset. In this experiment,
SensEmbed and proposed approach obtained the highest results for the
Spearman correlation. The approach SenseEmbed [32] develop multi-
sense vectors using BabelNet [51]. BabelNet is a lexical database

6 https://github.com/jjlastra/HESML

composed of different resources. This approach trains the Word2vec
model with 400 dimensions. This approach obtained better results on
smaller datasets when the size of the dataset increases, the results of
SenseEmbed approach are not promising as they are for MC and RG
datasets.

MC [43] benchmark is a subset of the RG [44] benchmark dataset.
The words in the MC benchmark and RG are nouns. Algorithm I
to generate the multi-sense embeddings of these datasets uses noun
synsets from Wordnet. Some of the word pairs in these datasets are
having very few noun synsets. For the words with one or two synsets,
lemmas (synonyms) are generated. For words with fewer synonyms
tracing the hypernym path gives multiple senses. There is minimal
variation in the Spearman and Pearson correlation for cosine and
Tanimoto metrics because both are analogous. The human ratings of
half of the word pairs in MC benchmark are meager, suggesting that
these word pairs are less similar. Out of 28 word pairs in the dataset, the
human ratings of 10 word pairs are below 1.0, the scale of the ratings
is in the range [0,4]. Hence, the approaches like Attract-Repel [39],
Counter-fitting [41] handle the antonym relations work well on this
dataset. The multi-sense embeddings approaches also worked well on
both MC and RG benchmarks since all the senses are covered. The
SenseEmbed [32] approach uses BabelNet [52], which has a wide
coverage of synsets. Hence it is able to achieve better results on these
two benchmarks and also on other datasets.

TABLE III. Spearman and Pearson Correlations of Proposed and
Existing Word Embedding Approaches on RG-65 Dataset, Highest

Results Highlighted in Boldface

Method Spearman correlation Pearson correlation
SenseEmbed [32] 0.871 --

MSSA-T [35] 0.776 --
MSSA-D [35] 0.801 --

Attract-Repel [39] 0.825 0.840
Counter-fitting [41] 0.808 0.806

Paragram [42] 0.813 0.810
CBOW [18] 0.760 0.772
GloVe [30] 0.755 0.770

FastText [31] 0.801 0.793
Proposed approach

(cosine) 0.863 0.851

Proposed approach
(Tanimoto) 0.865 0.847

Table IV presents the Spearman and Pearson correlation values
of the approaches on the WS-353 dataset. From the results, it can be
observed that the proposed approach outperformed all the other state-
of-art approaches. WS-353 dataset is an interesting one because the
dataset is used for carrying out semantic relatedness and semantic
similarity tasks. The dataset has a collection of nouns, verbs, and
adjectives. Algorithm I groups the synsets based on the parts-of-speech
while generating the synsets, and hence, the proposed approach is able
to achieve better results for both cosine and Tanimoto similarities.

Tables V and VI represent the results on Turk771 and Turk287
datasets. Semantic relatedness tasks use these two datasets. The
difference between semantic similarity datasets and relatedness
datasets is in the former, the concepts are more specific, and in the
later, the concepts are more general. The proposed approach handles
both the types because it observes both specific (using synonyms)
terms, and general (using hypernyms) terms efficiently. The proposed
approach obtained the highest results for Spearman correlation on both
benchmarks. The single vector representation model GloVe achieved
the highest results for the Pearson correlation.

- 9 -

Article in Press

TABLE IV. Spearman and Pearson Correlations of Proposed and
Existing Word Embedding Approaches on WS-353 Dataset, Highest

Results Highlighted in Boldface

Method Spearman correlation Pearson correlation
SenseEmbed [32] 0.779 --

MSSA-T [35] 0.694 --
MSSA-D [35] 0.708 --

Attract-Repel [39] 0.666 0.608
Counter-fitting [41] 0.680 0.615

Paragram [42] 0.764 0.679
CBOW [18] 0.603 0.642
GloVe [30] 0.716 0.713

FastText [31] 0.738 0.698
Proposed approach

(cosine) 0.817 0.836

Proposed approach
(Tanimoto) 0.814 0.832

TABLE V. Spearman and Pearson Correlations of Proposed and
Existing Word Embedding Approaches on Turk771 Dataset, Highest

Results Highlighted in Boldface

Method Spearman correlation Pearson correlation
Attract-Repel [39] 0.599 0.590

Counter-fitting [41] 0.701 0.666
Paragram [42] 0.745 0.704
CBOW [18] 0.672 0.698
GloVe [30] 0.715 0.749

FastText [31] 0.661 0.728
Proposed approach

(cosine) 0.761 0.733

Proposed approach
(Tanimoto) 0.757 0.727

TABLE VI. Spearman and Pearson Correlations of Proposed and
Existing Word Embedding Approaches on Turk287 Dataset, Highest

Results Highlighted in Boldface

Method Spearman correlation Pearson correlation
Attract-Repel [39] 0.606 0.618

Counter-fitting [41] 0.639 0.630
Paragram [42] 0.699 0.701
CBOW [18] 0.674 0.650
GloVe [30] 0.724 0.749

FastText [31] 0.709 0.728
Proposed approach

(cosine) 0.726 0.736

Proposed approach
(Tanimoto) 0.724 0.732

SCWS dataset has 1997 word pairs. Each word in the word pair has
a context sentence, parts-of-speech of the word is mentioned for each
word. SCWS dataset has four different sets of word pairs. The majority
of the word pairs in the dataset have the same parts-of-speech, and
some word pairs are with different parts-of-speech.
• The dataset has 1323 pairs, which are nouns.
• The dataset has 399 verb pairs.
• The dataset has 97 adjective pairs.
• Remaining 178 word pairs are with different parts-of-speech like

noun-verb, verb-noun, verb-adjective, etc.
The results of the SCWS dataset are given in Table VII. The

state-of-art methods produced competitive results with Spearman

correlation but failed to produce the same with Pearson correlation.
But the proposed approach is consistent in obtaining the highest results
on this dataset also. Algorithm I handles words with different parts-of-
speech, that enabled the proposed approach to achieve better results on
this dataset in comparison with state-of-art methods.

TABLE VII. Spearman and Pearson Correlations of Proposed and
Existing Word Embedding Approaches on SCWS Dataset, Highest

Results Highlighted in Boldface

Method Spearman correlation Pearson correlation
SenseEmbed [32] 0.624 --

MSSA-T [35] 0.649 --
MSSA-D [35] 0.640 --

Chen et al. [33] 0.662 --
Attract-Repel [39] 0.587 0.113

Counter-fitting [41] 0.611 0.114
Paragram [42] 0.691 0.115
CBOW [18] 0.643 0.105
GloVe [30] 0.624 0.106

FastText [31] 0.652 0.106
Proposed approach

(cosine) 0.693 0.658

Proposed approach
(Tanimoto) 0.690 0.658

 Table VIII shows the results of the approaches to the Rare words
dataset. This dataset has nouns, verbs and adjective word pairs. The
proposed approach has obtained the highest results of Spearman and
Pearson correlation on this dataset also because Algorithm I handles
different parts-of-speech efficiently.

TABLE VIII. Spearman and Pearson Correlations of Proposed and
Existing Word Embedding Approaches on Rare words Dataset, Highest

Results Highlighted in Boldface

Method Spearman correlation Pearson correlation
Attract-Repel [39] 0.273 0.319

Counter-fitting [41] 0.207 0.288
Paragram [42] 0.536 0.505
CBOW [18] 0.456 0.438
GloVe [30] 0.451 0.440

FastText [31] 0.464 0.432
Proposed approach

(cosine) 0.543 0.544

Proposed approach
(Tanimoto) 0.535 0.535

Table IX shows the Spearman and Pearson correlation values on
Men dataset. This dataset is a collection of 3000 word pairs, with all
the parts-of-speech included in it. The proposed approach continues
to outperform all the state-of-art approaches on this dataset also.
The proposed approach obtained the highest values of 0.836, 0.815
for Spearman and Pearson correlation, respectively. From the results
obtained on all the datasets, it is observed that the proposed approach
performed well on different benchmarks. It is because of the procedure
followed to generate the multi-sense embeddings.

Table X shows the analysis on Simlex666 dataset, the results on this
dataset for the proposed approach and other multi-sense approaches are
marginally less when compared with Attract-Repel [39], counter-fitting
[41], paragram [42]. These three approaches Attract-Repel, counter-
fitting, paragram outperformed other single vector and multi-vector
representations on the Simlex666 dataset. The reasons are mentioned
in the discussion section.

- 10 -

International Journal of Interactive Multimedia and Artificial Intelligence

TABLE IX. Spearman and Pearson Correlations of Proposed and
Existing Word Embedding Approaches on Men Dataset, Highest Results

Highlighted In Boldface

Method Spearman correlation Pearson correlation
SenseEmbed [32] 0.805 --

MSSA-T [35] 0.769 --
MSSA-D [35] 0.768 --

Chen et al. [33] 0.620 --
Attract-Repel [39] 0.709 0.655

Counter-fitting [41] 0.741 0.680
Paragram [42] 0.799 0.754
CBOW [18] 0.732 0.723
GloVe [30] 0.801 0.800

FastText [31] 0.762 0.755
Proposed approach

(cosine) 0.836 0.815

Proposed approach
(Tanimoto) 0.831 0.810

TABLE X. Spearman and Pearson Correlations of Proposed and
Existing Word Embedding Approaches on Simlex666 Dataset, Highest

Results Highlighted in Boldface

Method Spearman correlation Pearson correlation
MSSA-T [35] 0.460 --
MSSA-D [35] 0.425 --

Chen et al. [33] 0.430 --
Attract-Repel [39] 0.690 0.691

Counter-fitting [41] 0.698 0.697
Paragram [42] 0.645 0.662
CBOW [18] 0.454 0.461
GloVe [30] 0.429 0.467

FastText [31] 0.410 0.411
Proposed approach

(cosine) 0.522 0.531

Proposed approach
(Tanimoto) 0.521 0.527

V. Discussion

In the results section, nine benchmark datasets are analyzed with
the state-of-art systems and the proposed approach. The state-of-the-art
systems compared in this paper are categorized as follows:
1. Symmetric pattern vector representations: Approaches like CBOW

of Word2vec [18], GloVe [30], fastText [31] fall in this category.
These approaches use shallow linguistic information like word and
context co-occurrences within a single window.

2. Inject approaches : The approaches such as Attract-Repel [39],
counter-fitting [41], Paragram [40] fall in this category. In these
approaches, word embeddings are enriched with synonymy and
antonymy constraints and paraphrase relations. These three inject
approaches use synonymy and antonymy relations of the words.

3. Multi-sense representations: Approaches like SenseEmbed [32],
Chen et al. [33], MSSA [35], fall in this category. These approaches
use multi-sense vector representations to carry out various NLP
tasks.

On MC and RG datasets, there is a little variation in the results of all
the approaches. This is because of the less number of word pairs in the
datasets. Most of the researchers use these two benchmarks as these are
more popular datasets in word similarity tasks. From, the results it is
observed that the proposed approach performed consistently on all the

datasets except Simlex666 dataset. The proposed approach obtained the
first or second highest results of Spearman and Pearson correlations.
The single vector representations CBOW [18], GloVe [30], fastText
[31] when compared with multi-sense representations obtained lesser
results. The CBOW [18], GloVe [30], fastText [31] approaches laid the
basis of modern research for carrying out multiple NLP tasks. As the
proposed approach generates all the multiple senses based on context,
definitions, hypernym path, and LCS, the results are consistent on all
the datsets.

Inject approaches like Attract-Repel [39], counter-fitting [41],
paragram [40] performed well on WS-353 and Simlex666 datasets.
The reason why these methods obtained better results on these
datasets is because of using synonymy and antonymy relations. The
multi-vector representations performed well on the WS-353 dataset
but failed to perform well on the Simlex666 dataset. Compared to
the WS-353 dataset, the Simlex666 dataset has more antonym word
pairs, the inter-annotator agreement is also less in this dataset. As the
multi-vector representations do not consider dealing with antonym
relations, injection approaches produced better results on these datasets
compared to multi-sense representations. Turk771 and Turk287
datasets have only noun pairs and the proposed approach obtained
better results on these two datasets. These datasets are used mostly
in semantic relatedness purposes. The proposed approach obtained the
highest results on the WS-353 dataset because of handling synsets of
different parts-of-speech.

On larger datasets like SCWS, Men and Rare words, the performance
of the multi-vector representations and the proposed approach are
consistent. These three datasets have different parts-of-speech word
pairs. Algorithm I generates synsets with respect to their parts-of-
speech to produce suitable multi-sense vector representations of the
word. On larger datasets, the proposed multi-vector representation
model outperformed the other state-of-art systems. The overall
performance of the proposed approach is stable on all the datasets.

VI. Conclusion

This paper discusses the importance of multi-sense embedding for
carrying out word similarity tasks. The proposed approach overcomes
the limitations of single vector representations. This paper understands
the importance of synonym sets, hypernyms, LCS, and definitions of
words to generate multi-sense embeddings. This inspection of Wordnet
for various parameters is a novel idea, which is not explored by the
NLP community. With improved results of word similarity, this paper
shows the significance of multi-sense representations.

The proposed approach performs disambiguation of words using
Wordnet. A library of words from Wikipedia is created, and for each
word, multi-sense embeddings are generated. Sense embedding vectors
are enriched by using the LCS, hypernym information between the
words. A comparison with recent state-of-art methods confirmed the
efficiency of the proposed approach.

The proposed multi-sense representation produced state-of-art
results on nine benchmark datasets. With these considerations, the next
challenge is to see how multi-sense embeddings help to improve the
efficiency of other NLP tasks like text summarization and document
classification.

Acknowledgment

The authors thank the Ministry of Electronics and Information
Technology for extending their support to carry out research (Grant
No: MLA/MUM/Ga/10(37)B).

- 11 -

Article in Press

References

[1] X. Ji, A. Ritter, P. Y. Yen, “Using ontology-based semantic similarity to
facilitate the article screening process for systematic reviews,” Journal of
biomedical informatics, 2017, vol. 69, pp. 33-42.

[2] M. B. Aouicha, and M. A. H. Taieb, “Computing semantic similarity
between biomedical concepts using new information content approach,”
Journal of biomedical informatics, 2016, vol. 59, pp. 258-275.

[3] G. Zhu, and C. A. Iglesias, “Computing semantic similarity of concepts
in knowledge graphs,” IEEE Trans. Know. Data Engg., 2016, vol. 29(1),
pp. 72-85.

[4] A. Skabar, and K. Abdalgader, “Clustering Sentence-Level Text Using a
Novel Fuzzy Relational Clustering Algorithm,” IEEE Trans. Know. Data
Engg., 2013, vol. 25(1), pp. 62-75.

[5] G. Glavas, M. Franco-Salvador, S. P. Ponzetto, and P. A. Rosso, “A
resource-light method for cross-lingual semantic textual similarit,”
Knowl.-Based Syst., 2018, vol. 143, pp. 1–9.

[6] Jaccard, “Etude comparative de la distribution florale dans une portion des
Alpes et des Jura,” Bulletin de la Société Vaudoise des Sciences Naturelles,
1945, vol. 37, pp. 547-579.

[7] V. Levenshtein, “Binary Codes capable of correcting deletions, insertions,
and reversals,” Cyber. and Control Theory, 1966, vol.10, pp. 707–710.

[8] Dice, “Measures of the amount of ecologic association between species,”
Ecology, 1945.

[9] C. Fellbaum, “WordNet: An Electronic Lexical Database,” Cambridge,
MA: MIT Press, 1998.

[10] Jiang, D. W. Conrath, “Semantic similarity based on corpus statistics and
lexical taxonomy,” arXiv preprint cmp-lg/9709008, 1997.

[11] C. Leacock, M. Chodorow, “Combining local context and WordNet
similarity for word sense identification,” WordNet: An electronic lexical
database, 1998, vol. 49, pp. 265-283.

[12] Li, McLean, “An approach for measuring semantic similarity between
words using multiple information sources,’’ IEEE Trans. on know. and
data eng., 2003, vol. 15, pp. 871-882.

[13] Lin, Dekang, “An information-theoretic definition of similarity,” Proc.
Of Icml, 1998.

[14] R. Rada, H. Mili, E. Bicknell, and M. Blettner, “Development and
application of a metric on semantic nets,” IEEE Trans. Syst. Man. Cyber.,
1989, vol. 19(1), pp. 17-30.

[15] Resnik, “Using information content to evaluate semantic similarity in a
taxonomy,” arXiv preprint cmp-lg/9511007, 1995.

[16] G. Zhu, C. A. Iglesias, “Computing semantic similarity of concepts in
knowledge graphs,” IEEE Trans. Knowl. and Data Eng., 2017, vol. 29,
pp. 72-85.

[17] Z. Wu, M. Palmer, “Verbs semantics and lexical selection,” In Proceedings
of the 32nd annual meeting on ACM, 1994, pp. 133-138.

[18] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” CoRR . ArXiv: 1301.3781, 2013.

[19] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and Dean, “Distributed
representations of words and phrases and their compositionality,” in
NIPS’13, 2013, pp. 3111–3119.

[20] T. Chen, R. Xu, and Y. He, and X. Wang, “Improving distributed
representation of word sense via wordnet gloss composition and context
clustering,” International Joint Conference on Natural Language
Processing, 2015, pp. 15-20.

[21] S. M. Rezaeinia, R. Rahmani, A. Ghodsi, and H. Veisi, “Sentiment analysis
based on improved pre-trained word embeddings,” Expert Systems with
Applications, 2019, vol. 117, pp. 139-147.

[22] T. Khai Tran, and T. Thi Phan, “Deep Learning Application to Ensemble
Learning—The Simple, but Effective, Approach to Sentiment Classifying,”
Applied Sciences, 2019, vol. 9(13).

[23] F. Li, Y. Yin, J. Shi, X. Mao, and R. Shi, “Method of feature reduction
in short text classification based on feature clustering,” Applied Sciences,
2019, vol. 9(8).

[24] D. Dimitriadis, and G. Tsoumakas, “Word embeddings and external
resources for answer processing in biomedical factoid question answering,”
Journal of biomedical informatics, 2019, vol. 92, pp. 103-118.

[25] J. Li, D. Jurafsky, “Do multi-sense embeddings improve natural language
understanding?” Proceedings of Empirical methods in natural language
processing, 2015, pp.1722–1732.

[26] Z. Harris, “Distributional structure,” Word, 1954, vol. 10(23), pp. 146–162.
[27] G. Salton, A. Wong, C. S. A. Yang, “A vector space model for automatic

indexing,” Communications of the ACM, 1975, vol. 18(11), pp. 613–620.
[28] P. D. Turney, and P. Pantel, “From frequency to meaning: Vector space

models of semantics,” CoRR . ArXiv: 1003.1141, 2010.
[29] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. P.

Kuksa, “Natural language processing (almost) from scratch,” Journal of
Machine Learning Research, 2011, vol. 12, pp. 2493–2537.

[30] J. Pennington, and R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” Proceedings of Empirical Methods in Natural
Language Processing, 2014, pp. 1532–1543.

[31] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” Transactions of the Association for
Computational Linguistics, 2017, vol. 5, pp. 135–146.

[32] I. Iacobacci, M. T. Pilehvar, and R. Navigli, “Sensembed: Learning
sense embeddings for word and relational similarity,” International Joint
Conference on Natural Language Processing, 2015, pp. 95-105.

[33] X. Chen, Z. Liu, M. A. Sun, “A unified model for word sense representation
and disambiguation,” Proceedings of Empirical Methods in Natural
Language Processing, 2014, pp.1025-1030.

[34] D. Oele, G. van Noord, “Simple Embedding-Based Word Sense
Disambiguation,” Proceedings of the 9th Global WordNet Conference,
2018.

[35] T. Ruas, W. Grosky, and A. Aizawa, “Multi-Sense embeddings through a
word sense disambiguation process,” Expert Systems with Applications,
2019 (In press).

[36] M. Lesk, “Automatic sense disambiguation using machine readable
dictionaries: How to tell a pine cone from an ice cream cone,” Proceedings
of the 5th annual international conference on systems documentation
SIGDOC’ 86, 1986, pp. 24–26.

[37] S. Rothe, and H. Schutze, “Autoextend: Extending word embeddings to
embeddings for synsets and lexemes,” arXiv preprint arXiv:1507.01127,
2015.

[38] M. Fabian, M. F. Suchanek, G. Kasneci, G. Weikum, “Yago: A Core of
Semantic Knowledge,” 16th International Conference on the World Wide
Web, 2007, pp. 697–706.

[39] N. Mrksic, I. Vulic, D. O. Seaghdha, I. Leviant, R. Reichart, M. Gašić, A.
Korhonen, and S.Young, “Semantic specialisation of distributional word
vector spaces using monolingual and cross-lingual constraints,” Trans.
ACL., 2017, vol. 5, pp. 309–324.

[40] J. Wieting, M. Bansal, K. Gimpel, K. Livescu, and D. Roth, “From
paraphrase database to compositional paraphrase model and back,” Trans.
ACL., 2015, vol. 3, pp. 345–358.

[41] N. Mrksic, D. O Seaghdha, et al., “Counter-fitting word vectors to
linguistic constraints,” In Proceedings of NAACL-HLT, 2016, pp.142–148.

[42] T. Tanimoto, “An Elementary Mathematical theory of Classification and
Pre-diction,” IBM Internal Report 17th IBM, 1957.

[43] G. A. Miller, W. G. Charles, “Contextual correlates of semantic similarity,”
Lang. Cogn. Process., 1991, vol. 6 (1), pp. 1–28.

[44] H. Rubenstein, J. B. Goodenough, “Contextual correlates of synonymy,”
Commun. ACM, 1965, vol. 8(10), pp. 627–633.

[45] L. Finkelstein, et al., “Placing search in context: The concept revisited,”
ACM Trans. Inf. Syst., 2002, vol. 20(1), pp. 116–131.

[46] G. Halawi, G. Dror, E. Gabrilovich, and Y. Koren, “Large-scale learning
of word relatedness with constraints,” In Proc. of ACM SIGKDD. 2012,
pp. 1406–1414.

[47] K. Radinsky, et al., “A word at a time: computing word relatedness using
temporal semantic analysis,” In Proc. of the Intl. Conf. on WWW. ACM,
2011, pp.337–346.

[48] E. H. Huang, R. Socher, C. D. Manning, and A. Y. Ng, “Improving word
representations via global context and multiple word prototypes,” In Proc.
of the Annual Meeting of the ACL, 2012, pp. 873–882.

[49] T. Luong, R. Socher, C. D. Manning, “Better word representations with
recursive neural networks for morphology,” In: Proc. of CoNLL., 2013,
pp. 104–113.

[50] E. Bruni, N. K. Tran, and M. Baroni, “Multimodal distributional
semantics,” Journal of Artificial Intelligence Research, 2014, vol. 49(1),
pp. 1–47.

[51] F. Hill, R. Reichart, A. Korhonen, “SimLex-999: Evaluating semantic
models with (genuine) similarity estimation,” Comput. Linguist., 2015,

- 12 -

International Journal of Interactive Multimedia and Artificial Intelligence

vol. 41 (4), pp. 665–695.
[52] R. Navigli, S. P. Ponzetto, “BabelNet: The automatic construction,

evaluation and application of a wide-coverage multilingual semantic
network,” Artificial Intelligence, 2012, vol. 193, pp. 217–250.

[53] J. Ganitkevitch, B. Van Durme, C. Callison-Burch, “PPDB: The paraphrase
database,” In: Proc. of HLT-NAACL, 2013, pp. 758–764.

Krishna Siva Prasad Mudigonda

Krishna Siva Prasad Mudigonda is presently a Research
Scholar in Computer Science and Engineering department
at Visvesvaraya National Institute Technology, Nagpur,
India. He received his M.Tech and B.Tech degrees from
Jawaharlal Nehru Technological University, Kakinada,
Andhra Pradesh, India. His research area includes natural
language processing, deep learning and text processing.

Poonam Sharma

Poonam Sharma is presently Assistant Professor in
Computer Science and Engineering department at
Visvesvaraya National Institute Technology, Nagpur,
India. She completed her PhD degree from Maulana
Azad National Institute of Technology, Bhopal, India. Her
research area includes Biometrics, Image processing, soft
computing and pattern recognition. She is a recipient of

Visvesvaraya young faculty fellowship from the government of India. She has
completed a project sponsored by Department of Science and Technology, New
Delhi.

