Traceable Ecosystem and Strategic Framework for the Creation of an Integrated Pest Management System for Intensive Farming.
DOI:
https://doi.org/10.9781/ijimai.2020.08.004Keywords:
Pest Management, Computer vision, Machine Learning, Artificial Intelligence, Blockchain, Farming, GreenhousesAbstract
The appearance of pests is one of the major problems that exist in the growth of crops, as they can damage the production if the appropriate measures are not taken. Within the framework of the Integrated Pest Management strategy (IPM), early detection of pests is an essential step in order to provide the most appropriate treatment and avoid losses. This paper proposes the architecture of a system intensive farming in greenhouses featuring the ability to detect environmental variations that may favour the appearance of pests. This system can suggest a plan or treatment that will help mitigate the effects that the identified pest would produce otherwise. Furthermore, the system will learn from the actions carried out by the humans throughout the different stages of crop growing and will add it as knowledge for the prediction of future actions. The data collected from sensors, through computer vision, or the experiences provided by the experts, along with the historical data related to the crop, will allow for the development of a model that contrasts the predictions of the actions that could be implemented with those already performed by technicians. Within the technological ecosystems in which the Integrated Pest Management systems develop their action, traceability models must be incorporated. This will guarantee that the data used for the exploitation of the information and, therefore for the parameterization of the predictive models, are adequate. Thus, the integration of blockchain technologies is considered key to provide them with security and confidence.
Downloads
References
[1] O. Díaz and C. R. Betancourt Aguilar, “Los pesticidas; clasificación, necesidad de un manejo integrado y alternativas para reducir su consumo indebido: una revisión,” Revista Científica Agroecosistemas, vol. 6, no. 2, pp. 14–30, 2018.
[2] A. Ferrer, “Intoxicación por plaguicidas,” Anales del Sistema Sanitario de Navarra, vol. 26, no. SUPPL. 1, pp. 155–171, 2003.
[3] European Comission, Regulation (EU) No 540/2011 of 25 May 2011 implementing Regulation (EC) No 1107/2009 of the European Parliament and of the Council as regards the list of approved active substances. 2011.
[4] K. Zhang et al., “Susceptibility of Sogatella furcifera and Laodelphax striatellus (Hemiptera: Delphacidae) to Six Insecticides in China,” Journal of Economic Entomology, vol. 107, no. 5, pp. 1916–1922, 2014.
[5] A. Samsel and S. Seneff, “Glyphosate, pathways to modern diseases IV: Cancer and related pathologies,” Journal of Biological Physics and Chemistry, vol. 15, no. 3, pp. 121–159, 2015.
[6] M. F. Fernández, M. F. Fernández, J. A. López-Medina, V. Mustieles, and N. Olea, “Obesógenos ¿Una nueva amenaza para la salud pública?,” Revista de Salud Ambiental, vol. 17, no. 1, pp. 93–99, 2017.
[7] R. Gerber et al., “Bioaccumulation and human health risk assessment of DDT and other organochlorine pesticides in an apex aquatic predator from a premier conservation area,” Science of the Total Environment, vol. 550, pp. 522–533, 2016.
[8] A. Sabarwal, K. Kumar, and R. P. Singh, “Hazardous effects of chemical pesticides on human health–Cancer and other associated disorders,” Environmental Toxicology and Pharmacology, vol. 63, pp. 103–114, 2018.
[9] E. Nava-Pérez, C. García-Gutiérrez, J. R. Camacho-Báez, and E. L. Vázquez-Montoya, “Bioplaguicidas: Una opción para el control biológico de plagas,” Ra Ximhai, vol. 8, no. 3, pp. 17–29, 2012.
[10] A. Samsel and S. Seneff, “Glyphosate, pathways to modern diseases III: Manganese, neurological diseases, and associated pathologies,” Surgical Neurology International, vol. 6, no. 1, 2015.
[11] A. B. Figueras, “Representación social del riesgo en la costa de Oaxaca: Agrotóxicos, salud y medio ambiente,” Arxiu d’Etnografia de Catalunya, pp. 115–149, 2020.
[12] S. Ramírez, “Las investigaciones de salud pública en Latinoamérica. Reflexiones desde el Sur global,” Revista Facultad Nacional de Salud Pública, vol. 37, no. 1, pp. 106–113, 2019.
[13] S. Bonny, “Genetically Modified Herbicide-Tolerant Crops, Weeds, and Herbicides: Overview and Impact,” Environmental Management, vol. 57, no. 1, pp. 31–48, 2016.
[14] R. S. Cavalcanti, A. Moino Jr, G. C. Souza, and A. Arnosti, “Evaluation of the effect of pesticides on the development of the fungus Beauveria Bassiana (BALS),” VUILL. Arquivos do Instituto Biológico, vol. 69, no. 3, pp. 17–22, 2002.
[15] M. A. Altieri, “The ecological impacts of transgenic crops on agroecosystem health,” Ecosystem Health, vol. 6, no. 1, pp. 13–23, 2000.
[16] J. R. Lamichhane et al., “Integrated weed management systems with herbicide-tolerant crops in the European Union: Lessons learnt from home and abroad,” Critical Reviews in Biotechnology, vol. 37, no. 4, pp. 459– 475, 2017.
[17] S. E. Jacobsen, M. Sørensen, S. M. Pedersen, and J. Weiner, “Feeding the world: Genetically modified crops versus agricultural biodiversity,” Agronomy for Sustainable Development, vol. 33, no. 4, pp. 651–662, 2013.
[18] H. Elver, “Promotion and protection of human rights: human rights questions, including alternative approaches for improving the effective enjoyment of human rights and fundamental freedoms,” Interim report of the Special Rapporteur on the right to food, pp. 2–23, 2017.
[19] J. E. García G., “Cultivos genéticamente modificados: las promesas y las buenas intenciones no bastan,” Revista de Biología Tropical, vol. 55, no. 2, pp. 347–364, 2007
[20] A. Ferrer and J. P. R. Cabral, “Epidemics due to pesticide contamination of food,” Food Additives & Contaminants, vol. 6, no. 1, pp. 95–98, 1989.
[21] L. R. Goldman et al., “Pesticide food poisoning from contaminated watermelons in California, 1985,” Archives of Environmental Health: An International Journal, vol. 45, no. 4, pp. 229–236, 1990.
[22] European Parliament, Directive 2009/128/EC of the European Parliament and the Council of 21 October 2009 establishing a framework for Community action to achieve the sustainable use of pesticides. 2009.
[23] M. D. A. Morales and S. D. P. González, “Resultados del seguimiento de plagas y enfermedades en cultivos de cereales en Tenerife. Campaña 2009. Especial referencia al trigo,” 2009.
[24] R. Gabarra i Ambert, J. Moliner, and J. Arnó Satorra, “Control integrado de plagas en invernaderos de tomate temprano en la isla de Menorca,” Boletín de sanidad vegetal. Plagas, vol. 20, no. 2, pp. 501–509, 1994.
[25] A. Fereres Castiel, “Impacto del cambio climático sobre los insectos vectores de patógenos de plantas,” Phytoma España: La revista profesional de sanidad vegetal, vol. 300, pp. 105–109, 2018.
[26] E. R. Hunt Jr, S. I. Rondon, P. B. Hamm, R. W. Turner, A. E. Bruce, and J. J. Brungardt, “Insect detection and nitrogen management for irrigated potatoes using remote sensing from small unmanned aircraft systems,” in Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping, 2016.
[27] B. Stumph et al., “Detecting invasive insects with unmanned aerial vehicles,” in Proceedings - IEEE International Conference on Robotics and Automation, 2019, vol. 20, pp. 648–654.
[28] R. R. Shamshiri, I. A. Hameed, S. K. Balasundram, D. Ahmad, C. Weltzien, and M. Yamin, “Fundamental Research on Unmanned Aerial Vehicles to Support Precision Agriculture in Oil Palm Plantations,” Agricultural Robots-Fundamentals and Application, pp. 91–116, 2018.
[29] P. Psirofonia, V. Samaritakis, P. Eliopoulos, and I. Potamitis, “Use of Unmanned Aerial Vehicles for Agricultural Applications with Emphasis on Crop Protection: Three Novel Case - studies,” International Journal of Agricultural Science and Technology, vol. 5, no. 1, pp. 30–39, 2017.
[30] Y. Li, C. Xia, and J. Lee, “Detection of small-sized insect pest in greenhouses based on multifractal analysis,” Optik, vol. 126, no. 19, pp. 2138–2143, 2015.
[31] R. Boll, C. Marchal, C. Poncet, and L. Lapchin, “Rapid Visual Estimates of Thrips (Thysanoptera: Thripidae) Densities on Cucumber and Rose Crops,” Journal of Economic Entomology, vol. 100, no. 1, pp. 225–232, 2007.
[32] Y. Li, C. Xia, and J. Lee, “Vision-based pest detection and automatic spray of greenhouse plant,” IEEE International Symposium on Industrial Electronics, no. ISlE, pp. 920–925, 2009.
[33] S. R. Huddar, S. Gowri, K. Keerthana, S. Vasanthi, and S. R. Rupanagudi, “Novel algorithm for segmentation and automatic identification of pests on plants using image processing,” in 3rd International Conference on Computing, Communication and Networking Technologies, ICCCNT 2012, 2012, pp. 1–5.
[34] H. D. D. Nguyen and C. Nansen, “Hyperspectral remote sensing to detect leafminer-induced stress in bok choy and spinach according to fertilizer regime and timing,” Pest Management Science, 2020.
[35] B. Lumbierres, M. Eizaguirre Altuna, R. Albajes García, and X. Pons, “Plagas de los espacios verdes urbanos: bases para su control integrado,” Boletín de sanidad vegetal. Plagas, vol. 32, no. 3, pp. 373–384, 2006.
[36] R. Ebesu, “Integrated pest management for home gardens: insect identification and control,” Insect Pests, vol. 13, pp. 1–11, 2003.
[37] M. L. Flint, “Pests of the garden and small farm: A grower’s guide to using less pesticide,” UCANR Publications, vol. 3332, 2018.
[38] Ministerio de Agricultura, Pesca y Alimentación, “Guías de gestión integrada de plagas,” 2014. [Online]. Available: https://www.mapa.gob.es/es/agricultura/temas/sanidad-vegetal/productos-fitosanitarios/guiasgestion-plagas/
[39] Ministerio de la Presidencia, Agencia Estatal Boletín Oficial del Estado. Real Decreto 1311/2012, de 14 de septiembre, por el que se establece el marco de actuación para conseguir un uso sostenible de los productos fitosanitarios. 2012, pp. 11–13.
[40] J. Moral de la Vega, “Dificultad para diseñar una Gestión Integrada de Plagas adecuada a los complicados sistemas agrarios actuales,” PHYTOMA España, vol. 237, pp. 90–92, 2012.
[41] Ministerio de Agricultura, Pesca y Alimentación, “SIAR. Sistema de información agraria para el regadío,” 1998. [Online]. Available: http://eportal.miteco.gob.es/websiar/Inicio.aspx
[42] Ministerio de Política Territorial y Función Pública, “El sistema de información agroclimática para el regadío (SiAR)”, datos.gob.es, 2019. [Online]. Available: https://datos.gob.es/es/blog/el-sistema-deinformacion-agroclimatica-para-el-regadio-siar
[43] D. C. Y. Vargas and C. E. P. Salvador, “Smart IoT gateway for heterogeneous devices interoperability,” IEEE Latin America Transactions, vol. 14, no. 8, pp. 3900–3906, 2016.
[44] J. G. A. Barbedo, “Using digital image processing for counting whiteflies on soybean leaves,” Journal of Asia-Pacific Entomology, vol. 17, no. 4, pp. 685–694, 2014.
[45] M. Qiao et al., “Density estimation of Bemisia tabaci (Hemiptera: Aleyrodidae) in a greenhouse using sticky traps in conjunction with an image processing system,” Journal of Asia-Pacific Entomology, vol. 11, no. 1, pp. 25–29, 2008.
[46] C. Xia, T. S. Chon, Z. Ren, and J. M. Lee, “Automatic identification and counting of small size pests in greenhouse conditions with low computational cost,” Ecological Informatics, vol. 29, no. P2, pp. 139–146, 2015.
[47] J. Cho et al., “Automatic identification of whiteflies, aphids and thrips in greenhouse based on image analysis,” International Journal of Mathematics and Computers in Simulation, vol. 1, no. 1, pp. 46–53, 2007.
[48] L. O. Solis-Sánchez, J. J. García-Escalante, R. Castañeda-Miranda, I. Torres-Pacheco, and R. Guevara-González, “Machine vision algorithm for whiteflies (Bemisia Tabaci Genn) scouting under greenhouse environment,” Journal of Applied Entomology, vol. 133, no. 7, pp. 546– 552, 2009.
[49] L. O. Solis-Sánchez et al., “Scale invariant feature approach for insect monitoring,” Computers and Electronics in Agriculture, vol. 75, no. 1, pp. 92–99, 2011.
[50] T. Liu, W. Chen, W. Wu, C. Sun, W. Guo, and X. Zhu, “Detection of aphids in wheat fields using a computer vision technique,” Biosystems Engineering, vol. 141, pp. 82–93, 2016.
[51] R. G. M. Rupesh G. Mundada, “Detection and Classification of Pests in Greenhouse Using Image Processing,” IOSR Journal of Electronics and Communication Engineering, vol. 5, no. 6, pp. 57–63, 2013.
[52] P. Boissard, V. Martin, and S. Moisan, “A cognitive vision approach to early pest detection in greenhouse crops,” Computers and Electronics in Agriculture, vol. 62, no. 2, pp. 81–93, 2008.
[53] S. Poornima, S. Kavitha, S. Mohanavalli, and N. Sripriya, “Detection and classification of diseases in plants using image processing and machine learning techniques,” in AIP Conference Proceedings, 2019, vol. 2095.
[54] J. Wang, Y. B. Chen, and J. P. Chanet, “An integrated survey in plant disease detection for precision agriculture using image processing and wireless multimedia sensor network,” in Proceedings of the International Conference on Advanced in Computer, Electrical and Electronic Engineering ICACEEE, 2014, pp. 7–8.
[55] D. Jeric, A. Rustia, C. E. Lin, and T. Lin, “A Real-time Multi-class Insect Pest Identification Method using Cascaded Convolutional Neural Networks,” in Proceedings of the 9th International Symposium on Machinery and Mechatronics for Agriculture and Biosystems Engineering ISMAB, 2018.
[56] V. Martin, S. Moisan, B. Paris, and O. Nicolas, “Towards a video camera network for early pest detection in greenhouses,” in ENDURE International Conference, 2008, pp. 1–5.
[57] D. J. A. Rustia, C. E. Lin, J. Y. Chung, Y. J. Zhuang, J. C. Hsu, and T. Te Lin, “Application of an image and environmental sensor network for automated greenhouse insect pest monitoring,” Journal of Asia-Pacific Entomology, vol. 23, no. 1, pp. 17–28, 2020.
[58] B. Vijayalakshmi, C. Ramkumar, S. Niveda, and S. C. Pandian, “Smart Pest Control System in Agriculture,” in IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing, INCOS 2019, 2019, pp. 1–4.
[59] H. Darmono, R. H. Y. Perdana, and W. Puspitasari, “Observation of greenhouse condition based on wireless sensor networks,” IOP Conference Series: Materials Science and Engineering, vol. 732, no. 1, 2020.
[60] S. Rodríguez, T. Gualotuña, and C. Grilo, “A System for the Monitoring and Predicting of Data in Precision Agriculture in a Rose Greenhouse Based on Wireless Sensor Networks,” Procedia Computer Science, vol. 121, pp. 306–313, 2017.
[61] C. Calderon-Cordova et al., “Wireless sensor network for real-time monitoring of temperature, humidity and illuminance in an orchid greenhouse,” Iberian Conference on Information Systems and Technologies, CISTI, vol. 2018-June, no. June, pp. 1–7, 2018.
[62] M. E. Bayrakdar, “Qualified Underground Wireless Sensor,” IEEE Sensors Journal, vol. 19, no. 22, pp. 10892–10897, 2019.
[63] M. Erazo-Rodas et al., “Multiparametric monitoring in equatorian tomato greenhouses (I): Wireless sensor network benchmarking,” Sensors (Switzerland), vol. 18, no. 8, pp. 1–22, 2018.
[64] M. Mancuso and F. Bustaffa, “A Wireless Sensors Network for monitoring environmental variables in a tomato greenhouse,” IEEE International Workshop on Factory Communication Systems - Proceedings, WFCS, pp. 107–110, 2006.
[65] J. Recasens and J. A. Conesa, Malas hierbas en plántula. Guía de identificación. Universitat de Lleida, 2009.
Downloads
Published
-
Abstract256
-
PDF63






