Electromiographic Signal Processing Using Embedded Artificial Intelligence: An Adaptive Filtering Approach.

Authors

DOI:

https://doi.org/10.9781/ijimai.2022.08.009

Keywords:

Adaptive Filters, Artificial Intelligence, Edge Computing, Digital Signal Processor (DSP), Signal, Data Pre-processing
Supporting Agencies
The authors acknowledges the valuable support given by the SDAS Research Group (https://sdas-group.com/ –Accesed on: 11-Jul-2022).

Abstract

In recent times, Artificial Intelligence (AI) has become ubiquitous in technological fields, mainly due to its ability to perform computations in distributed systems or the cloud. Nevertheless, for some applications -as the case of EMG signal processing- it may be highly advisable or even mandatory an on-the-edge processing, i.e., an embedded processing methodology. On the other hand, sEMG signals have been traditionally processed using LTI techniques for simplicity in computing. However, making this strong assumption leads to information loss and spurious results. Considering the current advances in silicon technology and increasing computer power, it is possible to process these biosignals with AI-based techniques correctly. This paper presents an embedded-processing-based adaptive filtering system (here termed edge AI) being an outstanding alternative in contrast to a sensor-computer- actuator system and a classical digital signal processor (DSP) device. Specifically, a PYNQ-Z1 embedded system is used. For experimental purposes, three methodologies on similar processing scenarios are compared. The results show that the edge AI methodology is superior to benchmark approaches by reducing the processing time compared to classical DSPs and general standards while maintaining the signal integrity and processing it, considering that the EMG system is not LTI. Likewise, due to the nature of the proposed architecture, handling information exhibits no leakages. Findings suggest that edge computing is suitable for EMG signal processing when an on-device analysis is required.

Downloads

Download data is not yet available.

References

R. M. Rangayyan, Biomedical Signal Analysis. IEEE Press, 2nd ed., 2015.

R. Singh, N. Rajpal, R. Mehta, “An empiric analysis of wavelet-based feature extraction on deep learning and machine learning algorithms for arrhythmia classification,” International Journal of Interactive Multimedia and Artificial Intelligence, 2021, doi: 10.9781/ijimai.2020.11.005.

C. Li, G. Li, G. Jiang, D. Chen, H. Liu, “Surface emg data aggregation processing for intelligent prosthetic action recognition,” Neural Computing and Applications, vol. 32, pp. 16795–16806, 11 2020, doi: 10.1007/S00521-018-3909-Z/TABLES/4.

G. Li, O. W. Samuel, C. Lin, M. G. Asogbon, P. Fang, P. O. Idowu, “Realizing efficient emg-based prosthetic control strategy,” Advances in Experimental Medicine and Biology, vol. 1101, pp. 149–166, 2019, doi: 10.1007/978-981-13-2050-7_6.

D. Proaño-Guevara, J. Procel-Feijóo, J. Zhingre- Balcazar, L. SerpaAndrade, “Biomimetical arm prosthesis: A new proposal,” vol. 590, 2018, pp. 549–558, Springer International Publishing.

L. Resnik, H. H. Huang, A. Winslow, D. L. Crouch, Zhang, N. Wolk, “Evaluation of emg pattern recognition for upper limb prosthesis control: A case study in comparison with direct myoelectric control,” Journal of Neuro-Engineering and Rehabilitation, vol. 15, pp. 1–13, 3 2018, doi: 10.1186/S12984-018-0361- 3/FIGURES/3.

J. Ribeiro, F. Mota, T. Cavalcante, I. Nogueira, V. Gondim, V. Albuquerque, A. Alexandria, “Analysis of man-machine interfaces in upper-limb prosthesis: A review,” Robotics 2019, Vol. 8, Page 16, vol. 8, p. 16, 2 2019, doi: 10.3390/ROBOTICS8010016.

Y. Li, J. Deng, Q. Wu, Y. Wang, “Eye-tracking signals based affective classification employing deep gradient convolutional neural networks,” International Journal of Interactive Multimedia and Artificial Intelligence, vol. 7, 2021, doi: 10.9781/ijimai.2021.06.002.

J. M. Fajardo, O. Gomez, F. Prieto, “Emg hand gesture classification using handcrafted and deep features,” Biomedical Signal Processing and Control, vol. 63, p. 102210, 1 2021, doi: 10.1016/J.BSPC.2020.102210.

J. V. Basmajian, C. J. D. Luca, Muscles alive: their functions revealed by electromyography. Williams & Wilkins, 1985.

P. Konrad, The abc of emg. 2005.

C. Tepe, M. C. Demir, “The effects of the number of channels and gyroscopic data on the classification performance in emg data acquired by myo armband,” Journal of Computational Science, vol. 51, p. 101348, 4 2021, doi: 10.1016/J.JOCS.2021.101348.

J. Kimura, Electrodiagnosis in Diseases of Nerve and Muscle: Principles and Practice. Oxford University Press, 4 ed., 2013.

R. Merletti, D. Farina, Surface Electromyography: Physiology, Engineering and Applications. Wiley-IEEE Press, 4 2016.

S. Cerutti, C. Marchesi, Advanced Methods of Biomedical Signal Processing. IEEE Press, 2011.

K. A. Wheeler, H. Shimada, D. K. Kumar, S. P. Arjunan, “A semg model with experimentally based simulation parameters,” 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC’10, pp. 4258–4261, 2010, doi: 10.1109/IEMBS.2010.5627175.

K. L. Moore, A. F. Dalley, A. M. R. Agur, Clinically oriented anatomy. Wolters Kluwer Health/Lippincott Williams & Wilkins, 2014.

M. Yaserifar, A. S. Oliveira, “Surface emg variability while running on grass, concrete and treadmill,” Journal of Electromyography and Kinesiology, vol. 62, p. 102624, 2 2022, doi: 10.1016/J.JELEKIN.2021.102624.

J. W. Lee, M. J. Shin, M. H. Jang, W. B. Jeong, S. J. Ahn, “Two-stage binary classifier for neuromuscular disorders using surface electromyography feature extraction and selection,” Medical Engineering & Physics, vol. 98, pp. 65–72, 12 2021, doi: 10.1016/J.MEDENGPHY.2021.10.012.

T. Lulic-Kuryllo, F. Negro, N. Jiang, C. R. Dickerson, “Standard bipolar surface emg estimations mischaracterize pectoralis major activity in commonly performed tasks,” Journal of Electromyography and Kinesiology, vol. 56, p. 102509, 2 2021, doi: 10.1016/J.JELEKIN.2020.102509.

M. M. Yassin, A. M. Saber, M. N. Saad, A. M. Said, A. M. Khalifa, “Developing a low-cost, smart, handheld electromyography biofeedback system for telerehabilitation with clinical evaluation,” Medicine in Novel Technology and Devices, vol. 10, p. 100056, 6 2021, doi: 10.1016/J.MEDNTD.2020.100056.

L. E. Sánchez-Velasco, M. Arias-Montiel, E. Guzmán- Ramírez, E. Lugo González, “A low-cost emg-controlled anthropomorphic robotic hand for power and precision grasp,” Biocybernetics and Biomedical Engineering, vol. 40, pp. 221–237, 1 2020, doi: 10.1016/J.BBE.2019.10.002.

E. Noboa, M. Rácz, L. Szucs, P. Galambos, G. Márton, Eigner, “Development of an emg based svm supported control solution for the platypous education mobile robot using mindrove headset,” IFAC-PapersOnLine, vol. 54, pp. 304–309, 1 2021, doi: 10.1016/J.IFACOL.2021.10.273.

H. J. Hermens, B. Freriks, C. Disselhorst-Klug, G. Rau, “Development of recommendations for semg sensors and sensor placement procedures,” Journal of Electromyography and Kinesiology, vol. 10, pp. 361–374, 10 2000, doi: 10.1016/S1050-6411(00)00027-4.

D. Stegeman, H. Hermens, “Standards for surface electromyography: The european project surface emg for non-invasive assessment of muscles (seniam),” SENIAM, pp. 108–112, 2007.

A. Pashaei, M. R. Yazdchi, H. R. Marateb, “Designing a low-noise, high-resolution, and portable four channel acquisition system for recording surface electromyographic signal.,” Journal of medical signals and sensors, vol. 5, pp. 245–52, 2015.

T. Roland, S. Amsuess, M. F. Russold, W. Baumgartner, “Ultra-low-power digital filtering for insulated emg sensing,” Sensors (Switzerland), vol. 19, pp. 1–24, 2019, doi: 10.3390/s19040959.

L. Rozaqi, A. Nugroho, K. H. Sanjaya, A. I. Simbolon, “Design of analog and digital filter of electromyography,” Proceeding - 2019 International Conference on Sustainable Energy Engineering and Application: Innovative Technology Toward Energy Resilience, ICSEEA 2019, pp. 186–192, 2019, doi: 10.1109/ICSEEA47812.2019.8938645.

A. K. Sahu, A. K. Sahu, “A review on different filter design techniques and topologies for bio- potential signal acquisition systems,” Proceedings of the 3rd International Conference on Communication and Electronics Systems, ICCES 2018, pp. 934–937, 2018, doi: 10.1109/CESYS.2018.8723912.

H. Tankisi, D. Burke, L. Cui, M. de Carvalho, S. Kuwabara, S. D. Nandedkar, S. Rutkove, E. Stålberg, M. J. van Putten, A. Fuglsang-Frederiksen, “Standards of instrumentation of emg,” Clinical Neurophysiology, vol. 131, pp. 243–258, 2020, doi: 10.1016/j.clinph.2019.07.025.

S. W. Smith, The scientist and engineer’s guide to digital signal processing. California Technical Publishing, 2nd ed., 1997.

A. Oppenheim, R. Schafer, J. Buck, Discrete-Time Signal Processing. Prentice Hall Press, 2nd ed., 1998.

R. Woods, J. McAllister, G. Lightbody, Y. Yi, FPGA- Based Implementation of Signal Processing Systems. Wiley, 10 2008.

A. Viveros-Melo, L. Lasso-Arciniegas, J. A. Salazar- Castro, D. H. Peluffo-Ordóñez, M. A. Becerra, A. E. Castro-Ospina, E. J. Revelo-Fuelagán, “Exploration of Characterization and Classification Techniques for Movement Identification from EMG Signals: Preliminary Results,” in Communications in Computer and Information Science, 2018, pp. 139–149, doi: 10.1007/978-3-319-98998-3_11.

L. Lasso-Arciniegas, A. Viveros-Melo, J. A. Salazar- Castro, M. A. Becerra, A. E. Castro-Ospina, E. J. Revelo-Fuelagán, D. H. Peluffo-Ordóñez, “Movement Identification in EMG Signals Using Machine Learning: A Comparative Study,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018, pp. 368–375, doi: 10.1007/978-3-030-01132-1_42.

S. Haykin, B. Kosko, Intelligent Signal Processing. IEEE Press, 12 2001.

C. S. Palacios, S. L. Romero, “Calibración automática en filtros adaptativos para el procesamiento de señales emg,” Revista Iberoamericana de Automatica e Informatica Industrial, vol. 16, pp. 1–6, 2011.

I. F. Ghalyan, Z. M. Abouelenin, V. Kapila, “Gaussian filtering of emg signals for improved hand gesture classification,” 2018 IEEE Signal Processing in Medicine and Biology Symposium, SPMB 2018 - Proceedings, pp. 1– 6, 2019, doi: 10.1109/SPMB.2018.8615596.

M. Z. Jamal, D. H. Lee, D. J. Hyun, “Real time adaptive filter based emg signal processing and instrumentation scheme for robust signal acquisition using dry emg electrodes,” 2019 16th International Conference on Ubiquitous Robots, UR 2019, pp. 683–688, 2019, doi: 10.1109/URAI.2019.8768662.

S. Márquez-Figueroa, Y. S. Shmaliy, O. Ibarra- Manzano, “Optimal extraction of emg signal envelope and artifacts removal assuming colored measurement noise,” Biomedical Signal Processing and Control, vol. 57, p. 101679, 2020, doi: 10.1016/j.bspc.2019.101679.

L. L. Menegaldo, “Real-time muscle state estimation from emg signals during isometric contractions using kalman filters,” Biological Cybernetics, vol. 111, pp. 335– 346, 2017, doi: 10.1007/s00422-017-0724-z.

P. Okoniewski, S. Kocon, J. Piskorowski, “Linear time-varying multi-notch fir filter for fast emg measurements,” 2018 23rd International Conference on Methods and Models in Automation and Robotics, MMAR 2018, pp. 634–637, 2018, doi: 10.1109/MMAR.2018.8486122.

A. R. Verma, Y. Singh, B. Gupta, “Adaptive filtering method for emg signal using bounded range artificial bee colony algorithm,” Biomedical Engineering Letters, vol. 8, pp. 231–238, 2018, doi: 10.1007/s13534-017-0056-x.

T. Yu, K. Akhmadeev, E. L. Carpentier, Y. Aoustin, D. Farina, “On-line recursive decomposition of intramuscular emg signals using gpu-implemented bayesian filtering.,” IEEE transactions on bio-medical engineering, 2019, doi: 10.1109/TBME.2019.2948397.

P. S. R. Diniz, Adaptive Filtering. Springer US, 2008.

M. Limem, M. A. Hamdi, M. A. Maaref, “Denoising uterine emg signals using lms and rls adaptive algorithms,” 3 2016, pp. 273–276, IEEE.

A. C. Mugdha, F. S. Rawnaque, M. U. Ahmed, “A study of recursive least squares (rls) adaptive filter algorithm in noise removal from ecg signals,” 6 2015, pp. 1–6, IEEE.

P. Singh, K. Bhole, A. Sharma, “Adaptive filtration techniques for impulsive noise removal from ecg,” 12 2017, pp. 1–4, IEEE.

M. R. Ahmed, R. Halder, M. Uddin, P. C. Mondal, A. K. Karmaker, “Prosthetic arm control using electromyography (emg) signal,” 2018 International Conference on Advancement in Electrical and Electronic Engineering, ICAEEE 2018, 2 2019, doi: 10.1109/ICAEEE.2018.8642968.

K. T. Kim, S. Park, T. H. Lim, S. J. Lee, “Upper-limb electromyogram classification of reaching- to-grasping tasks based on convolutional neural networks for control of a prosthetic hand,” Frontiers in Neuroscience, vol. 15, p. 1311, 10 2021, doi: 10.3389/FNINS.2021.733359/BIBTEX.

G. M. Hägg, B. Melin, R. Kadefors, “Applications in ergonomics,” 2005. doi: 10.1002/0471678384.ch13.

Y. H. Hsueh, C. Yin, Y. H. Chen, “Hardware system for real-time emg signal acquisition and separation processing during electrical stimulation,” Journal of Medical Systems, vol. 39, 2015, doi: 10.1007/s10916-015- 0267-6.

D. Z. Yinfeng Fang, “Isrmyo-i: A database for semg-based hand gesture recognition,” 2018. [Online]. Available: https://dx.doi.org/10.21227/H26Q26, doi: 10.21227/H26Q26.

Y. Fang, H. Liu, G. Li, X. Zhu, “A multichannel surface EMG system for hand motion recognition,” International Journal of Humanoid Robotics, vol. 12, p. 1550011, may 2015, doi: 10.1142/s0219843615500115.

Q. Ai, Q. Liu, W. Meng, S. Q. Xie, “Neuromuscular signal acquisition and processing,” in Advanced Rehabilitative Technology, Elsevier, 2018, pp. 33–66, doi: 10.1016/b978-0-12-814597-5.00003-5.

M. Sharma, N. Gaddam, T. Umesh, A. Murthy, P. K. Ghosh, “A comparative study of different EMG features for acoustics-to-EMG mapping,” in Interspeech 2021, aug 2021, ISCA.

Downloads

Published

2022-09-01
Metrics
Views/Downloads
  • Abstract
    228
  • PDF
    69

How to Cite

Proaño Guevara, D., Blanco Valencia, X., Rosero Montalvo, P. D., and PeluffoOrdóñez, D. H. (2022). Electromiographic Signal Processing Using Embedded Artificial Intelligence: An Adaptive Filtering Approach. International Journal of Interactive Multimedia and Artificial Intelligence, 7(5), 40–50. https://doi.org/10.9781/ijimai.2022.08.009