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Abstract

Character detection is essential for subsequent Oracle Bone Inscription (OBI) research. However, the lack of 
labeled data and the complexity of small and dense OBI characters are the main difficulties in OBI detection 
research. In this paper, we propose a framework for rubbing generation that can automatically build up large-
scale rubbing samples with verisimilar scenarios to noisy wild OBI through geometric and morphological 
construction combined with style transferring. Moreover, we propose a semantic-enhanced detection model 
aiming at small and dense OBI through the fusion of multi-resolution feature maps with the enriched feature 
in the YOLOv5s backbone. We introduce the higher resolution and the Soft-NMS into the proposed OBI 
detection model to solve the overlapping of small and dense OBI characters. The augmented dataset improves 
the performance of benchmark object detection models in the real OBI detection task when sufficient data 
is lacking. Furthermore, the proposed OBI detection model can provide easy and preferable access to OBI 
detection even with a small number of labeled data and obtain preferable results. Experiments ascertain the 
effectiveness of the proposed OBI generation framework and the proposed OBI detection model.
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I.	 Introduction

As a form of cultural heritage, characters have attracted attention 
from researchers in recognition [1], retrieval [2], and even art of 

character painting [3]. Oracle Bone Inscription (OBI), often curved on 
bones or tortoise shells, is an ancient character in the Shang dynasty 
(about 1300 BC), representing the record or divination of events. 
Research such as deciphering [4] is much more complicated, for 
studying OBI requires researchers to master professional knowledge 
in many fields such as history, archaeology, and writing, and such 
philological studies are more complicated. Traditional manual 
deciphering is complex, inefficient, and time-consuming. On the other 
hand, since researchers carried out the conventional research work 
directly on the carrier of ancient writing, the research progress mainly 
depended on a very authoritative minority of experts. Moreover, OBIs 
are mainly stored in the form of rubbings. Hence, the detection of OBI 
on rubbings is one of the preconditions for the subsequent recognition 
[5], [6] and semantic analysis [7], which are vital in computer-aided 
OBI research. Effective OBI detection systems can provide a practical 
reference for the researchers of OBI. Also, the OBI detection system 

is significant in simplifying and popularizing the research of OBI. 
Therefore, using OBI detection models to further aid in the study of 
ancient characters can provide practical help for the research of OBI 
and has a high research value.

In recent years, with the rapid development of deep learning, 
convolutional neural networks (CNN) such as R-CNN [8] outperform 
traditional methods. Other fields like Orthopantomogram image 
classification [9] and surveillance video tracking [10] are booming by 
CNN. Furthermore, object detection models [11]–[16] have also been 
applied to OBI detection research. Therefore, applying object detection 
models to OBI [17] and carrying out OBI detection research is the new 
trend to help recognize and decipher OBI.

However, the need for more annotated training data makes training 
deep learning models difficult. Furthermore, because of its nature, OBI 
labeling is very costly done by professionals. Therefore, researchers 
usually keep their datasets private since they need to check, scan, 
and align different professional materials with careful and detailed 
manual annotation. Moreover, in contrast to regular modern text, 
OBI is a distinctive character that is difficult to detect. For example, 
as shown in Fig. 1, OBI was usually carved densely of small size and 
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irregular distribution, along with extensive noise caused by drilling, 
burning, fragmentation, and other damages for sacrificial purposes 
and continued to be eroded in the soil. Hence, the automatic detection 
of OBI characters is a challenging task for obtaining the deciphered 
results to serve multi-disciplinary research.

To alleviate the scarcity of data for OBI, we propose a framework 
to generate rubbing images from single OBI images by proposed 
geometric algorithms and style transfer. Standard data augmentation 
methods such as MixUp [18] and Mosaic [16] recombine the annotated 
training data by overlapping and splicing. However, these methods still 
need sufficient training data for detection because they only combine 
existing objects derived from limited training data. Nevertheless, OBIs 
are closely interrelated with the shape, noise, and background of the 
bone that contains them, for which augmentation is not reasonable by 
clipping and stitching.

In this paper, we propose geometric and morphological construction 
combined with style transferring for generating rubbing images. The 
rubbing image reflects the bone surface that was rubbed for OBI replica. 
We assume OBI rubbings as polygons called rubbing bases containing 
single OBIs and several types of noise. Based on this assumption, we 
propose to generate OBI rubbings from single OBIs by a framework of 
controllable placement, geometric operations, and style transfer.

Although the surface usually envelopes most OBIs, different rubbing 
varies in shape and detail. Hence, firstly, we propose a deliberate 
design to arrange the selected OBIs into divided grids and calculate 
the convex hull of these arranged OBIs as the background geometry, 
which can help generate an appropriate background for placed OBI 
and ensure the envelopment of OBI by generated background.

Secondly, we simplify meshing from crack simulation based on 
Finite Element Simulation to generate realistic cracks and holes. 
Compared with the general physical computing method, our proposed 
method can reduce complexity and computation demand by improving 
the occurrence mechanism of cracks and maintaining the precision of 
stimulation for image augmentation. In particular, we construct multi-
level border triangular mesh of the background geometry by geometric 
methods and conduct morphological operations like erosion on the 
constructed mesh to get a more realistic rubbing base.

Thirdly, we propose a rubbing adversarial network to acquire 
a more realistic style since the natural style of noise and color is 
essential and defined as a style-transferring procedure. The proposed 
model takes the rubbing base and the segmentation of that rubbing 
base which divides the image into different areas as inputs, outputting 
the transferred rubbing image with noise and realistic style.

In addition, we propose a detection model targeted on the 
characteristic of OBI with superior performance. We analyze several 
major statistics of OBI rubbing images, which confirms that OBI is of 
small size and dense distribution. In this regard, we propose an OBI 
detection model with effective methods to provide more semantic 
information for tiny OBI and deal with overlapping softly. As semantic 
information is essential for detecting small objects, we introduce the 
higher resolution and larger-scale feature map into the feature fusion 
structure and additional detection head to enrich semantic information 
for OBI. Besides, dealing with overlapping is also a critical concern for 
performance. For this purpose, We also compare different bounding 
box losses and propose using Soft-NMS to relieve the problem of dense 
distribution and overlapping. Overall, the proposed method can achieve 
OBI detection with scarce training data and achieve more precise 
results. The main contributions of this paper are summarized below:

1.	 We propose an OBI rubbing image generation framework that 
generates OBI rubbing images by geometric and morphological 
construction combined with style transferring, capable of 
providing sufficient training data for OBI detection. 

2.	 We propose a semantic-enhanced detection model aiming at small 
and dense OBI to provide more semantic information through the 
fusion of multi-resolution feature maps with the enriched feature 
in the YOLOv5s backbone, with higher resolution and the Soft-
NMS handling overlapping, thus reaching better performance 
than competitive models. 

3.	 Our method can provide OBI rubbing images for augmentation 
of OBI detection and allow researchers to perform OBI detection 
only using limited and scarce training data. Experiments show 
that with the augmentation of the proposed framework, OBI 
detection models gain considerable performance improvement 
when training data is exceptionally scarce.

Extensive noise

Extensive noise

Overlapping

Origin Bone
Detected and Recognized

OBI rubbing

Deciphered

Small and dense
OBIs

Fig. 1. Illustration of small, dense, and noisy OBI rubbing images. Rubbing images of the original bone that contains OBIs is the most common digital material 
for OBI research. However, the OBIs were usually carved densely in small sizes, sometimes with extensive noises and overlapping, as indicated in the red, blue, 
and green ellipses.
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II.	 Related Work

A.	Data Augmentation
Data augmentation is a set of techniques that improves the quantity, 

quality, and variety of data, aiming to alleviate the problem of data 
scarcity, poor data quality, or data imbalance. 

In image processing, the most commonly used data augmentation 
methods are simple and effective such as rotation, clipping, and 
flipping. Random noise [19] is also effective for improving robustness. 
For object detection, these data augmentation methods are also 
effective. The commonly used augmentation methods for object 
detection are MixUp [18], Cutout [20], and Mosaic [16]. MixUp [18] 
mixed two images in proportion to generate a new image. Cutout [20] 
clipped a region of the image with zero padding. Mosaic [16] splices 
four pictures together into a new image. 

Besides, as generative adversarial network(GAN) [21] is capable of 
generating data, researchers utilized it for data augmentation of data 
quantity, and data imbalance such as augmentation of OBI recognition 
[22]. In other detection fields, for alleviating data scarcity, GAN is 
utilized by researchers. For example, Li et al. [23] proposed to generate 
a shadow image with a shadow mask guiding the position of the 
shadow to generate target images via GAN. However, similar ideas are 
hard to apply to OBI rubbing images. 

Generation of OBI rubbing images requires appropriately 
controlling the placement of each single OBI on a proper rubbing 
base and properly adding noise and realistic style to the generated 
image. In this work, we propose a rubbing base generation framework 
to automatically generate realistic rubbing images with labeled OBI 
information using single OBI images.

B.	Object Detection
According to the number of detection stages, object detection 

models can be divided into two-stage models and one-stage models. 

Two-stage object detection models are also called sparse detection 
models. R-CNN [8] proposed to use a heuristic algorithm to select 
some regions and extract the candidate regions’ corresponding 
features using a convolutional neural network and used a support 
vector machine for classification. SPP-Net [24] used spatial pyramid 
pooling so that the fully connected layer can adapt feature map input 
of different sizes. Fast R-CNN [25] proposed to only performes feature 
extraction once and use a fully connected layer to re-correct and 
achieve better performance. Faster R-CNN [11] proposed generating 
numerous anchors on the feature map and used Region Proposal 
Network (RPN) to get candidate regions. Further improvements based 
on Faster R-CNN like Cascade R-CNN [26] proposed combination of 
multi-stage detectors to achieve better performance. 

One-stage object detection models are based on the idea of 
simultaneous region extraction and classification. YOLOv1 [13] 
and YOLOv2 [14] proposed dividing the image into several grids 
and predicted the object in each grid. SSD [12] adopted the anchor 
mechanism in Faster R-CNN to perform multi-scale prediction on 
feature maps. YOLOv3 [15] also adopted the anchor mechanism but 
used the prior anchors obtained by clustering and the Feature Pyramid 
Network (FPN) [27] to predict on multi-scale feature maps. YOLOv4 
[16] further adopted the CSP backbone [28] and introduced spatial 
pyramid pooling and a modified Path Aggregation Network (PAN) 
[29] structure. The data augmentation method with better localization 
loss achieved high accuracy and speed simultaneously. YOLOv5 
further simplifies the network structure as much as possible under 
engineering experiments. It achieved fast speed and a tiny model size 
under a design similar to YOLOv4. In recent years, Transformer [30] 
has been proven to perform well in image tasks [31]. Furthermore, 

DETR [32] proposed to use Transformer structure to directly input 
the feature map output by the backbone into the encoder-decoder 
structure to generate the result to the feedforward neural network for 
prediction, which is a precedent for the Transformer-structured object 
detection model.

C.	OBI Detection
Due to the lack of data, previous OBI detection researchers usually 

constructed their private datasets and directly applied object detection 
models. Meng et al. [33] proposed to use SSD for OBI detection on a small 
Oracle detection dataset. Fujikawa et al. [34] proposed to use YOLO-tiny 
for OBI detection before classification. Xu [35] proposed to use YOLOv2 
to detect and identify OBI radicals on an Oracle bone character dataset. 
Liu et al. [36] proposed to use Mask R-CNN for OBI detection and 
achieved a preferable performance. Xinth et al. [37] produced the first 
public OBI detection dataset tested by the mainstream object detection 
models. They proposed the YOLO-SPPG and YOLO-ASPP detection 
models based on improving the YOLOv3 network neck by combining 
different pooling layers to achieve better performance.

III.	Methods

The overview of the proposed methods is shown in Fig. 2. The 
rubbing base generation constructs a primary rubbing base e using 
single OBI images by geometric and morphological operations. 
Rubbing Base Construction (RBC) and Rubbing Transformation (RT) 
algorithms are designed to prepare a rubbing base in the rubbing base 
generation module. RBC builds the rubbing base by appropriately 
controlling each OBI’s placement and constructing a multi-level 
border mesh on a convex hull to place these OBIs. RT adds cracks, 
holes, and irregular shapes to the constructed rubbing base from RBC. 
The rubbing adversarial network generator takes rubbing base e and 
segmentation s to transfer e to a realistic and noisy style as rubbing 
images for training data of the detection model. Accordingly, real 
rubbing images are used to train the rubbing adversarial network.

Meanwhile, an OBI detection model of improvements aiming 
at enriching semantic information and dealing with overlapping 
is proposed. These improvements aim at characteristics of OBI for 
performance enhancement. The proposed model provides a preferable 
performance on OBI detection for researchers.

A.	Rubbing Base Generation Framework
As shown in Fig. 3, geometric and morphological operations are 

proposed in the rubbing base generation module to construct the 
background rubbing base.

1.	Algorithm RBC
In the RBC algorithm, the first step is placing OBIs for further 

procedure and obtaining label locations. N single OBI images I = {I1, ..., IN} 
are randomly selected as candidates. Then I is arranged on a canvas 
equally divided into  rows and  columns. Only the 
central  grids  are used for avoiding 
bad cases of placement in the border. Each selected single OBI image Ii 
is placed in a randomly selected grid Gi. If the placement is successful 
(no overlapping), the grid Gi is no longer used, and the box position 
(𝑥1, 𝑦1, 𝑥2, 𝑦2) of Ii is recorded as the label Labeli . After placing all OBI 
images, all these labels information Label = {Label1, …, LabelN} are 
acquired to form the segmentation mask required to be fed into the 
rubbing adversarial network.

Real rubbing images are more than just some OBIs, whose 
background geometry is also significant. Hence the convex hull 
is adopted in the second step, where a convex hull is the smallest 
polygon that envelope a set of points. The ordered convex hull vertexes  
V = [V1, V2,…, VM], Vi = (𝑥, 𝑦) are calculated from Label as the simple 
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Fig. 2. The pipeline of the rubbing base generation framework.
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Fig. 3. The geometric and morphological operation to generate rubbing base.
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and regular rubbing base that envelopes all placed OBIs. Moreover, the 
center point Pc = (𝑥c , 𝑦c ) of the convex hull vertexes V is calculated.

To obtain an irregular shape and stimulate cracks or holes, we 
construct a multi-level borders mesh B = [B1, B2, B3, B4, B5], Bi = {(𝑥, 𝑦)}, 
where Bi are sets of border vertexes. In particular, the first border B1is 
the convex hull vertexes V. Each border Bi is extended from the former 
border Bi−1 for the next four borders. For each adjacent vertex pair (𝑥1, 𝑦1), 
(𝑥2, 𝑦2) in Bi−1, their distance d and midpoint Pm = (𝑥m, 𝑦m) are calculated. 
A new vertex  is added into Bi, where  is 
the vector from Pm pointing to Pc. Meanwhile, (Pm, Pc , Pnew) represents 
a triangle area, and the center points T = [T1, …, TM], Ti = (𝑥, 𝑦) of these 
triangle areas are recorded for the latter erosion operation.

2.	Algorithm RT
In the RT algorithm, some post-processing operations are conducted 

on the multi-level border mesh constructed by RBC. Expansions and 
erosions based on the multi-level border mesh and morphological 
operations are conducted to make the rubbing base more realistic and 
irregular. For such geometric purposes, the bezier curve is adopted. A 
bezier curve is a smooth curve controlled by several points, and three 
points can define a quadratic bezier curve, as shown in Equation (1).

	 (1)

where P1, P2, P3 are controlling points, and t is the step variable 
ranging from 0 to 1.

This way, the rugged and jagged convex hull border B1 is extended 
by bezier curves to obtain a more smooth and more realistic shape. 
For each border line from the adjacent vertex pair (𝑥1, 𝑦1), (𝑥2, 𝑦2) 
in Bi , we calculate their distance d and a point Pd on this borderline, 
where Pd cannot be too close to the endpoints of the line. Hence 
Pd =(u𝑥1 + (1 − u) 𝑥2, u𝑦1 + (1 − u) 𝑦2), where u is randomly sampled 
from [0.2, 0.8]. Then the outer point  is 
obtained as the point P2 of a quadratic bezier C curve controlled 
by P1 = (𝑥1, 𝑦1)and P3 = (𝑥2, 𝑦2), where w is randomly sampled from 
[0, ⅓] because the curve does not need to be too curving. The area 
enclosed by the line and this quadratic bezier curve C is filled with 
black as expansion.

The border of real rubbing images is usually rough and irregular. 
Hence, white ellipses of small random radius as erosion are created 
on each border line from the adjacent vertex pair (𝑥1, 𝑦1), (𝑥2, 𝑦2) in 
Bi . Furthermore, the same erosion is conducted to stimulate cracks, 
and the holes on the quadratic bezier C curve defined by randomly 
selected P1 ∈ B1, P2 ∈ T, and P3 ∈ B4 because curves usually start at the 
outer border.

Finally, several morphological operations are conducted to eliminate 
the flaw of discrete sampling in bezier curve expansion and erosion. 
They are ERODE, OPEN, CLOSE, OPEN, and ERODE sequentially.

3.	Rubbing Adversarial Network
After RBC and RT, a rubbing base e is obtained, which contains 

several single OBIs with the control of their placement. However, e 
still needs to include a realistic style of noise and color. To further 
transfer e into a more realistic style, a generative adversarial network 
is proposed to realize such a style-transferring goal. First, we denote 
the segmentation of the rubbing area, OBI, and background of a 
rubbing image as s. Then the trained generator G is used for style 
transferring the rubbing base processed by RT, and the discriminator 
D is discarded in the stage.

The training procedure of rubbing adversarial net is diagrammed in 
Fig. 2. Considering an actual rubbing image 𝑦, the threshold result of 
𝑦 is taken as e, and its corresponding segmentation is s. The generator 
G is trained to output a fake rubbing image from input e and s, while 

the discriminator D is trained to distinguish fake from real with 
corresponding e and s. The adversarial loss of the rubbing adversarial 
net is expressed as Equation (2).

	 (2)

where G is trained to generate high-quality fake rubbings to 
minimize this objective to confuse D and D is trained to distinguish 
fake rubbings from real rubbings to maximize it correctly.

In order to keep the general information of the rubbing base e, 
taking L1 Loss as a pixel-level restriction is beneficial [38], [39] for 
less blurring. However, applying L1 loss to OBI rubbing images may 
cause instability or even divergence in training because the noises 
on rubbing images are unstable and random. Hence, the image is 
divided into different areas for loss calculation, where complete, bone, 
and char are areas according to the segmentation areas indicated by 
segmentation s and the rubbing base e. A division sample is shown 
in Fig. 4. The rubbing loss is divided into three parts according to the 
segmentation, which can guide the generator G to generate better-
quality rubbing images and avoid divergence in training. The rubbing 
loss is computed in Equation (3).

	 (3)

where α, β, and γ are balance factors for the contents of different area.

Fake

Real

Full Bone Char

Fig. 4. The division of rubbing images. The complete area is the whole rubbing 
image. The bone area is the OBI rubbing with single OBIs, and the character 
area only contains the single OBI images. They are derived from segmentation 
gained by threshold processing of real rubbing images and the generated 
rubbing base.

In order to keep the whole image information, Smooth L1 loss is 
adopted instead of L1 loss to make G insensitive to outlier pixel noises 
for the complete area. The total image loss calculated between the 
whole area of the fake rubbing image and the real rubbing image is 
computed in Equation (4).

	 (4)

where the fake rubbing image is denoted as G (e, s)full, the real 
rubbing image is denoted as yfull.

To make G more insensitive to unstable noises, L1 loss after a  
2 𝗑 2 MaxPool2d layer is adopted for the bone area. The bone area loss 
calculated between the bone area of the fake rubbing image and the 
real rubbing image is computed in Equation (5).

	 (5)

where the fake rubbing bone area is denoted as G (e, s)bone and 
the real rubbing bone area is denoted as ybone, and the MaxP(·) is the 
MaxPool operation.
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Since the OBIs are the detection targets, the L1 loss is adopted to 
keep the character area consistent with input e. The character area 
loss calculated between the character area of the fake rubbing image 
and the real rubbing image is computed in Equation (6).

	 (6)

where the fake rubbing character area is denoted as G (e, s)char and 
the real rubbing character area is denoted as ychar.

The final objective is denoted as Equation (7).

	 (7)

where λ is a balance factor for the balance of adversarial loss and 
the rubbing loss.

The structure of the rubbing adversarial network is shown in Fig. 
5. The U-Net [40] structure is adopted as the generator G, and the 
network is derived from [39], which contains down-sampling blocks 
and up-sampling blocks with skip-connection. A simple 5-layer CNN 
is used as the discriminator D, which is composed of sequential Conv-
BN-LeakyReLU units. The input channels of five convolution layers 
are 9, 64, 128, 256, and 512, with all kernel sizes set to 4.

G(e, s)

G(e, s)

rubbing base

Fake or Real?

Fig. 5. The structure of the rubbing adversarial network.

B.	Detection Model
Since OBI is a complicated character, missing components may 

change the meaning of an OBI, and the model performance for 
detection is essential. Therefore, a detection model is proposed, 
which is enhanced from YOLOv5 [41] backbone for its flexibility 
in deployment and efficient training with the effective Mosaic [16] 
data augmentation. Furthermore, four significant improvements are 
proposed in the detection model for more rigorous detection ability. 
The structure of the proposed detection model is shown in Fig. 6.

Resolution. For object detection models based on feature maps 
obtained by convolutional networks, a larger input resolution can lead 
small targets easier to detect because tiny objects have a smaller range 
of semantics in the feature map after multi-layer convolution down 
sampling. As a result, tiny objects have more semantic information 
in the feature map with a larger resolution, making them easier to 
detect. For this reason, the input resolution is enlarged to 960 while 
the original input resolution is 640.

Feature Fusion. In the original YOLOv5s model, only three scales 
of the feature map of 1/8, 1/16, and 1/32 are fed to the FPN and PAN 
structures and prediction heads for feature fusion. Since multi-scale 
feature fusion is essential for the detection performance of small 
objects [42]. Hence, by adding a 1/4 scaled feature map to participate 
in detection in FPN and PAN feature fusion structure, it should be able 
to add lower-level detail location semantic features to the model for 
small objects. For this reason, two C3 layers similar to CSP Bottleneck 
[28], and two convolution layers are inserted to fuse the 1/4 feature 
map in FPN and PAN structure for an extra detection head P2. 

Box Loss. In the earlier object detection model, the loss used to 
evaluate the degree of deviation between the predicted box and ground 
truth is Smooth L1 or L2 loss. However, these losses are sensitive to scale 
change. Further, the IOU coefficient is used to predict the regression of 
the box [43], but when the two box does not overlap at all, no matter 
how far they deviate, their IOU coefficients are 0. GIOU [44] proposes 
to add the difference between the minimum circumscribed rectangle 

Input
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Fig. 6. The structure of the proposed OBI detection model.
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and the union of the two rectangles to measure the degree of deviation 
of the two rectangles. DIOU [45] proposes to use the square of the 
ratio between the diagonal distance of the smallest circumscribed 
rectangle and the distance between the centers of the two rectangular 
boxes to measure the degree of offset between the two boxes. CIOU 
[45] proposes introducing the respective aspect ratios of the predicted 
box and the ground-truth box for further measurement. These box 
losses are evaluated in the experiment for selecting box loss adopted 
in the proposed model.

NMS. NMS (Non-Maximum Suppression) is an algorithm used for 
redundant screening of the prediction by the object detection model 
because common competitive detection models predict overlapping 
results. However, NMS has certain defects. For example, when 
the distribution of targets is dense or the overlapping area is large, 
satisfactory performance cannot be obtained by setting threshold, 
where overlapping is handled by discarding prediction with lower 
confidence score. Soft-NMS [46] is adopted in the proposed model 
instead of NMS to solve this defect. Soft-NMS makes a simple 
improvement: instead of directly culling other boxes, the score decay 
is performed according to their overlapping extent.

IV.	Experiments

A.	Dataset
The proposed method consists of two main parts, the OBI detection 

model and the rubbing generation framework. First, they are trained on 
the same dataset independently, as detailed below. Then, the two parts 
of the proposed method are evaluated on the OBI-Detection dataset.

The OBI-Detection dataset is derived from the dataset collected 
by Xing et al. [37]. It is an OBI rubbing image dataset for OBI detection. 
The dataset is collected from 9134 scanned OBI rubbings with 51864 
OBI annotations. We split the dataset into 9:1 for training and testing. 
There are 8,221 training samples and 913 testing samples. All OBI 
detection models are trained on the OBI-Detection dataset. Besides, 
the proposed rubbing adversarial network is also trained on the same 
dataset, using real rubbing images and segmentation as the inputs of 
the generator. Single OBI images are selected from the training set 
as the data source for the rubbing generation framework to generate 
rubbing images.

B.	OBI Analysis
OBI analysis is conducted to reveal that the OBI has a small size and 

dense distribution characteristics. There are 51,684 OBI annotations 
on 9134 rubbing images in the OBI-Detection dataset. We analyze the 
number (Num) of OBIs per image, the box scale per Ground Truth 
(GT), and the polygon scale per image. The polygon scale refers to the 
quotient of the sum of OBI areas over the convex hull areas of OBIs in 
an image. As shown in Fig. 7, the density and overlapping of the OBI 
distribution can be quantitatively analyzed by calculating the polygon 
scale to analyze the distribution of OBIs.
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Fig. 7. The polygon scale statistic examples.

These statistical results are shown in Table I. The mean number of 
OBI per image is 5.66, and the median number of OBI per image is 4, 

indicating OBI is not much on rubbing images. While the mean scale of 
OBI is only 1.487% of the image, confirming that OBI is a kind of small 
object. The mean polygon scale of OBIs per image is 61.24%, and the 
median polygon scale is 61.38% of the image. Hence, over half of the 
convex hull area is occupied by OBIs. Also, the max polygon scale is 
148.1%, meaning some extreme overlapping cases exist. These results 
indicate that OBIs have a compact layout with some overlapping cases.

TABLE I. Results of OBI Analysis

Statistics Type Num / Image Scale (%) / GT Scale (%) / Image

Min 1 0.00069 1.968

Max 158 30.35 148.1

Mean 5.66 1.487 61.24

Median 4 0.9909 61.38

C.	Experiment Setup
Since the proposed method consists of a rubbing generation 

framework and an OBI detection model, the training process is divided 
into two parts. Pytorch 1.11.0 is adopted as the deep learning platform.

For training the proposed detection model, SGD is adopted as the 
optimizer with the weight decay set to 5 × 10-4, and the parameter 
momentum set to 0.8. The number of epochs is set to 100. The initial 
learning rate is × 10-2, and the parameter momentum is 0.8. The final 
learning rate is adjusted to × 10-3 as the cosine annealing.

For training the rubbing adversarial network, Adam is adopted as 
the optimizer. The learning rate is 3 × 10-5. Balance factor α is set to 
0.3, β is set to 0.4, γ is set to 0.3, and λ is set to 100.

A total of 8,221 rubbing images are generated as the data source for 
selection in the augmentation of training detection models along with 
real training samples.

D.	Performance Evaluation
Appropriate metrics are essential to evaluate the performance of 

classification and location in the detection model. In experiments, 
the AP0.5 and AP0.5:0.95 are metrics used for evaluation, for which 
higher is better.

IOU (Intersection over Union) is used by Object detection models 
to measure the closeness between prediction and GT, which is shown 
in Equation (8).

	 (8)

IOU ranges from 0 to 1, representing the extent of overlapping 
between the prediction bounding box and the GT bounding box. 
A high IOU means stricter prediction to GT. Under a certain IOU 
threshold, any prediction that has IOU with a corresponding GT lower 
than the IOU threshold is considered a false prediction.

Precision and Recall are fundamental indicators for performance, 
which are shown in Equation (9) and Equation (10).

	 (9)

	 (10)

Similarly, Precision and Recall are calculated from TP, FP, and FN. 
TP represents prediction with the correct category and location, FP 
represents the wrong prediction, and FN represents the target missed 
by the model. Precision refers to the ratio of correct predictions among 
all targets found by the model, reflecting the model’s ability to find 
targets correctly. Recall refers to the ratio of targets found by the model 
among all labeled targets, reflecting the model’s ability to find all 
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occurring targets. By setting different confidence thresholds, Precision 
and Recall may vary. Generally, high Precision will result in low Recall.

AP0.5 and AP0.5:0.95 are commonly used metrics extended 
from Precision to evaluate the performance of detection models. AP 
means the average precision with different confidence thresholds 
under a certain IOU threshold. AP0.5 represents the AP under the 
IOU threshold of 0.5, which means the correct prediction should 
overlap with the corresponding GT by more than half. AP0.5:0.95 
means the average of the AP at IOU thresholds from 0.5 to 0.95 in a 
step of 0.05. AP0.5:0.95 considers the average location performance 
under a loose IOU threshold(e.g., 0.5) and a strict IOU threshold(e.g., 
0.95), representing the overall performance of different positioning 
accuracy requirements.

E.	 OBI Rubbing Generation

1.	Augmentation on Different Models
Fig. 8 shows some generated rubbing images. It can be captured 

in the shown samples that each placed single OBI image has not 
deteriorated during the transferring procedure, and they keep their 
basic information. Also, it can be observed that the generated rubbing 
images are realistic and reasonable in shape.

Detection models are trained under the circumstances of highly 
scarce training data and augmentation of generated data to evaluate 
the proposed rubbing generation framework. Since manual annotation 
for a single rubbing image is time-consuming for checking professional 
materials, it is reasonable to define a total of 10-100 annotated 
images as ‘scarce’. In particular, the performance of several models is 
compared when only using 0.5% of the training data (41 images) and 
using 0.5% of training data mixed up with 10% of the generated data. 
The experimental results are shown in Table II, where ‘-’ represents 
results in cases that are not converged well.

Since only using 0.5% of real training data is in extreme data scarcity, 
some of these models are difficult to converge in training. The SSD300 
[12], deformable DETR [47], and Faster R-CNN [48] are hard to be 
trained. Hence, these three models perform poorly when only using 
0.5% real training data. However, after augmentation of mixing up 

with generated data, all these models gain considerable performance 
improvement on AP0.5 and AP0.5:0.95, demonstrating the effectiveness 
of the proposed rubbing generation framework in providing sufficient 
training data. Meanwhile, the DETR [32], YOLOv3 [15], YOLOv5s [41], 
and the proposed detection model perform better when training data 
is scarce, and they also gain noticeable improvement in performance 
both on AP0.5 and AP0.5:0.95. This improvement results from the 
increment and improved variety of augmented training data, which is 
essential for training deep neural networks. Overall, these models all 
gain a noticeable performance boost by augmentation of the proposed 
rubbing generation framework, proving its effectiveness.

2.	Augmentation Quantity Analysis
To further analyze the effectiveness of the rubbing generation 

framework, the proposed detection model and YOLOv5s are trained 
under different amounts of generated data for comparison. In 
particular, three groups of 0.5%, 1.0%, and 1.5% of the original 8,221 
training samples are set as baselines, containing 41, 82 and 123 images, 
respectively. Augmentation is mixing up 2%, 4%, 6%, 8%, and 10% of the 
8221 generated rubbing images for training the detection model and 
real training samples. These two models are also evaluated on the test 
set of 913 real rubbing images. For each group, the mean values are 
calculated for the metrics result. The experimental results are shown 
in Table III, Table IV, Table V, and visualized in Fig. 9.

Fig. 8. Examples of rubbing images generated by the rubbing generation network.

TABLE II. Results of Augmentation on Different Models

AP0.5 AP0.5:0.95
Models w/o w w/o w
SSD300 [12] - (0.210) 0.526 - (0.060) 0.189
DETR [32] 0.639 0.675 0.263 0.306
deformable DETR [47] - (0.203) 0.611 - (0.049) 0.263
Faster R-CNN [48] - (0.316) 0.641 - (0.132) 0.309
YOLOv3 [15] 0.603 0.657 0.198 0.271
YOLOv5s [41] 0.610 0.690 0.246 0.311
the proposed model 0.611 0.711 0.238 0.338

w/o: without augmentation. w: with augmentation.
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TABLE III. Results of 0.5% Real Group

AP0.5 AP0.5:0.95
Gen YOLOv5s / Ours YOLOv5s / Ours

0% 0.610 / 0.611 0.246 / 0.238

2% 0.689 / 0.689 0.303 / 0.308

4% 0.685 / 0.719 0.303 / 0.337

6% 0.686 / 0.724 0.307 / 0.354

8% 0.684 / 0.715 0.305 / 0.348

10% 0.690 / 0.711 0.311 / 0.344

mean 0.687 / 0.712 0.306 / 0.338

0.5% real training samples is the first experiment group. For the 
first group of only 0.5% real training samples, the results without any 
generated rubbing image are worse for both models. Their AP0.5 and 
AP0.5:0.95 are low, indicating that the models can detect OBI but are 
not precise. This inferior performance is because the detection model 
needs at least sufficient training samples. The performance is boosted 
by using the generated rubbing images and the real data in training. 
After adding generated rubbing images in training, the AP0.5 and 
the AP0.5:0.95 increased. This improvement is because the generated 
rubbing images enrich the training samples with similar shapes and 
characteristics of the extended noise, which proves the effectiveness 
of the proposed rubbing generation network.

TABLE IV. Results of 1% Real Group

AP0.5 AP0.5:0.95
Gen YOLOv5s / Ours YOLOv5s / Ours

0% 0.705 / 0.739 0.310 / 0.357

2% 0.750 / 0.752 0.349 / 0.365

4% 0.739 / 0.754 0.349 / 0.379

6% 0.745 / 0.775 0.352 / 0.395

8% 0.750 / 0.770 0.357 / 0.391

10% 0.747 / 0.776 0.356 / 0.400

mean 0.746 / 0.765 0.353 / 0.386

1% real training samples is the second experiment group. For the 
second group of only 1% real training samples, the results without any 
generated rubbing image are better than the first group. The AP0.5 
and the AP0.5:0.95 are close to the first group for both models because 
detection models need training samples of a similar distribution to test 
samples, which means real data is best for improving the performance. 
The performance is also boosted by using the generated rubbing 
images and the real training data. After adding generated rubbing 
images in training, the AP0.5 and the AP0.5:0.95 increased for both 
models. Although the generated rubbing images are different from real 

samples in distribution, the enrichment in the training samples is more 
important than the distortion in distribution under such a scarcity of 
real data, which also proved the effectiveness of the proposed rubbing 
generation network.

TABLE V. Results of 1.5% Real Group

AP0.5 AP0.5:0.95

Gen YOLOv5s / Ours YOLOv5s / Ours

0% 0.766 / 0.748 0.360 / 0.346

2% 0.778 / 0.781 0.377 / 0.400

4% 0.779 / 0.792 0.381 / 0.407

6% 0.772 / 0.797 0.379 / 0.411

8% 0.769 / 0.794 0.375 / 0.413

10% 0.763 / 0.795 0.372 / 0.420

mean 0.772 / 0.792 0.377 / 0.410

1.5% real training samples is the third experiment group. For the 
third group of 1.5% training samples, the results without any generated 
rubbing image are slightly better than the second group. However, 
the AP0.5 and the AP0.5:0.95 are high, indicating the importance of 
sufficient training data. The performance is also boosted prominently 
in AP0.5:0.95 by using the generated rubbing images and the real 
data in training. While the improvement is slight compared with the 
former groups, this may indicate that the influence of the distortion 
in distribution will become dominant when real training samples are 
sufficient.

As shown in Fig. 9, both YOLOv5s and the proposed model 
significantly improve on AP0.5 and AP0.95. Furthermore, it can be 
found that both models gain considerable improvement after being 
trained by mixed real data with augmentation of generated rubbing 
images on both metrics.

Among them, the improvement is most significant when there is 
only 0.5% real data. This improvement indicates the importance of 
sufficient training data. Also, more images generation may lead to 
better performance, which provides more training data. However, the 
improvement tendency is not rising for YOLOv5s; this may result from 
the different distribution to real data, and the difficulty of the generated 
samples makes YOLOv5s harder to progress further in performance. 
In contrast, the proposed detection model gains higher performance 
and a rising tendency on performance. Using a higher resolution and 
adding the 1/4 scale feature can contribute to the model’s progress to 
learn more effectively when training data is scarce. Among all three 
groups, the proposed detection model has higher AP0.5 and AP0.5:0.95 
mean values than with YOLOv5s, confirming that the improvement of 
the proposed detection model is effective.
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However, there are some cases when more generated samples lead to 
performance reduction. We attribute these cases to the deviation of real 
data distribution because OBIs on real rubbing images were not simply 
curved in grids. Instead, they tend to clump together in clusters of 
almost the same size. Nevertheless, these results prove that our rubbing 
generation network effectively alleviates the scarce data problem.

F.	 Comparison With Competitive Detection Models
We compare the proposed OBI detection model with several 

competitive object detection models on the OBI-Detection dataset. 
The experiment is conducted on all 8221 training samples and 913 
testing samples. Only AP0.5:0.95 for the highest four models of AP0.5 
are recorded.

Results are shown in Table VI. Compared with other models, the 
proposed OBI detection model is competitive in AP0.5 as well as 
AP0.5:0.95. This preferable result benefits from the multi-scale feature 
fusion structure with an enlarged resolution, the well-designed box 
loss, and the Soft-NMS dealing with overlapping. Compared with the 
classical two-stage model Faster R-CNN of a VGG16 backbone [11], and 
Faster R-CNN of a Conformer-FPN backbone [48], the proposed OBI 
detection model demonstrates the superiority in feature extraction by 
the well-designed backbone. Compared with classical one-stage models 
SSD300 [12], and DETR [32], the proposed OBI detection model also 
outperforms them for the enlarged resolution providing more semantic 
information and the Soft-NMS better at dealing with overlapping. 
Though the design of DETR can relieve it from anchor matching and 
NMS, the weakness in small objects inherited from the learnable fixed-
length KEY sequences result in inadequacy for small and dense objects 
like OBI. Compared with YOLO series models, the proposed model 
outperforms YOLOv4 [16], resulting from better feature fusion ability 
from backbone and resolution. While YOLOv3 [15] and YOLOv5s [41] 
have slightly better performance of AP0.5, the proposed OBI detection 
model shows superiority in AP0.5:0.95 by improvements, representing 
a better overall performance of different positioning accuracy 
requirements. These results prove the effectiveness and superiority of 
the proposed detection model for the OBI detection task.

TABLE VI. Results of Competitive Models and the Proposed Model

Models AP0.5 AP0.5:0.95

SSD300 0.734 -
Faster R-CNN(VGG16) 0.778 -
DETR 0.800 -
YOLOv4 0.860 -
Faster R-CNN(Conformer) 0.882 0.501
YOLOv3 0.906 0.535
YOLOv5s 0.906 0.529
the proposed model 0.902 0.581

G.	Analysis of Methodology and Model
Function of Each Part. The proposed OBI rubbing image 

generation framework and the semantic-enhanced detection model 
can be seen as different parts of an OBI detection method under scarce 
labeled data regimes. The former generates additional training data, 
while the latter extracts more helpful information from limited data to 
boost performance.

Relevance with Semi-supervised Object Detection (SSOD). 
SSOD models [49], [50] share the same assumption on limited labeled 
training data availability(typically 1%, 2%, 5%, and 10%). The main 
difference is that they are trained with abundant unlabeled data by 
pseudo labels, which means they need to collect a massive amount of 
unlabeled data. In comparison, our method generates pseudo-training 
data without collecting additional unlabeled data.

Distribution Difference. In order to simplify the method, we take 
the uniform distribution as the prior of OBI positions, but the real 
distribution of OBI is complex. We visualized the OBI centers’ position 
and frequency to show the difference in Fig. 10. In generated data, 
the OBI centers nearly fall into the square area with equal frequency. 
However, the real distribution is a narrow band region in the center, 
and the frequency of OBI fall in each grid position is biased. We 
observed this difference and regarded it as a distribution distortion.

Deceleration in the Boost of Performance. As shown in in Fig. 
9, the more real labeled data is available, the more muted the growth 
in performance is by adding more generated data. We attribute this to 
the distribution distortion of generated data to real data in the test set. 
Similarly, in SSOD, an observation is that the performance boost slows 
down when the pseudo label of unlabeled data is distorted . These 
similar observations are caused by the distortion in distribution.

H.	Ablation Study

1.	Ablation of Box Loss
Ablation experiments on the proposed OBI detection model are 

conducted to verify the effectiveness of different ℒBox losses in the 
proposed OBI detection model, including IOU, GIOU, DIOU, and 
CIOU, without other improvements. In addition, the OBI-detection 
dataset is randomly divided into 50% for training and 50% for testing 
as experimental groups.

Table VII shows the results of different box losses. The results in 
AP0.5 of the four loss methods are very close. When the training data 
is sufficient (9:1), IOU, GIOU, and DIOU all have an AP0.5 of 0.908, and 
CIOU has an AP0.5 of 0.906. While IOU, GIOU, and DIOU have an AP0.5 
of 0.884, and the CIOU has an AP0.5 of 0.885 when the training data is less 
(5:5). This closeness results from the fact that the variation range of OBI 
aspect ratio variation is tiny. Moreover, a tiny change in the bounding 
box offset will not reflect the effect of other losses, so the CIOU is finally 
adopted as the box loss in the proposed detection model because the 
design of CIOU is based on improving IOU, GIOU, and DIOU.

TABLE VII. Results of Different Box Losses With Different Train: 
Test Splits

Train:Test ℒBox AP0.5 Train:Test ℒBox AP0.5

9:1 IOU 0.908 5:5 IOU 0.884
9:1 GIOU 0.908 5:5 GIOU 0.884
9:1 DIOU 0.908 5:5 DIOU 0.884
9:1 CIOU 0.906 5:5 CIOU 0.885

2.	Ablation of 1/4 Feature, Resolution and Soft-NMS
To verify the effectiveness of the other three improvements: (1) 

adding 1/4 feature (1/4 Feat), (2) using higher resolution (Higher 
Res), (3) Soft-NMS, ablation experiments are conducted on the OBI-
detection dataset. The results are shown in Table VIII. The baseline 
without any improvement equals the original YOLOv5s model.

TABLE VIII. Results of Ablation Study of 1/4 Feature, Resolution, and 
Soft-NMS

1/4 Feat Higher Res Soft-NMS AP0.5 AP0.5:0.95
0.906 0.529

 0.900 0.571

 0.909 0.534

 0.901 0.526

  0.906 0.580

  0.907 0.530

  0.912 0.538

   0.902 0.581
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The combination of higher resolution with and 1/4 feature map is 
significant. However, when adding only the 1/4 feature map into the 
network structure without higher resolution, the poor predictions can 
deteriorate the performance due to insufficient semantic information 
in the 1/4 scale feature map. On the one hand, when only increasing 
the input resolution, the performance gets slightly better for enlarged 
resolution provides more information per position in feature maps. 
Therefore, the AP0.5 metric can improve by 0.6% by using higher input 
resolution and a 1/4 feature map for simultaneous detection without 
Soft-NMS.

Soft-NMS is also critical for improving AP0.5:0.95 but may result 
in a decline in AP0.5. Soft-NMS can effectively improve AP0.5:0.95. 
However, in some cases, due to some reserved inaccurate redundancy, 
Soft-NMS might lead to a decline in AP0.5. With increasing the input 
resolution, the improvement of Soft-NMS in AP0.5:0.95 after adding 
the feature map is more significant than that without adding the 
feature map. This phenomenon is because an enlarged input resolution 
is sufficient for the 1/4 feature to provide good predictions and leads to 
better performance.

Using higher input resolution and 1/4 feature map for fusion 
simultaneously, Soft-NMS can improve the AP0.5:0.95 metric from 
0.529 to 0.581, which is the highest improvement result from better 
semantic information for fusion along with reducing overlapping. 
This result also proves the effectiveness of our OBI detection model.

3.	Ablation of the ℒrubbing Loss
To verify the rubbing generation network, the ℒrubbing loss is also 

evaluated by substituting it with the L1 loss used in the rubbing 
generation framework. The loss records are shown in Fig. 11. It can be 
observed that the L1 loss calculated from the generated rubbing image 
and the real image is unstable, and the adversarial training cannot 
converge. This difficulty of convergence results from the noise on a 
real rubbing image caused by the random damage it had undergone. 
The noises on real rubbing images are not pixel-level stable. Hence, 
a pixel-level loss is sensitive to extensive random noise. By using the 
ℒrubbing loss, the rubbing adversarial network is feasible in convergence 
and generate rubbing images with noise to a certain extent, which 
proves the effectiveness of ℒrubbing.

V.	 Conclusion

Recently, advancement in Oracle Bone Inscription (OBI) detection 
has emerged to assist OBI researchers. Nevertheless, the costly 
annotation of such noisy and complex data requires expertise, 
hindering its development. This paper proposes an OBI rubbing 
generation framework aiming to alleviate the scarcity of OBI detection 
training data with an OBI detection model aiming to provide better 
performance on OBI detection. The OBI rubbing generation framework 
is based on geometric algorithms and an adversarial network. First, it 
generates a rubbing base with controllable OBI placement only using 
single OBI images by geometric algorithms that construct multi-level 
mesh and morphological operations such as erosion on the mesh. 
Then the rubbing adversarial network serves as style transferring to 
obtain a more realistic rubbing image. The proposed OBI detection 
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Fig. 10. Visualization of OBI center position and frequency. In (a) and (b), each OBI center is shown as a white point. In (c) and (d), the frequency of OBI center 
falls into equally divided grid cells is shown via the heatmap.
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model with effective improving methods is capable of providing more 
semantic information for tiny OBI and deal with overlapping softly. 
The goal of the proposed method is to generate additional training 
data under a uniform position prior without collecting extra unlabeled 
data. Besides, it extracts semantic-enhanced information from limited 
data. Experiments of augmentation show the performance boost on 
several popular detection models, demonstrating the effectiveness of 
the proposed OBI rubbing generation framework. The proposed model 
achieves the best performance compared with other popular detection 
models. Visualization results verified the distribution difference 
between real and generated data.

Experiments demonstrate that the proposed method improves the 
performance of detection models when training data is scarce, while 
the proposed OBI detection model outperforms several competitive 
candidates. The proposed methods allow researchers to detect OBI 
precisely only with scarce training data. Even the simple uniform prior 
is adequate with limited data, considering how to design the prior of 
generating OBI rubbing is a promising future research.
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