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Character detection is essential for subsequent Oracle Bone Inscription (OBI) research. However, the lack of
labeled data and the complexity of small and dense OBI characters are the main difficulties in OBI detection
research. In this paper, we propose a framework for rubbing generation that can automatically build up large-
scale rubbing samples with verisimilar scenarios to noisy wild OBI through geometric and morphological
construction combined with style transferring. Moreover, we propose a semantic-enhanced detection model
aiming at small and dense OBI through the fusion of multi-resolution feature maps with the enriched feature
in the YOLOv5s backbone. We introduce the higher resolution and the Soft-NMS into the proposed OBI
detection model to solve the overlapping of small and dense OBI characters. The augmented dataset improves
the performance of benchmark object detection models in the real OBI detection task when sufficient data
is lacking. Furthermore, the proposed OBI detection model can provide easy and preferable access to OBI
detection even with a small number of labeled data and obtain preferable results. Experiments ascertain the

Data Augmentation,
GAN, NMS, Object
Detection, Oracle Bone
Inscription.

DOI: 10.9781/ijimai.2025.10.001

effectiveness of the proposed OBI generation framework and the proposed OBI detection model.

I. INTRODUCTION

s a form of cultural heritage, characters have attracted attention

from researchers in recognition [1], retrieval [2], and even art of
character painting [3]. Oracle Bone Inscription (OBI), often curved on
bones or tortoise shells, is an ancient character in the Shang dynasty
(about 1300 BC), representing the record or divination of events.
Research such as deciphering [4] is much more complicated, for
studying OBI requires researchers to master professional knowledge
in many fields such as history, archaeology, and writing, and such
philological studies are more complicated. Traditional manual
deciphering is complex, inefficient, and time-consuming. On the other
hand, since researchers carried out the conventional research work
directly on the carrier of ancient writing, the research progress mainly
depended on a very authoritative minority of experts. Moreover, OBIs
are mainly stored in the form of rubbings. Hence, the detection of OBI
on rubbings is one of the preconditions for the subsequent recognition
[5], [6] and semantic analysis [7], which are vital in computer-aided
OBI research. Effective OBI detection systems can provide a practical
reference for the researchers of OBI. Also, the OBI detection system

is significant in simplifying and popularizing the research of OBL
Therefore, using OBI detection models to further aid in the study of
ancient characters can provide practical help for the research of OBI
and has a high research value.

In recent years, with the rapid development of deep learning,
convolutional neural networks (CNN) such as R-CNN [8] outperform
traditional methods. Other fields like Orthopantomogram image
classification [9] and surveillance video tracking [10] are booming by
CNN. Furthermore, object detection models [11]-[16] have also been
applied to OBI detection research. Therefore, applying object detection
models to OBI [17] and carrying out OBI detection research is the new
trend to help recognize and decipher OBL

However, the need for more annotated training data makes training
deep learning models difficult. Furthermore, because of its nature, OBI
labeling is very costly done by professionals. Therefore, researchers
usually keep their datasets private since they need to check, scan,
and align different professional materials with careful and detailed
manual annotation. Moreover, in contrast to regular modern text,
OBI is a distinctive character that is difficult to detect. For example,
as shown in Fig. 1, OBI was usually carved densely of small size and
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Fig. 1. [llustration of small, dense, and noisy OBI rubbing images. Rubbing images of the original bone that contains OBIs is the most common digital material
for OBI research. However, the OBIs were usually carved densely in small sizes, sometimes with extensive noises and overlapping, as indicated in the red, blue,

and green ellipses.

irregular distribution, along with extensive noise caused by drilling,
burning, fragmentation, and other damages for sacrificial purposes
and continued to be eroded in the soil. Hence, the automatic detection
of OBI characters is a challenging task for obtaining the deciphered
results to serve multi-disciplinary research.

To alleviate the scarcity of data for OBI, we propose a framework
to generate rubbing images from single OBI images by proposed
geometric algorithms and style transfer. Standard data augmentation
methods such as MixUp [18] and Mosaic [16] recombine the annotated
training data by overlapping and splicing. However, these methods still
need sufficient training data for detection because they only combine
existing objects derived from limited training data. Nevertheless, OBIs
are closely interrelated with the shape, noise, and background of the
bone that contains them, for which augmentation is not reasonable by
clipping and stitching.

In this paper, we propose geometric and morphological construction
combined with style transferring for generating rubbing images. The
rubbing image reflects the bone surface that was rubbed for OBI replica.
We assume OBI rubbings as polygons called rubbing bases containing
single OBIs and several types of noise. Based on this assumption, we
propose to generate OBI rubbings from single OBIs by a framework of
controllable placement, geometric operations, and style transfer.

Although the surface usually envelopes most OBIs, different rubbing
varies in shape and detail. Hence, firstly, we propose a deliberate
design to arrange the selected OBIs into divided grids and calculate
the convex hull of these arranged OBIs as the background geometry,
which can help generate an appropriate background for placed OBI
and ensure the envelopment of OBI by generated background.

Secondly, we simplify meshing from crack simulation based on
Finite Element Simulation to generate realistic cracks and holes.
Compared with the general physical computing method, our proposed
method can reduce complexity and computation demand by improving
the occurrence mechanism of cracks and maintaining the precision of
stimulation for image augmentation. In particular, we construct multi-
level border triangular mesh of the background geometry by geometric
methods and conduct morphological operations like erosion on the
constructed mesh to get a more realistic rubbing base.

Thirdly, we propose a rubbing adversarial network to acquire
a more realistic style since the natural style of noise and color is
essential and defined as a style-transferring procedure. The proposed
model takes the rubbing base and the segmentation of that rubbing
base which divides the image into different areas as inputs, outputting
the transferred rubbing image with noise and realistic style.

In addition, we propose a detection model targeted on the
characteristic of OBI with superior performance. We analyze several
major statistics of OBI rubbing images, which confirms that OBI is of
small size and dense distribution. In this regard, we propose an OBI
detection model with effective methods to provide more semantic
information for tiny OBI and deal with overlapping softly. As semantic
information is essential for detecting small objects, we introduce the
higher resolution and larger-scale feature map into the feature fusion
structure and additional detection head to enrich semantic information
for OBL Besides, dealing with overlapping is also a critical concern for
performance. For this purpose, We also compare different bounding
box losses and propose using Soft-NMS to relieve the problem of dense
distribution and overlapping. Overall, the proposed method can achieve
OBI detection with scarce training data and achieve more precise
results. The main contributions of this paper are summarized below:

1. We propose an OBI rubbing image generation framework that
generates OBI rubbing images by geometric and morphological
construction combined with style transferring, capable of
providing sufficient training data for OBI detection.

. We propose a semantic-enhanced detection model aiming at small
and dense OBI to provide more semantic information through the
fusion of multi-resolution feature maps with the enriched feature
in the YOLOv5s backbone, with higher resolution and the Soft-
NMS handling overlapping, thus reaching better performance
than competitive models.

. Our method can provide OBI rubbing images for augmentation
of OBI detection and allow researchers to perform OBI detection
only using limited and scarce training data. Experiments show
that with the augmentation of the proposed framework, OBI
detection models gain considerable performance improvement
when training data is exceptionally scarce.
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II. RELATED WORK

A. Data Augmentation

Data augmentation is a set of techniques that improves the quantity,
quality, and variety of data, aiming to alleviate the problem of data
scarcity, poor data quality, or data imbalance.

In image processing, the most commonly used data augmentation
methods are simple and effective such as rotation, clipping, and
flipping. Random noise [19] is also effective for improving robustness.
For object detection, these data augmentation methods are also
effective. The commonly used augmentation methods for object
detection are MixUp [18], Cutout [20], and Mosaic [16]. MixUp [18]
mixed two images in proportion to generate a new image. Cutout [20]
clipped a region of the image with zero padding. Mosaic [16] splices
four pictures together into a new image.

Besides, as generative adversarial network(GAN) [21] is capable of
generating data, researchers utilized it for data augmentation of data
quantity, and data imbalance such as augmentation of OBI recognition
[22]. In other detection fields, for alleviating data scarcity, GAN is
utilized by researchers. For example, Li et al. [23] proposed to generate
a shadow image with a shadow mask guiding the position of the
shadow to generate target images via GAN. However, similar ideas are
hard to apply to OBI rubbing images.

Generation of OBI rubbing images requires appropriately
controlling the placement of each single OBI on a proper rubbing
base and properly adding noise and realistic style to the generated
image. In this work, we propose a rubbing base generation framework
to automatically generate realistic rubbing images with labeled OBI
information using single OBI images.

B. Object Detection

According to the number of detection stages, object detection
models can be divided into two-stage models and one-stage models.

Two-stage object detection models are also called sparse detection
models. R-CNN [8] proposed to use a heuristic algorithm to select
some regions and extract the candidate regions’ corresponding
features using a convolutional neural network and used a support
vector machine for classification. SPP-Net [24] used spatial pyramid
pooling so that the fully connected layer can adapt feature map input
of different sizes. Fast R-CNN [25] proposed to only performes feature
extraction once and use a fully connected layer to re-correct and
achieve better performance. Faster R-CNN [11] proposed generating
numerous anchors on the feature map and used Region Proposal
Network (RPN) to get candidate regions. Further improvements based
on Faster R-CNN like Cascade R-CNN [26] proposed combination of
multi-stage detectors to achieve better performance.

One-stage object detection models are based on the idea of
simultaneous region extraction and classification. YOLOv1 [13]
and YOLOv2 [14] proposed dividing the image into several grids
and predicted the object in each grid. SSD [12] adopted the anchor
mechanism in Faster R-CNN to perform multi-scale prediction on
feature maps. YOLOv3 [15] also adopted the anchor mechanism but
used the prior anchors obtained by clustering and the Feature Pyramid
Network (FPN) [27] to predict on multi-scale feature maps. YOLOv4
[16] further adopted the CSP backbone [28] and introduced spatial
pyramid pooling and a modified Path Aggregation Network (PAN)
[29] structure. The data augmentation method with better localization
loss achieved high accuracy and speed simultaneously. YOLOvS5
further simplifies the network structure as much as possible under
engineering experiments. It achieved fast speed and a tiny model size
under a design similar to YOLOv4. In recent years, Transformer [30]
has been proven to perform well in image tasks [31]. Furthermore,

DETR [32] proposed to use Transformer structure to directly input
the feature map output by the backbone into the encoder-decoder
structure to generate the result to the feedforward neural network for
prediction, which is a precedent for the Transformer-structured object
detection model.

C. OBI Detection

Due to the lack of data, previous OBI detection researchers usually
constructed their private datasets and directly applied object detection
models. Meng et al. [33] proposed to use SSD for OBI detection on a small
Oracle detection dataset. Fujikawa et al. [34] proposed to use YOLO-tiny
for OBI detection before classification. Xu [35] proposed to use YOLOv2
to detect and identify OBI radicals on an Oracle bone character dataset.
Liu et al. [36] proposed to use Mask R-CNN for OBI detection and
achieved a preferable performance. Xinth et al. [37] produced the first
public OBI detection dataset tested by the mainstream object detection
models. They proposed the YOLO-SPPG and YOLO-ASPP detection
models based on improving the YOLOv3 network neck by combining
different pooling layers to achieve better performance.

III. METHODS

The overview of the proposed methods is shown in Fig. 2. The
rubbing base generation constructs a primary rubbing base e using
single OBI images by geometric and morphological operations.
Rubbing Base Construction (RBC) and Rubbing Transformation (RT)
algorithms are designed to prepare a rubbing base in the rubbing base
generation module. RBC builds the rubbing base by appropriately
controlling each OBI's placement and constructing a multi-level
border mesh on a convex hull to place these OBIs. RT adds cracks,
holes, and irregular shapes to the constructed rubbing base from RBC.
The rubbing adversarial network generator takes rubbing base e and
segmentation s to transfer e to a realistic and noisy style as rubbing
images for training data of the detection model. Accordingly, real
rubbing images are used to train the rubbing adversarial network.

Meanwhile, an OBI detection model of improvements aiming
at enriching semantic information and dealing with overlapping
is proposed. These improvements aim at characteristics of OBI for
performance enhancement. The proposed model provides a preferable
performance on OBI detection for researchers.

A. Rubbing Base Generation Framework

As shown in Fig. 3, geometric and morphological operations are
proposed in the rubbing base generation module to construct the
background rubbing base.

1. Algorithm RBC

In the RBC algorithm, the first step is placing OBIs for further
procedure and obtaining label locations. N single OBlimages I={1,, ..., I, }
are randomly selected as candidates. Then I is arranged on a canvas
equally divided into [VN] + 2 rows and [V/N] + 2 columns. Only the
central [VN] X [VN] grids G = {Gy, ..., Giymxjv} are used for avoiding
bad cases of placement in the border. Each selected single OBI image /,
is placed in a randomly selected grid G, If the placement is successful
(no overlapping), the grid G, is no longer used, and the box position
(%, ¥y X, ¥,) of I is recorded as the label Label,. After placing all OBI
images, all these labels information Label = {Label, ..., Label,} are
acquired to form the segmentation mask required to be fed into the
rubbing adversarial network.

Real rubbing images are more than just some OBIs, whose
background geometry is also significant. Hence the convex hull
is adopted in the second step, where a convex hull is the smallest
polygon that envelope a set of points. The ordered convex hull vertexes
V=[V, Ve V], V,= (x, y) are calculated from Label as the simple

2 M-
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Fig. 2. The pipeline of the rubbing base generation framework.
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and regular rubbing base that envelopes all placed OBIs. Moreover, the
center point P_= (x_, y,) of the convex hull vertexes V is calculated.

To obtain an irregular shape and stimulate cracks or holes, we
construct a multi-level borders mesh B=[B,, B,, B, B, B.],B,={(x, )},
where B, are sets of border vertexes. In particular, the first border B,is
the convex hull vertexes V. Each border B, is extended from the former
border B,_, for the nextfourborders. For each adjacent vertex pair (x,,y,),
(x,¥,) in B_,, their distance d and midpoint P, =(x,, y,) are calculated.
A new vertex Pyew = P +0.25d I%\ is added into B, where PnF: is
the vector from P_ pointing to P.. Meanwhile, (P, P,P,,) represents

new-
a triangle area, and the center points 7= [T,, .., T, ], T,= (x, ) of these

M-
triangle areas are recorded for the latter erosion operation.

2. Algorithm RT

In the RT algorithm, some post-processing operations are conducted
on the multi-level border mesh constructed by RBC. Expansions and
erosions based on the multi-level border mesh and morphological
operations are conducted to make the rubbing base more realistic and
irregular. For such geometric purposes, the bezier curve is adopted. A
bezier curve is a smooth curve controlled by several points, and three
points can define a quadratic bezier curve, as shown in Equation (1).

C=1-1t)2P, +2t(1 —t)P, + t2P;,t € [0,1] (1)

where P,, P,, P, are controlling points, and ¢t is the step variable
ranging from 0 to 1.

This way, the rugged and jagged convex hull border B, is extended
by bezier curves to obtain a more smooth and more realistic shape.
For each border line from the adjacent vertex pair (x,, y,), (x,, ¥,)
in B,, we calculate their distance d and a point P ', on this borderline,
where P, cannot be too close to the endpoints of the line. Hence
P,=(ux,+ (1—u) x,,uy, + (1—u) y,), where u is randomly sampled
from [0.2, 0.8]. Then the outer point Peyxpana = Pa +wd |Zz:| is
obtained as the point P, of a quadratic bezier C curve controlled
by P, = (x,, y,)and P, = (x,, y,), where w is randomly sampled from
[0, %3] because the curve does not need to be too curving. The area
enclosed by the line and this quadratic bezier curve C is filled with
black as expansion.

The border of real rubbing images is usually rough and irregular.
Hence, white ellipses of small random radius as erosion are created
on each border line from the adjacent vertex pair (x,, y,), (x,, y,) in
B,. Furthermore, the same erosion is conducted to stimulate cracks,
and the holes on the quadratic bezier C curve defined by randomly
selected P, € B, P, € T, and P, € B, because curves usually start at the
outer border.

Finally, several morphological operations are conducted to eliminate
the flaw of discrete sampling in bezier curve expansion and erosion.
They are ERODE, OPEN, CLOSE, OPEN, and ERODE sequentially.

3. Rubbing Adversarial Network

After RBC and RT, a rubbing base e is obtained, which contains
several single OBIs with the control of their placement. However, e
still needs to include a realistic style of noise and color. To further
transfer e into a more realistic style, a generative adversarial network
is proposed to realize such a style-transferring goal. First, we denote
the segmentation of the rubbing area, OBI, and background of a
rubbing image as s. Then the trained generator G is used for style
transferring the rubbing base processed by RT, and the discriminator
D is discarded in the stage.

The training procedure of rubbing adversarial net is diagrammed in
Fig. 2. Considering an actual rubbing image y, the threshold result of
y is taken as e, and its corresponding segmentation is s. The generator
G is trained to output a fake rubbing image from input e and s, while

the discriminator D is trained to distinguish fake from real with
corresponding e and s. The adversarial loss of the rubbing adversarial
net is expressed as Equation (2).

Lean(G,D) =E [logD(e,s,y)] +E [log(1—D(e,s,G(e,;s))]  (2)

where G is trained to generate high-quality fake rubbings to
minimize this objective to confuse D and D is trained to distinguish
fake rubbings from real rubbings to maximize it correctly.

In order to keep the general information of the rubbing base e,
taking L1 Loss as a pixel-level restriction is beneficial [38], [39] for
less blurring. However, applying L1 loss to OBI rubbing images may
cause instability or even divergence in training because the noises
on rubbing images are unstable and random. Hence, the image is
divided into different areas for loss calculation, where complete, bone,
and char are areas according to the segmentation areas indicated by
segmentation s and the rubbing base e. A division sample is shown
in Fig. 4. The rubbing loss is divided into three parts according to the
segmentation, which can guide the generator G to generate better-
quality rubbing images and avoid divergence in training. The rubbing

loss is computed in Equation (3).
Lrubbing(G) = (Xqu”(G) + BLpone(G) + ¥ Lcpar (G) (3)

where a, B, and y are balance factors for the contents of different area.

Real

Full

Bone Char

Fig. 4. The division of rubbing images. The complete area is the whole rubbing
image. The bone area is the OBI rubbing with single OBIs, and the character
area only contains the single OBI images. They are derived from segmentation
gained by threshold processing of real rubbing images and the generated
rubbing base.

In order to keep the whole image information, Smooth L1 loss is
adopted instead of L1 loss to make G insensitive to outlier pixel noises
for the complete area. The total image loss calculated between the
whole area of the fake rubbing image and the real rubbing image is
computed in Equation (4).

quu(G) = Lsmootn11(G (e, S)full:)’fuzl) (4)

where the fake rubbing image is denoted as G (e, s) o the real
rubbing image is denoted as y .

To make G more insensitive to unstable noises, L1 loss after a
2 x 2 MaxPool2d layer is adopted for the bone area. The bone area loss
calculated between the bone area of the fake rubbing image and the
real rubbing image is computed in Equation (5).

Lbone(G) = LLl(MaxP(G(e' S)bane)' MaxP (Ybone)) (5)

where the fake rubbing bone area is denoted as G (e, 5),,,, and
the real rubbing bone area is denoted as y, ., and the MaxP(-) is the
MaxPool operation.
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Since the OBIs are the detection targets, the L1 loss is adopted to
keep the character area consistent with input e. The character area
loss calculated between the character area of the fake rubbing image
and the real rubbing image is computed in Equation (6).

Lenar(6) = L1 (G (€S enars Yenar) ©)
where the fake rubbing character area is denoted as G (e, 5) ,, and
the real rubbing character area is denoted as y, .

The final objective is denoted as Equation (7).
arg mGin max Lgan(G, D) + ALrypping (G) @)

where A is a balance factor for the balance of adversarial loss and
the rubbing loss.

The structure of the rubbing adversarial network is shown in Fig.
5. The U-Net [40] structure is adopted as the generator G, and the
network is derived from [39], which contains down-sampling blocks
and up-sampling blocks with skip-connection. A simple 5-layer CNN
is used as the discriminator D, which is composed of sequential Conv-
BN-LeakyReLU units. The input channels of five convolution layers
are 9, 64, 128, 256, and 512, with all kernel sizes set to 4.

ih.

Iy G
] ; v ﬁé »— Fake or Real? l

Gle, s)

Fig. 5. The structure of the rubbing adversarial network.

B. Detection Model

Since OBI is a complicated character, missing components may
change the meaning of an OBI, and the model performance for
detection is essential. Therefore, a detection model is proposed,
which is enhanced from YOLOv5 [41] backbone for its flexibility
in deployment and efficient training with the effective Mosaic [16]
data augmentation. Furthermore, four significant improvements are
proposed in the detection model for more rigorous detection ability.
The structure of the proposed detection model is shown in Fig. 6.

Resolution. For object detection models based on feature maps
obtained by convolutional networks, a larger input resolution can lead
small targets easier to detect because tiny objects have a smaller range
of semantics in the feature map after multi-layer convolution down
sampling. As a result, tiny objects have more semantic information
in the feature map with a larger resolution, making them easier to
detect. For this reason, the input resolution is enlarged to 960 while
the original input resolution is 640.

Feature Fusion. In the original YOLOv5s model, only three scales
of the feature map of 1/8, 1/16, and 1/32 are fed to the FPN and PAN
structures and prediction heads for feature fusion. Since multi-scale
feature fusion is essential for the detection performance of small
objects [42]. Hence, by adding a 1/4 scaled feature map to participate
in detection in FPN and PAN feature fusion structure, it should be able
to add lower-level detail location semantic features to the model for
small objects. For this reason, two C3 layers similar to CSP Bottleneck
[28], and two convolution layers are inserted to fuse the 1/4 feature
map in FPN and PAN structure for an extra detection head P2.

Box Loss. In the earlier object detection model, the loss used to
evaluate the degree of deviation between the predicted box and ground
truthis Smooth L1 or L2 loss. However, these losses are sensitive to scale
change. Further, the IOU coefficient is used to predict the regression of
the box [43], but when the two box does not overlap at all, no matter
how far they deviate, their IOU coefficients are 0. GIOU [44] proposes
to add the difference between the minimum circumscribed rectangle

lni)ut
P2 1/4
e
: 112 Conv 3x3x32-s-2 C3164 Conv 1x1x[3x(nc+5)]
1 v !
: MaxPool 5x5 : Concat Head
1 1 1/4 Conv 3x3x64 s-2
1 MaxPool 5x5 :
1
I 1 Upsample 2x
1 MaxPool 5x5 | | C3164 Concat
! : — | | L
‘—
1
: SPPF ' : 1/8 Conv 3x3x128-s-2 conv 1x1x64 | FEE
_______________ 1 -5-
! C31128 Conv 1x1x[3x(nc+5)]
C31128
C32128 Concat I Head
Conv 3x3x128-s-2
Upsample 2x
1/16 Conv 3x3x256-s-2 Concat | R
|
C3 3256 Conv 1x1x128 C31 256 Conv 1x1x[3x(nc+5)]
Concat L
—
€31256 | Head
1/32 Conv 3x3x512-s-2
1 Conv 3x3x256-s-2
C31512 Upsample 2x Concat |
P51/32
SPPF Conv 1x1x256 C31512 Conv 1x1x[3x(nc+5)]
| 1 Head
Backbone FPN PAN

Fig. 6. The structure of the proposed OBI detection model.
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and the union of the two rectangles to measure the degree of deviation
of the two rectangles. DIOU [45] proposes to use the square of the
ratio between the diagonal distance of the smallest circumscribed
rectangle and the distance between the centers of the two rectangular
boxes to measure the degree of offset between the two boxes. CIOU
[45] proposes introducing the respective aspect ratios of the predicted
box and the ground-truth box for further measurement. These box
losses are evaluated in the experiment for selecting box loss adopted
in the proposed model.

NMS. NMS (Non-Maximum Suppression) is an algorithm used for
redundant screening of the prediction by the object detection model
because common competitive detection models predict overlapping
results. However, NMS has certain defects. For example, when
the distribution of targets is dense or the overlapping area is large,
satisfactory performance cannot be obtained by setting threshold,
where overlapping is handled by discarding prediction with lower
confidence score. Soft-NMS [46] is adopted in the proposed model
instead of NMS to solve this defect. Soft-NMS makes a simple
improvement: instead of directly culling other boxes, the score decay
is performed according to their overlapping extent.

IV. EXPERIMENTS

A. Dataset

The proposed method consists of two main parts, the OBI detection
model and the rubbing generation framework. First, they are trained on
the same dataset independently, as detailed below. Then, the two parts
of the proposed method are evaluated on the OBI-Detection dataset.

The OBI-Detection dataset is derived from the dataset collected
by Xing et al. [37]. It is an OBI rubbing image dataset for OBI detection.
The dataset is collected from 9134 scanned OBI rubbings with 51864
OBI annotations. We split the dataset into 9:1 for training and testing.
There are 8,221 training samples and 913 testing samples. All OBI
detection models are trained on the OBI-Detection dataset. Besides,
the proposed rubbing adversarial network is also trained on the same
dataset, using real rubbing images and segmentation as the inputs of
the generator. Single OBI images are selected from the training set
as the data source for the rubbing generation framework to generate
rubbing images.

B. OBI Analysis

OBl analysis is conducted to reveal that the OBI has a small size and
dense distribution characteristics. There are 51,684 OBI annotations
on 9134 rubbing images in the OBI-Detection dataset. We analyze the
number (Num) of OBIs per image, the box scale per Ground Truth
(GT), and the polygon scale per image. The polygon scale refers to the
quotient of the sum of OBI areas over the convex hull areas of OBIs in
an image. As shown in Fig. 7, the density and overlapping of the OBI
distribution can be quantitatively analyzed by calculating the polygon
scale to analyze the distribution of OBIs.

4
2 1.7
< )
=
- [l—l -
Scale of Polygon Scale of Polygon Scale of Polygon
=100% =25% =112%

Fig. 7. The polygon scale statistic examples.

These statistical results are shown in Table I. The mean number of
OBI per image is 5.66, and the median number of OBI per image is 4,

indicating OBI is not much on rubbing images. While the mean scale of
OBl is only 1.487% of the image, confirming that OBI is a kind of small
object. The mean polygon scale of OBIs per image is 61.24%, and the
median polygon scale is 61.38% of the image. Hence, over half of the
convex hull area is occupied by OBIs. Also, the max polygon scale is
148.1%, meaning some extreme overlapping cases exist. These results
indicate that OBIs have a compact layout with some overlapping cases.

TABLE 1. ResuLts oF OBI ANALYSIS

Statistics Type Num/Image Scale (%)/GT  Scale (%)/Image
Min 1 0.00069 1.968
Max 158 30.35 148.1
Mean 5.66 1.487 61.24
Median 4 0.9909 61.38

C. Experiment Setup

Since the proposed method consists of a rubbing generation
framework and an OBI detection model, the training process is divided
into two parts. Pytorch 1.11.0 is adopted as the deep learning platform.

For training the proposed detection model, SGD is adopted as the
optimizer with the weight decay set to 5x 10*, and the parameter
momentum set to 0.8. The number of epochs is set to 100. The initial
learning rate is X 102, and the parameter momentum is 0.8. The final
learning rate is adjusted to x 1073 as the cosine annealing.

For training the rubbing adversarial network, Adam is adopted as
the optimizer. The learning rate is 3 X 10~°. Balance factor a is set to
0.3, B is set to 0.4, y is set to 0.3, and A is set to 100.

A total of 8,221 rubbing images are generated as the data source for
selection in the augmentation of training detection models along with
real training samples.

D. Performance Evaluation

Appropriate metrics are essential to evaluate the performance of
classification and location in the detection model. In experiments,
the AP0.5 and AP0.5:0.95 are metrics used for evaluation, for which
higher is better.

10U (Intersection over Union) is used by Object detection models
to measure the closeness between prediction and GT, which is shown
in Equation (8).
|Prediction N GT|

I0U = ————
|Prediction U GT|

®)

IOU ranges from 0 to 1, representing the extent of overlapping
between the prediction bounding box and the GT bounding box.
A high IOU means stricter prediction to GT. Under a certain IOU
threshold, any prediction that has IOU with a corresponding GT lower
than the IOU threshold is considered a false prediction.

Precision and Recall are fundamental indicators for performance,
which are shown in Equation (9) and Equation (10).

procision = TP
recision = TP + FP (9)
Recall = — &

TP Y EN (10)

Similarly, Precision and Recall are calculated from TP, FP, and FN.
TP represents prediction with the correct category and location, FP
represents the wrong prediction, and FN represents the target missed
by the model. Precision refers to the ratio of correct predictions among
all targets found by the model, reflecting the model’s ability to find
targets correctly. Recall refers to the ratio of targets found by the model
among all labeled targets, reflecting the model’s ability to find all
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Fig. 8. Examples of rubbing images generated by the rubbing generation network.

occurring targets. By setting different confidence thresholds, Precision
and Recall may vary. Generally, high Precision will result in low Recall.

AP0.5 and APO0.5:0.95 are commonly used metrics extended
from Precision to evaluate the performance of detection models. AP
means the average precision with different confidence thresholds
under a certain IOU threshold. AP0.5 represents the AP under the
IOU threshold of 0.5, which means the correct prediction should
overlap with the corresponding GT by more than half. AP0.5:0.95
means the average of the AP at IOU thresholds from 0.5 to 0.95 in a
step of 0.05. AP0.5:0.95 considers the average location performance
under a loose IOU threshold(e.g., 0.5) and a strict IOU threshold(e.g.,
0.95), representing the overall performance of different positioning
accuracy requirements.

E. OBI Rubbing Generation

1. Augmentation on Different Models

Fig. 8 shows some generated rubbing images. It can be captured
in the shown samples that each placed single OBI image has not
deteriorated during the transferring procedure, and they keep their
basic information. Also, it can be observed that the generated rubbing
images are realistic and reasonable in shape.

Detection models are trained under the circumstances of highly
scarce training data and augmentation of generated data to evaluate
the proposed rubbing generation framework. Since manual annotation
for a single rubbing image is time-consuming for checking professional
materials, it is reasonable to define a total of 10-100 annotated
images as ‘scarce’. In particular, the performance of several models is
compared when only using 0.5% of the training data (41 images) and
using 0.5% of training data mixed up with 10% of the generated data.
The experimental results are shown in Table II, where ‘-’ represents
results in cases that are not converged well.

Since only using 0.5% of real training data is in extreme data scarcity,
some of these models are difficult to converge in training. The SSD300
[12], deformable DETR [47], and Faster R-CNN [48] are hard to be
trained. Hence, these three models perform poorly when only using
0.5% real training data. However, after augmentation of mixing up

TABLE II. RESULTS OF AUGMENTATION ON DIFFERENT MODELS

AP0.5 AP0.5:0.95

Models w/o w w/o w

SSD300 [12] - (0.210) 0.526 - (0.060) 0.189
DETR [32] 0.639 0.675 0.263 0.306
deformable DETR [47] - (0.203) 0.611 - (0.049) 0.263
Faster R-CNN [48] - (0.316) 0.641 -(0.132) 0.309
YOLOV3 [15] 0.603 0.657 0.198 0.271
YOLOv5s [41] 0.610 0.690 0.246 0.311
the proposed model 0.611 0.711 0.238 0.338

w/o: without augmentation. w: with augmentation.

with generated data, all these models gain considerable performance
improvement on AP0.5 and AP0.5:0.95, demonstrating the effectiveness
of the proposed rubbing generation framework in providing sufficient
training data. Meanwhile, the DETR [32], YOLOv3 [15], YOLOv5s [41],
and the proposed detection model perform better when training data
is scarce, and they also gain noticeable improvement in performance
both on AP0.5 and AP0.5:0.95. This improvement results from the
increment and improved variety of augmented training data, which is
essential for training deep neural networks. Overall, these models all
gain a noticeable performance boost by augmentation of the proposed
rubbing generation framework, proving its effectiveness.

2. Augmentation Quantity Analysis

To further analyze the effectiveness of the rubbing generation
framework, the proposed detection model and YOLOv5s are trained
under different amounts of generated data for comparison. In
particular, three groups of 0.5%, 1.0%, and 1.5% of the original 8,221
training samples are set as baselines, containing 41, 82 and 123 images,
respectively. Augmentation is mixing up 2%, 4%, 6%, 8%, and 10% of the
8221 generated rubbing images for training the detection model and
real training samples. These two models are also evaluated on the test
set of 913 real rubbing images. For each group, the mean values are
calculated for the metrics result. The experimental results are shown
in Table III, Table IV, Table V, and visualized in Fig. 9.
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Fig. 9. Results of different portions of mixing real and generated group.

TABLE III. Resurts oF 0.5% REaL GrouP

AP0.5 AP0.5:0.95
Gen YOLOV5s / Ours YOLOVS5s / Ours
0% 0.610/0.611 0.246 / 0.238
2% 0.689 / 0.689 0.303 / 0.308
4% 0.685/0.719 0.303 / 0.337
6% 0.686 / 0.724 0.307 / 0.354
8% 0.684 / 0.715 0.305/ 0.348
10% 0.690/0.711 0.311/0.344
mean 0.687 / 0.712 0.306 / 0.338

0.5% real training samples is the first experiment group. For the
first group of only 0.5% real training samples, the results without any
generated rubbing image are worse for both models. Their AP0.5 and
AP0.5:0.95 are low, indicating that the models can detect OBI but are
not precise. This inferior performance is because the detection model
needs at least sufficient training samples. The performance is boosted
by using the generated rubbing images and the real data in training.
After adding generated rubbing images in training, the AP0.5 and
the AP0.5:0.95 increased. This improvement is because the generated
rubbing images enrich the training samples with similar shapes and
characteristics of the extended noise, which proves the effectiveness
of the proposed rubbing generation network.

TABLE IV. ReEsuLTs oF 1% REaL Group

APO0.5 AP0.5:0.95
Gen YOLOv5s / Ours YOLOV5s / Ours
0% 0.705 / 0.739 0.310/ 0.357
2% 0.750 / 0.752 0.349 / 0.365
4% 0.739 / 0.754 0.349 / 0.379
6% 0.745 / 0.775 0.352/ 0.395
8% 0.750 / 0.770 0.357 / 0.391
10% 0.747 / 0.776 0.356 / 0.400
mean 0.746 / 0.765 0.353/ 0.386

1% real training samples is the second experiment group. For the
second group of only 1% real training samples, the results without any
generated rubbing image are better than the first group. The AP0.5
and the AP0.5:0.95 are close to the first group for both models because
detection models need training samples of a similar distribution to test
samples, which means real data is best for improving the performance.
The performance is also boosted by using the generated rubbing
images and the real training data. After adding generated rubbing
images in training, the AP0.5 and the AP0.5:0.95 increased for both
models. Although the generated rubbing images are different from real

samples in distribution, the enrichment in the training samples is more
important than the distortion in distribution under such a scarcity of
real data, which also proved the effectiveness of the proposed rubbing
generation network.

TABLE V. ResuLts oF 1.5% REAL GrouP

APO0.5 AP0.5:0.95
Gen YOLOv5s / Ours YOLOV5s / Ours
0% 0.766 / 0.748 0.360 / 0.346
2% 0.778 / 0.781 0.377 / 0.400
4% 0.779 / 0.792 0.381/0.407
6% 0.772/ 0.797 0.379 / 0.411
8% 0.769 / 0.794 0.375/0.413
10% 0.763 / 0.795 0.372/ 0.420
mean 0.772/ 0.792 0.377 / 0.410

1.5% real training samples is the third experiment group. For the
third group of 1.5% training samples, the results without any generated
rubbing image are slightly better than the second group. However,
the AP0.5 and the AP0.5:0.95 are high, indicating the importance of
sufficient training data. The performance is also boosted prominently
in AP0.5:0.95 by using the generated rubbing images and the real
data in training. While the improvement is slight compared with the
former groups, this may indicate that the influence of the distortion
in distribution will become dominant when real training samples are
sufficient.

As shown in Fig. 9, both YOLOv5s and the proposed model
significantly improve on AP0.5 and AP0.95. Furthermore, it can be
found that both models gain considerable improvement after being
trained by mixed real data with augmentation of generated rubbing
images on both metrics.

Among them, the improvement is most significant when there is
only 0.5% real data. This improvement indicates the importance of
sufficient training data. Also, more images generation may lead to
better performance, which provides more training data. However, the
improvement tendency is not rising for YOLOV5s; this may result from
the different distribution to real data, and the difficulty of the generated
samples makes YOLOv5s harder to progress further in performance.
In contrast, the proposed detection model gains higher performance
and a rising tendency on performance. Using a higher resolution and
adding the 1/4 scale feature can contribute to the model’s progress to
learn more effectively when training data is scarce. Among all three
groups, the proposed detection model has higher AP0.5 and AP0.5:0.95
mean values than with YOLOV5s, confirming that the improvement of
the proposed detection model is effective.
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However, there are some cases when more generated samples lead to
performance reduction. We attribute these cases to the deviation of real
data distribution because OBIs on real rubbing images were not simply
curved in grids. Instead, they tend to clump together in clusters of
almost the same size. Nevertheless, these results prove that our rubbing
generation network effectively alleviates the scarce data problem.

E. Comparison With Competitive Detection Models

We compare the proposed OBI detection model with several
competitive object detection models on the OBI-Detection dataset.
The experiment is conducted on all 8221 training samples and 913
testing samples. Only AP0.5:0.95 for the highest four models of AP0.5
are recorded.

Results are shown in Table VI. Compared with other models, the
proposed OBI detection model is competitive in AP0.5 as well as
AP0.5:0.95. This preferable result benefits from the multi-scale feature
fusion structure with an enlarged resolution, the well-designed box
loss, and the Soft-NMS dealing with overlapping. Compared with the
classical two-stage model Faster R-CNN of a VGG16 backbone [11], and
Faster R-CNN of a Conformer-FPN backbone [48], the proposed OBI
detection model demonstrates the superiority in feature extraction by
the well-designed backbone. Compared with classical one-stage models
SSD300 [12], and DETR [32], the proposed OBI detection model also
outperforms them for the enlarged resolution providing more semantic
information and the Soft-NMS better at dealing with overlapping.
Though the design of DETR can relieve it from anchor matching and
NMS, the weakness in small objects inherited from the learnable fixed-
length KEY sequences result in inadequacy for small and dense objects
like OBIL. Compared with YOLO series models, the proposed model
outperforms YOLOv4 [16], resulting from better feature fusion ability
from backbone and resolution. While YOLOv3 [15] and YOLOv5s [41]
have slightly better performance of AP0.5, the proposed OBI detection
model shows superiority in AP0.5:0.95 by improvements, representing
a better overall performance of different positioning accuracy
requirements. These results prove the effectiveness and superiority of
the proposed detection model for the OBI detection task.

TABLE VI. REsuLTs OF COMPETITIVE MODELS AND THE PROPOSED MODEL

Models AP0.5 AP0.5:0.95
SSD300 0.734 -
Faster R-CNN(VGG16) 0.778 -
DETR 0.800 -
YOLOv4 0.860 -
Faster R-CNN(Conformer) 0.882 0.501
YOLOvV3 0.906 0.535
YOLOV5s 0.906 0.529
the proposed model 0.902 0.581

G. Analysis of Methodology and Model

Function of Each Part. The proposed OBI rubbing image
generation framework and the semantic-enhanced detection model
can be seen as different parts of an OBI detection method under scarce
labeled data regimes. The former generates additional training data,
while the latter extracts more helpful information from limited data to
boost performance.

Relevance with Semi-supervised Object Detection (SSOD).
SSOD models [49], [50] share the same assumption on limited labeled
training data availability(typically 1%, 2%, 5%, and 10%). The main
difference is that they are trained with abundant unlabeled data by
pseudo labels, which means they need to collect a massive amount of
unlabeled data. In comparison, our method generates pseudo-training
data without collecting additional unlabeled data.

Distribution Difference. In order to simplify the method, we take
the uniform distribution as the prior of OBI positions, but the real
distribution of OBI is complex. We visualized the OBI centers’ position
and frequency to show the difference in Fig. 10. In generated data,
the OBI centers nearly fall into the square area with equal frequency.
However, the real distribution is a narrow band region in the center,
and the frequency of OBI fall in each grid position is biased. We
observed this difference and regarded it as a distribution distortion.

Deceleration in the Boost of Performance. As shown in in Fig.
9, the more real labeled data is available, the more muted the growth
in performance is by adding more generated data. We attribute this to
the distribution distortion of generated data to real data in the test set.
Similarly, in SSOD, an observation is that the performance boost slows
down when the pseudo label of unlabeled data is distorted . These
similar observations are caused by the distortion in distribution.

H. Ablation Study
1. Ablation of Box Loss

Ablation experiments on the proposed OBI detection model are
conducted to verify the effectiveness of different £, losses in the
proposed OBI detection model, including IOU, GIOU, DIOU, and
CIOU, without other improvements. In addition, the OBI-detection
dataset is randomly divided into 50% for training and 50% for testing
as experimental groups.

Table VII shows the results of different box losses. The results in
APO0.5 of the four loss methods are very close. When the training data
is sufficient (9:1), IOU, GIOU, and DIOU all have an AP0.5 of 0.908, and
CIOU has an AP0.5 of 0.906. While IOU, GIOU, and DIOU have an AP0.5
0f 0.884, and the CIOU has an AP0.5 of 0.885 when the training data is less
(5:5). This closeness results from the fact that the variation range of OBI
aspect ratio variation is tiny. Moreover, a tiny change in the bounding
box offset will not reflect the effect of other losses, so the CIOU is finally
adopted as the box loss in the proposed detection model because the
design of CIOU is based on improving IOU, GIOU, and DIOU.

TABLE VIIL ResurTs oF DIFFERENT Box LossEs WITH DIFFERENT TRAIN:
TesT SpPLITS

L

Train:Test Box APO0.5 Train:Test LBax APO0.5
9:1 10U 0.908 5:5 10U 0.884
9:1 GIOU 0.908 5:5 GIOU 0.884
9:1 DIOU 0.908 5:5 DIOU 0.884
9:1 CIOU 0.906 5:5 CIOU 0.885

2. Ablation of 1/4 Feature, Resolution and Soft-NMS

To verify the effectiveness of the other three improvements: (1)
adding 1/4 feature (1/4 Feat), (2) using higher resolution (Higher
Res), (3) Soft-NMS, ablation experiments are conducted on the OBI-
detection dataset. The results are shown in Table VIII. The baseline
without any improvement equals the original YOLOv5s model.

TABLE VIII. RESULTS OF ABLATION STUDY OF 1/4 FEATURE, RESOLUTION, AND

SoFT-NMS
1/4 Feat Higher Res Soft-NMS AP0.5 AP0.5:0.95
0.906 0.529
4 0.900 0.571
v 0.909 0.534
v 0.901 0.526
v v 0.906 0.580
v 4 0.907 0.530
v v 0.912 0.538
v v v 0.902 0.581
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Fig. 10. Visualization of OBI center position and frequency. In (a) and (b), each OBI center is shown as a white point. In (c) and (d), the frequency of OBI center

falls into equally divided grid cells is shown via the heatmap.

The combination of higher resolution with and 1/4 feature map is
significant. However, when adding only the 1/4 feature map into the
network structure without higher resolution, the poor predictions can
deteriorate the performance due to insufficient semantic information
in the 1/4 scale feature map. On the one hand, when only increasing
the input resolution, the performance gets slightly better for enlarged
resolution provides more information per position in feature maps.
Therefore, the AP0.5 metric can improve by 0.6% by using higher input
resolution and a 1/4 feature map for simultaneous detection without
Soft-NMS.

Soft-NMS is also critical for improving AP0.5:0.95 but may result
in a decline in APO0.5. Soft-NMS can effectively improve AP0.5:0.95.
However, in some cases, due to some reserved inaccurate redundancy,
Soft-NMS might lead to a decline in AP0.5. With increasing the input
resolution, the improvement of Soft-NMS in AP0.5:0.95 after adding
the feature map is more significant than that without adding the
feature map. This phenomenon is because an enlarged input resolution
is sufficient for the 1/4 feature to provide good predictions and leads to
better performance.

Using higher input resolution and 1/4 feature map for fusion
simultaneously, Soft-NMS can improve the AP0.5:0.95 metric from
0.529 to 0.581, which is the highest improvement result from better
semantic information for fusion along with reducing overlapping.
This result also proves the effectiveness of our OBI detection model.

3. Ablation of the £

To verify the rubbing generation network, the £

Loss

rubbing

_loss is also
rubbing

evaluated by substituting it with the L1 loss used in the rubbing
generation framework. The loss records are shown in Fig. 11. It can be
observed that the L1 loss calculated from the generated rubbing image
and the real image is unstable, and the adversarial training cannot
converge. This difficulty of convergence results from the noise on a
real rubbing image caused by the random damage it had undergone.
The noises on real rubbing images are not pixel-level stable. Hence,
a pixel-level loss is sensitive to extensive random noise. By using the
L, pping 1088, the rubbing adversarial network is feasible in convergence
and generate rubbing images with noise to a certain extent, which

proves the effectiveness of L .
rubbing

V. CONCLUSION

Recently, advancement in Oracle Bone Inscription (OBI) detection
has emerged to assist OBI researchers. Nevertheless, the costly
annotation of such noisy and complex data requires expertise,
hindering its development. This paper proposes an OBI rubbing
generation framework aiming to alleviate the scarcity of OBI detection
training data with an OBI detection model aiming to provide better
performance on OBI detection. The OBI rubbing generation framework
is based on geometric algorithms and an adversarial network. First, it
generates a rubbing base with controllable OBI placement only using
single OBI images by geometric algorithms that construct multi-level
mesh and morphological operations such as erosion on the mesh.
Then the rubbing adversarial network serves as style transferring to
obtain a more realistic rubbing image. The proposed OBI detection
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Fig. 11. Training recdfds of rubbing adversarial network. (a) Using L1 loss instead of £

model with effective improving methods is capable of providing more
semantic information for tiny OBI and deal with overlapping softly.
The goal of the proposed method is to generate additional training
data under a uniform position prior without collecting extra unlabeled
data. Besides, it extracts semantic-enhanced information from limited
data. Experiments of augmentation show the performance boost on
several popular detection models, demonstrating the effectiveness of
the proposed OBI rubbing generation framework. The proposed model
achieves the best performance compared with other popular detection
models. Visualization results verified the distribution difference
between real and generated data.

Experiments demonstrate that the proposed method improves the
performance of detection models when training data is scarce, while
the proposed OBI detection model outperforms several competitive
candidates. The proposed methods allow researchers to detect OBI
precisely only with scarce training data. Even the simple uniform prior
is adequate with limited data, considering how to design the prior of
generating OBI rubbing is a promising future research.
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